
Proving invariants using many-sorted logic

John Harrison
Intel Corporation

WG 2.3 meeting, Bruges

March 16, 2006

0

Plan for the talk

Central problem in verification: reachability or non-reachability w.r.t.
a transition relation.

Can be done by arriving at an inductive invariant (using ingenuity).

We would, like to verify inductiveness automatically (no ingenuity).

If the invariant and/or transition relation includes quantifiers (‘for all x

. . . ’) even this is not in general a decidable problem.

By exploiting types, some apparently problematic cases are in fact
seen to be decidable.

1

Transition relations, reachable states

We’ll use sets and predicates interchangeably, so σ ∈ S and S(σ)

mean the same thing.

We have a set S of “states” and a binary “transition relation”
R ⊆ S × S.

Fix a set S0 ⊆ S of “initial states”. A state is reachable if we can get
to it from a state in S0 by any number of R-steps:

S∗(σ′) = ∃σ. S0(σ) ∧ R∗(σ, σ′)

We write S∗ for the set of reachable states.

2

Invariant and inductive invariant

A property P is an invariant if it holds in all reachable states, i.e.
S∗ ⊆ P . The set of reachable states is the smallest (strongest)
invariant.

A property P is inductive if it holds in all initial states (S0 ⊆ P) and is
preserved by transitions (∀σ σ′. P (σ) ∧ R(σ, σ′) ⇒ P (σ′)).

Every inductive property is also an invariant, so we call it an
“inductive invariant”.

Not every invariant is inductive. But the set of reachable states
certainly is.

3

How to solve it

We can imagine that S0, R and P are all represented by logical
formulas.

They may be specified directly that way (e.g. TLA), or we may derive
them by embedding some language like Murphi or SMV.

We want to show that P is an invariant. How might we do it?

• Enumeration — if the state space is finite and small enough, can
model-check.

• Abstraction — cleverly replace the transition system by a simpler
one and infer results from that.

• Induction — we’ll concntrate on this.

4

Finding an inductive invariant

If we’re very lucky, the property P may be inductive. In real problems
it usually isn’t.

The solution is familiar from ‘strengthening the inductive hypothesis’.
We seek an I such that

• I is an inductive invariant

• ∀σ. I(σ) ⇒ P (σ)

This may be quite difficult and need considerable skill and ingenuity.

5

From the verification coalface

Three bugs are crawling on the coordinate plane. They move one at
a time, and each bug will only crawl in a direction parallel to the line
joining the other two.

The bugs start out at (0,0), (3,0), and (0,3).

(a) Is it possible that after some time the first bug will end up back
where it started, while the other two bugs switch places?

(b) Can the bugs end up at (1,2), (2,5), and (-2,3)?

6

Finding an inductive invariant

The answer is no in both cases. How could we prove it?

The property of not being at a particular point is certainly not
inductive.

So we need to find some inductive invariant that implies the property
we want.

7

Solution to the bug puzzle

The oriented area of the triangle formed by the bugs does not
change.

If the bugs are at (ax, ay), (bx, by) and (cx, cy), the oriented area is:

((bx − ax) · (cy − ay) − (cx − ax) · (by − ay))/2

In the initial configuration this is 9/2, and in the two final
configurations it’s −9/2 and ±5.

So all we need to prove is that ‘the oriented area is 9/2’ is inductive,
and we’re done.

8

Proof obligation

Final proof obligation is just algebra:

(∃a. a′

x = ax + a · (cx − bx) ∧ a′

y = ay + a · (cy − by)∧

b′x = bx ∧ b′y = by ∧ c′x = cx ∧ c′y = cy)∨

(∃b. b′x = bx + b · (ax − cx) ∧ b′y = by + b · (ay − cy)∧

a′

x = ax ∧ a′

y = ay ∧ c′x = cx ∧ c′y = cy)∨

(∃c. a′

x = ax ∧ a′

y = ay ∧ b′x = bx ∧ b′y = by∧

c′x = cx + c · (bx − ax) ∧ c′y = cy + c · (by − ay))∧

((bx − ax) · (cy − ay) − (cx − ax) · (by − ay))/2 = 9/2

⇒ ((b′x − a′

x) · (c′y − a′

y) − (c′x − a′

x) · (b′y − a′

y))/2 = 9/2

After prenex normal form, purely universal. Easily solved
automatically; HOL Light’s REAL_RING rule proves it in 0.57s.

9

When is inductiveness hard?

This was a characteristic inductive correctness proof:

• Arriving at the inductive invariant required human insight

• The proof of inductiveness was then automatic.

We will not consider the problem of automating inductive invariant
generation. Instead we ask:

• What if the inductiveness proof itself is hard? In particular, what
if the transition relation and/or invariant contains quantifiers?

10

Parametrized systems

An interesting target for verification is parametrized systems.

Such a system typically contains some number N of equivalent
replicated components, so the state space involves some Cartesian
product

Σ = Σ0 ×

N times
︷ ︸︸ ︷

Σ1 × · · · × Σ1

and the transition relation is symmetric between the replicated
components.

Sometimes we have subtler symmetry, but we’ll just consider full
symmetry.

11

Parametrized verification

Even if Σ1 is finite, we can only use straightforward model checking
when N is a specific number.

In practice, only small N may be feasible.

Yet the system is often expected/supposed to work for arbitrary N .

So we would like a proof that is general, with N treated as an
arbitrary parameter.

12

Multiprocessors with private cache

A classic example of a parametrized system is a multiprocessor
where each processor has its own cache.

We have N cacheing agents with state space Σ1 each, and maybe
some special ‘home node’ with state space Σ0.

We can consider Σ1 as finite with two radical but not unreasonable
simplifications:

• Assume all cache lines are independent (no resource allocation
conflicts)

• Ignore actual data and consider only state of cache line (dirty,
clean, whatever)

13

Coherence

The permitted transitions are constrained by a protocol designed to
ensure that all caches have a coherent view of memory.

On some simplifying assumptions, we can express this adequately
just using the cache states.

In classic MESI protocols, each cache can be in four states:
Modified, Exclusive, Shared and Invalid.

Coherence means:

∀i. Cache(i) IN {Modified, Exclusive}

⇒ ∀j. ¬(j = i) ⇒ Cache(j) = Invalid

14

Form of inductiveness claim

For a very simple and abstract protocol description, coherence may
already be inductive. Look at logical form of inductiveness claim
I(σ) ∧ R(σ, σ′) ⇒ I(σ′).

The inductive invariant I is universally quantified, and occurs in both
antecedent and consequent.

The transition relation has outer existential quantifiers ∃i. · · ·

because we have a symmetric choice between all components.

Inside, we may also have universal quantifiers if we choose to
express array updates a(i) := Something as relations between
functions:

a′(i) = Something ∧ ∀j. ¬(j = i) ⇒ a′(j) = a(j)

15

Our quantifier prefix

So our inductiveness claim may look like

(∀i, j, · · ·) ∧ (∃i. ∀j. · · ·) ⇒ (∀i, j, · · ·)

If we put this into prenex normal form in the right way, the quantifier
prefix is of the form:

∀ · · · ∀∃ · · · ∃

Suppose we don’t need any arithmetic.

We can add assumptions for exhaustiveness and exclusiveness of
the 4-element type of cache states without disturbing the logical form.

Is this problem decidable?

16

The AE fragment

A classic decidability result for first order logic due to Bernays,
Schönfinkel and Ramsey.

A first-order formula is in AE form if it contains no function symbols
and has, or can obviously be transformed into, the following prenex
form:

∀x1, . . . , xn. ∃y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym]

with P [x1, . . . , xn, y1, . . . , ym] quantifier-free. Dually, EA form is

∃x1, . . . , xn. ∀y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym]

Logical validity for AE formulas / satisfiability for EA formulas is
decidable.

17

Finite model proof

An AE formula ∃x1, . . . , xn. ∀y1, . . . , ym. P [x1, . . . , xn, y1, . . . , ym] has
a model iff it has a model with domain size n.

One way is trivial. And if it has a model with domain D, there are
a1, . . . , an ∈ D such that for any b1, . . . , bm ∈ D we have
PM [a1, . . . , an, b1, . . . , bm].

Let D′ = {a1, . . . , an}. Then a fortiori for any b1, . . . , bm ∈ D we have
PM [a1, . . . , an, b1, . . . , bm]. So the formula holds in D′.

Note that this fails if the formula involves function symbols: we don’t
know that D′ is closed under the action of their interpretation.

18

Skolem-Gödel-Herbrand proof

By Skolemization, the formula is satisfiable iff this is:

∀y1, . . . , ym. P [c1, . . . , cn, y1, . . . , ym]

By the Skolem-Gödel-Herbrand theorem this is unsatisfiable iff the
set of all ground instances

∧

t1,...,tm

P [c1, . . . , cn, t1, . . . , tm]

with ti ranging over all ground terms.

But the only ground terms are the constants ci, so this is a finite
conjunction, and we can decide it propositionally.

Again, this fails if we have a function symbol, because then we need
to consider the infinite set of instantiations to c, f(c), f(f(c)), . . .

19

Not quite what we need

Our inductive invariance claim does have an AE quantifier prefix.

And it doesn’t need any background theory like arithmetic.

Unfortunately it does include functions! We have the function Cache

representing the array of caches . . .

20

Many-sorted logic

Traditional first-order logic only has one kind of object, and models
have a single domain.

However it’s sometimes more natural to consider many-sorted logic
where type distinctions are made and there are separate domains for
each type.

For example in formalizing geometry we may have separate sorts P

for points and L for lines:

∀x : P, y : P. ¬(x = y) ⇒ ∃!l : L. On(x, l) ∧ On(y, l)

21

Why are types ignored?

Very little of the literature on automated reasoning considers
many-sorted logic.

Most first-order proof procedures do not expand over the set of
ground terms, but identify instantiations by unifications.

Well-typed problems lead to well-typed unifiers, even if the types are
ignored during proof search.

However, when we do consider expansion over the ground terms,
things are very different . . .

22

Many-sorted Skolem-Gödel-Herbrand

In many sorted-logic, the obvious analog of the
Skolem-Gödel-Herbrand theorem holds.

However, the construction of ground terms is constrained by type: we
only consider well-typed combinations.

In particular, since Cache has type Node → State, terms like
Cache(Cache(i)) are ill-typed.

So there is still only a finite set of ground terms!

23

Practical implications

Our inductiveness problem is decidable. The decision method: a
relatively modest finite expansion then hit it with a free-variable SMT
solver.

Works for relatively complex transition relations and invariants,
provided their logical form is right.

We can even add theories such as arithmetic. Non-trivial, because
it’s generally thought that combining either quantifiers or
uninterpreted functions with linear arithmetic leads to undecidability.

The main problem is that we cannot have arrays of node indices,
since then we once again have an infinite set of ground terms. (So
we can handle the German protocol, but not FLASH.)

24

Logical generality

The present observations are implicit in work by Pnueli et al. on
“invisible invariants”.

However, it’s tied up there with a particular form of invariant
synthesis. We want to present it in full logical generality.

There are other situations where we can get a decision method
thanks to the more refined view sorts give us.

We’ll give one more such example.

25

Metric spaces

A metric is a binary function d : S × S → R such that:

∀x y : S. d(x, y) ≥ 0

∀x y : S. d(x, y) = 0 ⇔ x = y

∀x y : S. d(x, y) = d(y, x)

∀x y z : S. d(x, z) ≤ d(x, y) + d(y, z)

This is naturally formulated as a 2-sorted first-order theory with the
background theory of arithmetic. Again, terms like d(d(x, y), d(x, y))

are ill-typed.

So we can decide whether an AE formula holds in all metric spaces
based on a finite expansion then using a normal SMT solver.

26

Antimetric spaces

Works with any axioms with the same logical form and the same type
structure, such as antimetric spaces where we change the axioms to:

(∀x y. d(x, y) = 0 ⇔ x = y)∧

(∀x y. 0 ≤ d(x, y))∧

(∀x y z. d(x, y) + d(y, z) ≤ d(x, z))

Again, we can decide whether an AE formula holds in all antimetric
spaces.

27

An expansion proof

(d(a, a) = 0 ⇔ a = a) ∧ (0 ≤ d(a, a))∧

(d(a, a) + d(a, a) ≤ d(a, a)) ∧ (d(a, a) + d(a, b) ≤ d(a, b))∧

(d(a, b) = 0 ⇔ a = b) ∧ (0 ≤ d(a, b))∧

(d(a, b) + d(b, a) ≤ d(a, a)) ∧ (d(a, b) + d(b, b) ≤ d(a, b))∧

(d(b, a) = 0 ⇔ b = a) ∧ (0 ≤ d(b, a))∧

(d(b, a) + d(a, a) ≤ d(b, a)) ∧ (d(b, a) + d(a, b) ≤ d(b, b))∧

(d(b, b) = 0 ⇔ b = b) ∧ (0 ≤ d(b, b))∧

(d(b, b) + d(b, a) ≤ d(b, a)) ∧ (d(b, b) + d(b, b) ≤ d(b, b))∧

¬(a = b)

28

The sorry truth

(∀x y. d(x, y) = 0 ⇔ x = y)∧

(∀x y. 0 ≤ d(x, y))∧

(∀x y z. d(x, y) + d(y, z) ≤ d(x, z))

⇒ ∀x y. x = y

29

Conclusions

In practical applications, we are increasingly using expansion-based
techniques, rather than unification-based ones. (Look at UCLID!)

By maintaining type distinctions, we often get much smaller and
more efficient expansions (Jeroslow).

The special case of invariants for parametrized system is interesting,
and implicit in existing work (Pnueli . . .)

More generally, there are many benefits to considering sorts
properly, yet most SMT suites do not.

www.cl.cam.ac.uk/users/jrh/papers/manysorted.pdf

www.cl.cam.ac.uk/users/jrh/papers/holhol.pdf

30

