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The cruelty of really doing proofs

Some pioneers like Frege and Peano actually wanted to use their
formal systems in practice.

With the rise of Hilbert’s program, this came to be seen as something
only to be done ‘in principle’.

Russell claims that his intellect ‘never quite recovered from the strain
of writing Principia

Are long formal proofs really more reliable than informal ones?
Probably the opposite.



Let the computers do it

Doing formal proofs is much more practical if we can delegate some
of the tedium to computers.

Moreover, this should achieve a real improvement in reliability.

Some theorem provers are a mass of powerful, but complex and
perhaps unreliable, inference rules.

We claim it’s often desirable to perform all proofs using something
close to a traditional system of deduction rules.



LCF

A methodology for making a prover extensible by ordinary users, yet
reliable.

ldea due to Milner in Edinburgh LCF project, now used in many other
sytems like Coq, HOL, Isabelle and Nuprl.

e Implement in a strongly-typed functional programming language
(usually a variant of ML)

e Make thm (‘theorem’) an abstract data type with only simple
primitive inference rules

e Make the implementation language available for arbitrary
extensions.



The problem of producing proofs

Many efficient decision procedures do not naturally produce a proof
using traditional inference rules.

Their justification is often based on metatheoretic reasoning.

Simple example: a propositional formula with < as the only
connective can be seen to be valid by seeing that each atom occurs
an even number of times.

This doesn’t obviously help us to produce a proof using one of the
standard sets of inference rules for propositional logic.



Not as bad as it seems

Over the years a distinctive methodology has been developed to
Implement standard decision procedures so they produce proofs.

Quite often, traditional algorithms can easily be reformulated to
produce proofs without an infeasible increase in runtime or
complexity.

Classic example: Kalmar’s completeness proof for propositional logic
Is essentially a proof-producing formulation of the truth-table method.



Reflective reasoning

Often, metatheoretic reasoning can be performed by appealing to
general object-level theorems via a partial semantic reflection. (No
new ‘reflection principles’ needed for modest subset of logic.)

Example: HOL implementation of Cooper’s algorithm for Presburger
arithmetic. Define a type of trees representing NNF Presburger
formulas:

let cform_INDUCT,cform_RECURSION = define_type
"cform = Lt int

| Gt int

| Eq int

| Ne int
| Divides int int
| Ndivides int int
| And cform cform
| Or cform cform
| Nox bool";;



The semantics of formulas

The meaning of these formulas is now defined recursively:

let interp = new_recursive_definition cform RECURSION
‘(interp x (Lt €) = x + e < &0) N
(interp x (Gt e) = x + e > &0) A
(interp x (Eq e) = (x + e = &0)) A
(interp X (Ne e) = "(x + e = &0)) A
(interp x (Divides ¢ e) = ¢ divides (x + e)) A
(interp x (Ndivides ¢ e) = “(c divides (x + e))) N\
(interp x (And p ) = interp x p A interp x q) A
(interp x (Or p q) = interp x p V interp x q) N\
(interp x (Nox P) = P);;

We can map into and out of the ‘reflected’ representation in linear
time, then at the reflected level appeal to metatheorems.



Certifying decision procedures

The ideal situation is where a decision procedure can produce a
‘certificate’ which can be efficiently checked by proof.

e Generally much more efficient since the entire decision
procedure doesn’t need to be internalized

e The implementation is usually much simpler (for the same
reason).

Simple examples: satisfying valuation for propositional formula,
resolution proof discovered by extensive search, factorization for
number to prove compositeness.



Main theoretical question

Which decision procedures do lend themselves to a separate
certificate? Generally, we don’t know the answer, but we want to find

out more.

If efficient = polynomial, certificates for unsatisfiability of propositional
formulas exist iff NP = co-NP (which is an open problem).

For primality, Pratt certificates and later refinements exist. These
show primality testing to be in NP N co-NP (we now know it's in P).

What do we know about other decision procedures?



Nullstellensatz refutations

Hilbert’'s weak Nullstellensatz tells us that a conjunction of
polynomial equations

p1(T) =0A---Ap,(T) =0
IS inconsistent over C iff there exist ‘cofactor’ polynomials ¢;(x) with
P1(T)qu(T) + - + pn(T)gn(T) = 1

We can arrange for standard decision methods like Grobner bases
to produce the cofactors.

But how large are the cofactors? Perhaps just checking the
polynomial identity is non-trivial!
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Real Nullstellensatz refutations

Similar certificates (based on sums of squares) exist for
inconsistency over R.

One way of finding them (Parrilo .. .) is using semidefinite
programming; checking the certificate can be much easier than
finding it. Suppose we want to verify the following:

Vabex.ax? +bx+c=0=b*>—4ac>0
It's easy once we find the certificate:
b* — dac = (2ax + b)* — 4a(az® + bx + )

But again, how big may the certificates get?
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Applications

There are many applications where we want to certify decision
methods that rely on extensive case analysis.

e Configurations of cache coherence protocols verified by
exhaustive state enumeration in model-checking tools

e Polynomial inequalities in Flyspeck project currently verified
using interval enclosure over many small subintervals.

|s there a natural approach to these problems where we can easily
obtain a proof?
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Summary

e Producing proofs/certificates from decision procedures has
obvious advantages

¢ In many cases, we can quite easily adapt standard algorithms to
produce proofs.

e Need more information about where efficient certificates exist.

e Perhaps some interesting theoretical questions relating to
NP-completeness.
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