
Formal Verification Methods 1: Propositional Logic

Formal Verification Methods

1: Propositional Logic

John Harrison

Intel Corporation

• Course overview

• Propositional logic

• A resurgence of interest

• Logic and circuits

• Normal forms

• The Davis-Putnam procedure

• St̊almarck’s method

• Conclusions

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Overview

We aim to give a broad overview of the current

verification methods employed in the hardware

industry.

1. Propositional Logic

2. Symbolic Simulation

3. Model Checking

4. General Theorem Proving

5. Floating Point Verification

We start with the ‘simplest’ logic (propositional

logic) and work our way up to higher order logic.

The last lecture focuses on our own work,

verifying floating-point algorithms using the HOL

higher order logic theorem prover.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Propositional Logic

By the second week of this summer school, we

probably all know what propositional logic is.

English Standard Boolean Other

false ⊥ 0 F

true ⊤ 1 T

not p ¬p p −p, ∼ p

p and q p ∧ q pq p&q, p · q

p or q p ∨ q p + q p | q, p or q

p implies q p ⇒ q p ≤ q p → q, p ⊃ q

p iff q p ⇔ q p = q p ≡ q, p ∼ q

In the context of circuits, it’s often referred to as

‘Boolean algebra’, and many designers use the

Boolean notation.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

A resurgence of interest!

Traditionally, propositional logic has been

regarded as fairly boring, and is usually regarded

as a stepping-stone on the way to first order logic

(and beyond).

• There are severe limitations to what can be

said with propositional logic.

• Propositional logic is trivially decidable in

theory . . .

• . . . but the usual methods aren’t efficient

enough for interesting problems.

However, the last decade has seen a remarkable

upsurge of interest in propositional logic.

In fact, it’s arguably the hottest topic in

automated theorem proving!

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Why?

Why the resurgence?

• There are many interesting problems that can

be expressed in propositional logic

• Efficient algorithms can often decide large,

interesting problems

Propositional satisfiability was the original

NP-complete problem.

The theory of NP completeness shows that many

difficult combinatorial problems can in principle

be reduced to propositional satisfiability checking.

Recently it has become clear that reducing

problems to propositional logic can often be a

good way to solve them in practice!

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Logic and circuits

The correspondence between digital logic circuits

and propositional logic has been known for a long

time.

Digital design Propositional Logic

circuit formula

logic gate propositional connective

input wire atom

internal wire subexpression

voltage level truth value

Many problems in circuit design and verification

can be reduced to propositional tautology or

satisfiability checking.

For example optimization correctess: φ ⇔ φ′ is a

tautology.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Encoding as SAT

Many other apparently difficult combinatorial

problems can be encoded as Boolean satisfiability

(SAT), e.g. scheduling, planning.

Using circuit representations for multipliers, we

can encode factorization problems as Boolean

satisfiability. Here’s ‘6 is a prime number’:

¬((out0 ⇔ x0 ∧ y0)∧

(out1 ⇔ (x0 ∧ y1 ⇔ ¬(x1 ∧ y0)))∧

(v2
2 ⇔ (x0 ∧ y1) ∧ x1 ∧ y0)∧

(u0
2 ⇔ ((x1 ∧ y1) ⇔ ¬v2

2))∧

(u1
2 ⇔ (x1 ∧ y1) ∧ v2

2)∧

(out2 ⇔ u0
2) ∧ (out3 ⇔ u1

2)∧

¬out0 ∧ out1 ∧ out2 ∧ ¬out3)

We can read off the factorization 6 = 2 × 3 from

a refuting assignment.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Efficient methods

The naive truth table method is quite impractical

for formulas with more than a dozen primitive

propositions.

Practical use of propositional logic mostly relies

on one of the following algorithms for deciding

tautology or satisfiability:

• Binary decision diagrams (BDDs)

• The Davis-Putnam method (DP, DPLL)

• St̊almarck’s method

BDDs will be discussed in the next lecture. This

time we focus on Davis-Putnam, while also

explaining the basic idea of St̊almarck’s method.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

DP and DPLL

Actually, the original Davis-Putnam procedure is

not much used now.

What is usually called the Davis-Putnam method

is actually a later refinement due to Davis,

Loveland and Logemann (hence DPLL).

We formulate it as a test for satisfiability. It has

three main components:

• Transformation to conjunctive normal form

(CNF)

• Application of simplification rules

• Splitting

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Normal forms

In ordinary algebra we can reach a ‘sum of

products’ form of an expression by:

• Eliminating operations other than addition,

multiplication and negation, e.g.

x − y 7→ x + −y.

• Pushing negations inwards, e.g. −(−x) 7→ x

and −(x + y) 7→ −x + −y.

• Distributing multiplication over addition, e.g.

x(y + z) 7→ xy + xz.

In logic we can do exactly the same, e.g.

p ⇒ q 7→ ¬p ∨ q, ¬(p ∧ q) 7→ ¬p ∨ ¬q and

p ∧ (q ∨ r) 7→ (p ∧ q) ∨ (p ∧ r).

The first two steps give ‘negation normal form’

(NNF).

Following with the last (distribution) step gives

‘disjunctive normal form’ (DNF), analogous to a

sum-of-products.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Conjunctive normal form

Conjunctive normal form (CNF) is the dual of

DNF, where we reverse the roles of ‘and’ and ‘or’

in the distribution step to reach a ‘product of

sums’:

p ∨ (q ∧ r) 7→ (p ∨ q) ∧ (p ∨ r)

(p ∧ q) ∨ r 7→ (p ∨ r) ∧ (q ∨ r)

Reaching such a CNF is the first step of the

Davis-Putnam procedure.

Unfortunately the naive distribution algorithm

can cause the size of the formula to grow

exponentially — not a good start. Consider for

example:

(p1 ∧ p2 ∧ · · · ∧ pn) ∨ (q1 ∧ p2 ∧ · · · ∧ qn)

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Definitional CNF

A cleverer approach is to introduce new variables

to stand for subformulas.

Although this isn’t logically equivalent, it does

preserve satisfiability. For example, we can go

from:

(p ∨ (q ∧ ¬r)) ∧ s

introduce new variables for subformulas:

(p1 ⇔ q ∧ ¬r)∧

(p2 ⇔ p ∨ p1)∧

(p3 ⇔ p2 ∧ s)∧

p3

then transform to (3-)CNF in the usual way:

(¬p1 ∨ q) ∧ (¬p1 ∨ ¬r) ∧ (p1 ∨ ¬q ∨ r)∧

(¬p2 ∨ p ∨ p1) ∧ (p2 ∨ ¬p) ∧ (p2 ∨ ¬p1)∧

(¬p3 ∨ p2) ∧ (¬p3 ∨ s) ∧ (p3 ∨ ¬p2 ∨ ¬s)∧

p3

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Clausal form

It’s convenient to think of the CNF form as a set

of sets:

• Each disjunction p1 ∨ · · · ∨ pn is thought of as

the set {p1, . . . , pn}, called a clause.

• The overall formula, a conjunction of clauses

C1 ∧ · · · ∧ Cm is though of as a set

{C1, . . . , Cm}.

Since ‘and’ and ‘or’ are associative, commutative

and idempotent, nothing of logical significance is

lost in this interpretation.

Special cases: an empty clause means ⊥ (and is

hence unsatisfiable) and an empty set of clauses

means ⊤ (and is hence satisfiable).

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Simplification rules

At the core of the Davis-Putnam method are two

transformations on the set of clauses:

I The 1-literal rule: if a unit clause p appears,

remove ¬p from other clauses and remove all

clauses including p.

II The affirmative-negative rule: if p occurs only

negated, or only unnegated, delete all clauses

involving p.

These both preserve satisfiability of the set of

clause sets.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Splitting

In general, the simplification rules will not lead to

a conclusion. We need to perform case splits.

Given a clause set ∆, simply choose a variable p,

and consider the two new sets ∆ ∪ {p} and

∆ ∪ {¬p}.

@
@

@
@R

�
�

�
�	

? ?

∆

∆ ∪ {¬p} ∆ ∪ {p}

∆0 ∆1

I, II I, II

In general, these case-splits need to be nested,

and in the worst case, behaviour is exponential.

But usually, performing the intermediate

simplifications between case splits makes

performance much better than with truth tables.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Industrial strength SAT solvers

For big applications, there are several important

tweaks to the basic DPLL algorithm:

• Highly efficient data structures

• Good heuristics for picking ‘split’ variables

• Intelligent non-chronological backtracking /

conflict clauses

Some well-known provers are

• GRASP

• SATO

• Chaff

Chaff pays close attention to low-level details like

memory hierarchy, and seems to be the current

favourite.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

St̊almarck’s algorithm

St̊almarck’s ‘dilemma’ rule attempts to avoid

nested case splits by feeding back common

information from both branches.

@
@

@
@R

�
�

�
�	

�
�

�
�	

@
@

@
@R

? ?

∆

∆ ∪ {¬p} ∆ ∪ {p}

∆ ∪ ∆0 ∆ ∪ ∆1

∆ ∪ (∆0 ∩ ∆1)

R R

This and other algorithms are used in a successful

commercial tool suite marketed by Prover

Technology.

John Harrison Intel Corporation, 9 December 2002

Formal Verification Methods 1: Propositional Logic

Summary

• Propositional logic is no longer the ugly sister

of theorem proving

• A wide variety of practical problems can

usefully be encoded in SAT

• There is intense interest in efficient

algorithms for SAT

• Many of the most successful systems are still

based on minor refinements of the ancient

Davis-Putnam procedure

• Can we invent a better SAT algorithm?

John Harrison Intel Corporation, 9 December 2002

