
Formalizing Dijkstra 1
Formalizing Dijkstra

John Harrison
University of Cambridge

I've been playing around recently formalizingDijkstra's \A Discipline of Programming". Thistalk is about a few aspects of the work.� A Discipline of Programming� Mechanizing programming logics� Relational semantics� Weakest preconditions� Theorems about loops
John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 2
A Discipline of ProgrammingThis classic monograph by Dijkstra has severalinteresting features.� Stress on programs as primarily mathematicalformalisms, whose runnability of a machineis, so to speak, a lucky accident.� Systematic use of the (then new) method ofweakest preconditions to give semantics toprograms.� Formal treatment of a number of attractivealgorithms, several of which havesubsequently become classics, e.g. Hamming'sproblem and the Dutch National Flag.It's surely Dijkstra's best book. In fact, thepeople who buy books for Cambridge University'slibraries seem to think it's his only good book.

John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 3
Why formalize it?

It seemed that it might be fun to formalizeADOP, for several reasons:� Formalization tends to inspire a close reading,which this book probably deserves.� Dijkstra is very pro-correctness proofs, butvery anti-computer checking. It seemedinteresting to see how his arguments stand upto formalization.� This sort of formalization is generally prettyeasy compared with
oating pointveri�cation, so it provides light relief and thefeeling of making rapid progress.� \None of the programs in this monograph,needless to say, has been tested on amachine." [p. xvi]
John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 4
This isn't new

Mike Gordon showed in 1988 how to formalizeprogramming logics in higher order logic theoremprovers. It would also work �ne in set theory orany suitable general mathematical formalism.He and Tom Melham actually used a tactic to doveri�cation condition generation, which worksvery nicely. (I've used this approach in
oatingpoint veri�cation.)Since then there's been a slew of work formalizingprogramming languages based on the same ideas,e.g. Agerholm, Grundy, Homeier, Nipkow,Tredoux and von Wright, to name just a few.As well as programming languages, there havebeen formalizations of hardware descriptionlanguages and other CS formalisms, e.g. CCS,CSP, ELLA, �-calculus, TLA, UNITY, Verilogand VHDL.
John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 5
Formalizing states

Following von Wright, we have a sort of \shallowembedding" of states, where the state isrepresented as a tuple of variables. Commandsare implicitly abstracted over these variables, e.g.if we have three variables x,y and z, theassignment x := y + z would be:Assign (\(x,y,z). (y + z,y,z))All this is dealt with by parsing and printing, sothe surface syntax is generally acceptable.The problem with a more explicit representationof the environment is that one ends up �xing thepossible types for variables in advance. In settheory, this is not a problem, as Mark Staples willshow in his thesis.
John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 6
Logical operatorsMost of Dijsktra's use of logical operators isimplicitly at the predicate level, so it's handy tode�ne various liftings of logical operators, e.g.|- p And q = \x. p x /\ q x|- Forall P l = \x. FORALL (\a. P a x) lIn fact, I wondered if his use of `non' for negationis a sort of pun (e.g. `x is non empty if not (x isempty)'.Sometimes Dijkstra is pretty vague here aboutwhere he implicitly means `for all states'. Ibelieve he nowadays writes things in squarebrackets to indicate quanti�cation over all freevariables. We have two separate forms ofimplication, again following von Wright:|- p Imp q = \x. p x ==> q x|- p Implies q = !x. p x ==> q xJohn Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 7
Relational semanticsDijsktra actually de�nes commands via theirweakest proconditions. This was also done inHOL by von Wright et al.We take the point of view that we knowthe possible performance of themechanism S su�ciently well, providedthat we can derive for any postconditionR the corresponding weakest preconditionwp(S;R), because then we have capturedwhat the mechanism can do for us; and inthe jargon the latter is called \itssemantics". [p17]To us it seems more satisfactory to start with amore intuitive and operational view of programsand derive weakest preconditions afterwards.Dijkstra doesn't manage to escape fromoperational thinking completely, however hard hetries.John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 8
NondeterminismUsing relations �! �! bool or �� �! boolhas the defect, as noted in Gordon's originalpaper, that we can't really treat nondeterminismproperly. We want to be able to distinguishpossible and certain termination.Jim Grundy shows in his thesis (also theproceedings of a conference in Novosibirsk, LNCS735) that all ways of interpreting relations of thisform lead to problems treating nondeterminism.Instead, we use �! �? ! bool, i.e. introduce aseparate type of `outcomes' �?. In HOL:(A)outcome = Loops | Terminates AWe basically follow Hesselink's CUP book onweakest preconditions; some of the later theoremsare also taken from his book, supplementing thosegiven by Dijkstra.

John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 9
Weakest preconditions

It's now straightforward to de�ne weakestpreconditions and weakest liberal preconditions:|- terminates c s = ~c s Loops|- wlp c q s =(!s'. c s (Terminates s') ==> q s')|- wp c q s = terminates c s /\ wlp c q sNote that our semantics allows non-totalcommands, i.e. ones with no �nal outcome.According to the above de�nition these satisfyevery postcondition!Hesselink uses them to interpret guardsrelationally. Anyway, all the actual commands weuse are total.
John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 10
Healthiness conditionsDikstra gives some healthiness conditions thatpredicate transformers of the form wp c shouldobey. With a proviso about total commands,these are all trivial to prove in HOL (callMESON TAC with some relevant facts).|- (wp c False = False) = total c|- q Implies r ==> wp c q Implies wp c r|- wp c q And wp c r = wp c (q And r)|- wp c q Or wp c r Implies wp c (q Or r)|- deterministic c==> (wp c p Or wp c q = wp c (p Or q))where:|- deterministic c =(!s t1 t2. c s t1 /\ c s t2==> (t1 = t2))|- !c. total c = (!s. ?t. c s t)

John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 11
Other theoremsWe also prove various other assertions by Dijkstrain the same chapter, and some more fromHesselink, e.g.|- wp c r = wlp c r And wp c True|- total c =!p. wp c p Implies Not(wlp c (Not p))|- deterministic c =!p. Not(wlp c (Not p)) Implies wp c pThey're all pretty easy, except for the case whereDijkstra gets it wrong. Once MESON TAC hadtaken 10 seconds I knew either Dijkstra or I musthave made a mistake.Dijkstra [pp. 21-2] enumerates the 7 `mutuallyexclusive' possibilities when a nondeterministiccommand c is started in a given state with apostcondition r in mind:John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 12
Dijkstra's error (1)

1. c will terminate and establish r2. c will terminate and establish r3. c will not terminate4. c will terminate and may or may not satisfy r5. c may or may not terminate, but if it doeswill satisfy r6. c may or may not terminate, but if it doeswill satisfy r7. c may or may not terminate, and if it doesmay or may not satisfy rThis is quite right. But his rendering of these interms of weakest preconditions is wrong.
John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 13
Dijkstra's error (2)In the precise terms of Dijkstra's description, farfrom all being mutually exclusive, area (c) iscontained in areas (ac) and (bc).Dijkstra uses Not (wp c True) to indicatepossible nontermination, but this wronglyincludes the third case of certain nontermination.We replace this with Not (wp c True Or wlp cFalse), and with this change all the cases areindeed distict.His error is basically a confusion of two di�erentnotions of doubt or certainty. Perhaps there'ssomething unintuitive about nondeterministicmachines, despite his con�dent pronouncements:Once the mathematical equipmentneeded for the design of nondeterministicmechanisms achieving a purpose has beendeveloped, the nondeterministic machineis no longer frightening. On the contrary!John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 14
Guarded commandsDijkstra's actual commands are a bit eccentric,making up the `guarded command language'.Essentially:

command �! skip�! abort�! x1; : : : ; xn:= E1; : : : ; En�! command; command�! if gc 2 � � � 2 gc fi�! do gc 2 � � � 2 gc odgc �! expression! command

John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 15
Semantics of loopsIt's trivial to derive the weakest preconditions formost of the commands. The more interesting onesare for loops.Dijkstra gives a de�nition of a semantics for loopson pp. 35-6. But this is completely bogus,sneaking in the assumption that a loop willterminate i� there is an upper bound on thenumber of iterations.This requires an assumption of boundednondeterminacy (and an appeal to K�onig'slemma). Dijkstra eventually discusses this inchapter 9.We de�ne the semantics of loops at a relationallevel in a fairly obvious way, sticking to the spiritof Dijkstra's de�nition, i.e. talking about somenumber of iterations. Dijkstra prefers this toinductive or recursive de�nitions.

John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 16
Theorems for loopsDijkstra gives several theorems for loops, whichwe can prove relatively easily in HOL. His most`basic' theorem is:|- p And Exists (\(g,c). g) gcs Implies wp(If gcs) p==> p And wp (Do gcs) TrueImplies wp (Do gcs)(p And Not(Exists (\(g,c). g) gcs))This has just wp (Do gcs) True as thehypothesis that the loop terminates. Of course inpractice, one wants to show this using somereduction in the state w.r.t. a wellfoundedordering round each iteration of the loop. So wealso derive:|- WF(<<) /\(!X. p And Exists (\(g,c). g) gcs And (\s. s = X)Implies wp (If gcs) (p And (\s:S. s << X)))==> p Implies wp (Do gcs)(p And Not(Exists (\(g,c). g) gcs))We get from this the exact theorems Dijkstragives.John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 17
Re
ections on loopsOne can derive the `less basic' theorem that isactually used in practice purely from a �xpointassertion about the weakest precondition:|- wp (Do gcs) (q:S->bool) =q And Not (Exists (\(g,c). g) gcs) Orwp (If gcs) (wp (Do gcs) q)For the more basic theorem with wp (Do gcs)True as the hypothesis this isn't true | we needleastness. For example this loop has x := 0 as a�xpoint:do x /= 0 -> x := x + 1 odWe think this point is worth mentioning. Even if,like Dijkstra, you hate recursion and induction,that kind of loop unrolling is intuitive.It's nice that we don't need any more precise�xing of the semantics of loops if we are merelyinterested in proving total correctness ofprograms in the usual way.John Harrison University of Cambridge, 12 February 1998

Formalizing Dijkstra 18
Future workMost of Dijkstra's language is formalized; we justneed to deal with variable declarations and arrayvariables.The main idea is to formalize the proofs he givesfor the correctness of algorithms, and see how wellthis goes.I've already learned quite a bit about semanticsand in particular weakest preconditions doing thiswork. I reckon so far it has been worthwhile.

John Harrison University of Cambridge, 12 February 1998

