
Formal Verification Methods 3: Model Checking

Formal Verification Methods

3: Model Checking

John Harrison

Intel Corporation

• Sequential circuits

• State transition systems

• Symbolic state representation

• Bounded model checking

• Unbounded reachability

• Temporal logic

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Sequential circuits

We now generalize from combinational circuits,

where we consider a fixed time interval.

In sequential circuits, there are state-holding

elements, called latches or flip-flops.

We consider mainly synchronous circuits where

the latches change value together according to a

single clock.

However, there is also some interest in

asynchronous circuits, and the techniques here

can be applied there too.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Modelling sequential circuits

In combinational circuits, we considered the

output(s) as Boolean function(s) of the inputs,

with one basic Boolean value for each input.

To model combinational circuits, we introduce

Boolean values for:

• The inputs (as before)

• The values of the latches

Each of these is considered to vary with time.

Instead of just a value in B, we consider it as a

function from time to B.

Since we consider sequential circuits, we consider

the Boolean values as mappings N → B.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Modelling sequential circuits

If there are n inputs and latches:

• The state σ = (b1, . . . , bn) of the circuit at

time t is just the set of values of the inputs

and latches at time t.

• The state space (set of possible states) is

Σ = B
n

We model the circuit itself as a transition relation

R ⊆ Σ × Σ:

• The relation R(σ, τ) holds if and only if the

circuit when in state σ at time t may reach τ

at time t + 1.

• The possible trajectories for the circuit are

sequences σ0, σ1, σ2, . . . with R(σi, σi+1) for

all t ∈ N.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Counter example

Consider a circuit with three latches v0, v1 and v2

implementing a modulo-5 counter.

The state space of the system is S = B × B × B.

The transition relation is

{ ((0, 0, 0), (0, 0, 1)), ((0, 0, 1), (0, 1, 0)),

((0, 1, 0), (0, 1, 1)), ((0, 1, 1), (1, 0, 0)),

((1, 0, 0), (0, 0, 0))}

i.e, the following transitions are possible:

(0, 0, 0) → (0, 0, 1)

(0, 0, 1) → (0, 1, 0)

(0, 1, 0) → (0, 1, 1)

(0, 1, 1) → (1, 0, 0)

(1, 0, 0) → (0, 0, 0)

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Finite state transition systems

A circuit is nothing other than a finite state

transition system (a.k.a. finite automaton, Kripke

structure . . . ).

Simply a finite state space Σ and a transition

relation R ⊆ Σ × Σ:

However, those arising from modelling circuits

have two special properties:

• The transition relation is deterministic, i.e. if

R(σ, τ) and R(σ, τ ′) then τ = τ ′.

• The state space is the Cartesian product of

Boolean variables, Σ = B
n.

Model checking works fine without determinism,

and we can then apply it to other interesting

state transition systems.

However, even then it’s useful to represent the

state space using Boolean variables . . .

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Symbolic state representation

Instead of enumerating all the elements of the

transition relation, we can represent it

symbolically.

• Use n Boolean variables v1, . . . , vn for the

‘current state’

• Use another n of them, v′1, . . . , v′n for the

‘next state’

We can then just represent the transition relation

R as a Boolean formula r(v, v′). For the counter:

(v′0 ⇔ ¬v0 ∧ ¬v2)∧

(v′1 ⇔ ¬(v0 ⇔ v1))∧

(v′2 ⇔ v0 ∧ v1)

This is so useful that we use a Boolean

parametrization of the state space for any

transition system we are interested in.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Reachability

Many fundamentally interesting questions about

finite state transition systems are about

reachability:

• Starting from a state in S ⊆ Σ, can we reach

a state in S′ ⊆ Σ?

In the symbolic representation, subsets of the

state space are represented by Boolean formulas.

For the counter, the formula:

v0 ∨ v1 ∨ v2

represents the set of states where the count is

nonzero.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Bounded model checking

If by ‘reachable’ we mean reachable in 1 cycle,

then in the symbolic representation we just need

to ask if the formula

s(v) ∧ r(v, v′) ∧ s′(v′)

is satisfiable. For example, if we ask ‘can we get

from a state where the count is zero to a state

where it is nonzero’:

¬v0 ∧ ¬v1 ∧ ¬v2∧

(v′0 ⇔ ¬v0 ∧ ¬v2)∧

(v′1 ⇔ ¬(v0 ⇔ v1))∧

(v′2 ⇔ v0 ∧ v1)∧

(v′0 ∨ v′1 ∨ v′2)

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Bounded model checking

More generally, we can consider reachability in k

states for some fixed k. Duplicate the set of state

variables

v(0), v(1), . . . , v(k)

and ask if the following formula is satisfiable:

s(v(0))∧

r(v(0), v(1)) ∧ r(v(1), v(2)) ∧ · · · ∧ r(v(k−1), v(k))∧

s′(v(k))

Because such efficient satisfiability-testing

methods are available, this is usually much more

efficient than using non-symbolic representations.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Unbounded reachability

What if we consider reachability in any finite

number of steps?

Essentially we need some sort of reflexive

transitive closure operation. There are two main

variants:

• Forward reachability: find S∗, the set of states

reachable from S by some finite number of

R-transitions, and see if S∗ ∩ S′ 6= ∅.

• Backward reachability: find S′

∗
, the set of

states that can reach a state in S′ by some

finite number of R-transitions, and see if

S ∩ S′

∗
6= ∅.

Sometimes one or the other is more efficient.

We focus on backward reachability, because it

generalizes to more complicated temporal

properties.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Fixpoint computation

Given a set of states S, we can find S∗ by

iterating:

S0 = ∅

Si+1 = S ∪ {a | ∃b ∈ Si. R(a, b)}

We always have Si ⊆ Si+1 ⊆ Σ.

Since Σ is finite, we eventually reach a fixed point

S∗ = Sk for some k.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Relational product

We can translate this fixpoint computation into

the symbolic representation using BDD

operations for basic logical connectives.

Thanks to canonicality of BDDs, we can recognize

immediately when a fixpoint is reached.

s0 = ⊥

si+1 = s ∨ Pre(si)

The only new component is the ‘relational

product’ operation Pre:

Pre(s) = ∃v′1, . . . , v
′

n
. r[v1, . . . , vn, v′1, . . . , v

′

n
]∧

s[v′1, . . . , v
′

n]

This is quite easy to implement as a BDD

operation — though it’s often the main

computational bottleneck.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Temporal Operators

Instead of just using propositional logic, we can

introduce additional temporal operators:

EX(p) There is a successor state where p

AX(p) In all successor states, p

EF (p) There is a path along which p somewhere

EG(p) There is a path along which always p

AF (p) Along all paths, p somewhere

AG(p) For all paths, always p

In this context, p∗ is simply the ‘semantics’ of the

temporal formula EF (p), i.e. the set of states

satisfying EF (p).

We can state more interesting properties than

pure reachability, e.g. request-acknowledge:

AG(r ⇒ AF (a))

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

CTL

Together with more complicated binary temporal

‘until’ connectives, this gives Computation Tree

Logic.

The semantics of all the CTL operators can be

found using very similar fixpoint computations to

EF (p). For EG(p) we do:

s0 = ⊤

si+1 = s ∧ Pre(si)

for EX(p) we just need Pre(p), and we can deal

with the others using duality, e.g.

AG(p) 7→ ¬(EF (¬p))

This process of finding a semantics for a CTL

formula w.r.t. a transition system is called CTL

model checking.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

The menagerie of temporal logics

There are many variants of temporal logic. The

two main classifications are:

• Branching time (e.g. CTL)

• Linear time (e.g. LTL).

In branching time logics, we can explicitly

quantify over the set of possible successor states

(E or A).

In linear time logics, we just consider all paths.

Neither LTL nor CTL includes the other (e.g. we

can express ‘along all paths, p is true infinitely

often’ only in LTL).

There are generalizations that take in both, e.g.

CTL∗ and the modal µ-calculus.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Applications

Model checking can be useful in verifying or

finding bugs in designs, and is widely used in

digital circuits.

It can also be used to analyze software, protocols

and anything else that can be modelled with a

finite state transition system.

The main drawback is that even with the

symbolic representation, it is not feasible to make

the computations on really large systems.

STE usually handles large systems better because

of its built-in abstraction, but can only consider

properties in a very restricted temporal logic.

Commonly, STE is used for data, and CTL for

control.

John Harrison Intel Corporation, 10 December 2002



Formal Verification Methods 3: Model Checking

Summary

• We can model sequential circuits, and also

many other things, as finite state transition

systems.

• A symbolic (e.g. BDD) representation often

makes it feasible to analyze surprisingly large

systems.

• The most basic, and useful, operations, is

reachability, and this can be computed on the

symbolic representation using the relational

product.

• This generalizes directly to temporal logics

like CTL, giving a useful model checking

algorithm.

• There are various temporal logics with

different expressive powers.

• Temporal logic model checking and STE

complement each other well, and there is

active research into generalizations of STE.

John Harrison Intel Corporation, 10 December 2002


