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Introduction

� Floating point algorithms are fairly small, butoften complicated mathematically.� There have been errors in commercialsystems, e.g. the Pentium FDIV bug in 1994.� In the case of transcendental functions it'sdi�cult even to say what correctness means.� Veri�cation using model checkers is di�cultbecause of the need for mathematicalapparatus.� It can even be di�cult using theorem proverssince not many of them have good theories ofreal numbers etc.

John Harrison University of Cambridge, December 1997
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Floating point correctness

We want to specify the correctness according tothe following diagram:
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We measure the di�erence between v(EXP (a))and exp(v(a)) in `units in the last place' ofEXP (a).
John Harrison University of Cambridge, December 1997
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Our implementation language

This includes the following constructs:command = variable := expression| command ; command| if expression then commandelse command| if expression then command| while expression do command| do command while expression| skip| f expressiongWe de�ne a simple relational semantics in HOL,and derive weakest preconditions and totalcorrectness rules. We then prove total correctnessvia VC generation.The idea is that this language can be formallylinked to C, Verilog, Handel, . . .
John Harrison University of Cambridge, December 1997
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The algorithm

The algorithm we verify is taken from a paper byTang in ACM Transactions on MathematicalSoftware, 1989.Similar techniques are widely used for oatingpoint libraries, and, probably, for hardwareimplementations.The algorithm relies on a table of precomputedconstants. Tang's paper gives actual values as hexrepresentations of IEEE numbers.The algorithm works in three phases:� Perform range reduction� Use polynomial approximation� Reconstruct answer using tablesThe correctness proof reects this.
John Harrison University of Cambridge, December 1997
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Code for the algorithmif Isnan(X) then E := Xelse if X == Plus_infinity then E := Plus_infinityelse if X == Minus_infinity then E := Plus_zeroelse if abs(X) > THRESHOLD_1 thenif X > Plus_zero then E := Plus_infinityelse E := Plus_zeroelse if abs(X) < THRESHOLD_2 then E := Plus_one + Xelse(N := INTRND(X * Inv_L);N2 := N % Int_32;N1 := N - N2;if abs(N) >= Int_2e9 thenR1 := (X - Tofloat(N1) * L1) - Tofloat(N2) * L1elseR1 := X - Tofloat(N) * L1;R2 := Tofloat(--N) * L2;M := N1 / Int_32;J := N2;R := R1 + R2;Q := R * R * (A1 + R * A2);P := R1 + (R2 + Q);S := S_Lead(J) + S_Trail(J);E1 := S_Lead(J) + (S_Trail(J) + S * P);E := Scalb(E1,M))John Harrison University of Cambridge, December 1997
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Structure of the HOL proofReal numbers/ \/ \/ \Programming / \language IEEE spec Real analysis| / | || / | || / | || / | Squarefree decomp &| / | Sturm's theorem| / | /| / | /Algorithm | /\ | /\ | /\ | /\ FP lemmas /\ | /\ | /\ | /\ | /\ | /VerificationJohn Harrison University of Cambridge, December 1997
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Floating point lemmas (1)

We de�ne the error error(x) resulting fromrounding a real number x to a oating pointvalue.Because of the regular way in which theoperations are de�ned, all the operations thenrelate to their abstract mathematicalcounterparts according to the same pattern:|- Finite(a) ^ Finite(b) ^abs(Val(a) + Val(b)) < threshold(float_format)=) Finite(a + b) ^(Val(a + b) = (Val(a) + Val(b)) +error(Val(a) + Val(b)))The comparisons are even more straightforward:|- Finite(a) ^ Finite(b)=) (a < b = Val(a) < Val(b))
John Harrison University of Cambridge, December 1997
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Floating point lemmas (2)

We have several lemmas quantifying the error, e.g.|- abs(x) < threshold(float_format) ^abs(x) < (&2 pow j / &2 pow 125)=) abs(error(x)) <= &2 pow j / &2 pow 150There are many important situations, however,where the operations are exact, because the resultis exactly representable, e.g. subtraction ofnearby values with the same sign:|- Finite(a) ^ Finite(b) ^&2 * abs(Val(a) - Val(b)) <= abs(Val(a))=) Finite(a - b) ^(Val(a - b) = Val(a) - Val(b))This is a classic result in oating point erroranalysis.

John Harrison University of Cambridge, December 1997
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Informal error analysisTang's error analysis translates quite directly intoHOL. One needs to:1. Prove that clever implementation tricksensure certain remainder terms are calculatedexactly. This relies on cancellation, and thefact that pre-stored constants have trailingzeroes.2. Prove that the polynomial approximationobeys the appropriate error bounds.3. Prove that the rounding errors whenreconstructing the �nal answer do not get toolarge.In Tang's paper, 1 is quite brief, 2 is dismissed ina few lines, while 3 is given a long and detailedproof.

John Harrison University of Cambridge, December 1997
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HOL error analysis

In the HOL version, this order of di�culty isreversed!1. The �rst part is not fundamentally di�cult,but quite tricky because it involves a lot ofspecial cases and low-level proofs.2. The second part involves numericalapproximation, which needs a lot of work totranslate into a formal proof (e.g. Taylorseries, Sturm's theorem . . . ). In fact Tangmakes a small mistake here, though it doesn'ta�ect the �nal result.3. The last part is quite routine, and we canprogram HOL to compose the rounding errorsautomatically. Actually, we derive betterbounds than Tang does since we avoidmaking simplifying assumptions to cut downthe work.John Harrison University of Cambridge, December 1997
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The �nal result

Under the various `de�nitional' assumptions, wecon�rm Tang's bottom-line result:(Isnan(X) =) Isnan(E)) ^(X == Plus_infinity _Finite(X) ^exp(Val X) >= threshold(float_format)=) E == Plus_infinity) ^(X == Minus_infinity =) E == Plus_zero) ^(Finite(X) ^ exp(Val X) < threshold(float_format)=) Isnormal(E) ^abs(Val(E) - exp(Val X)) < (&54 / &100) * Ulp(E)_ (Isdenormal(E) _ Iszero(E)) ^abs(Val(E) - exp(Val X)) < (&77 / &100) * Ulp(E))In fact, this speci�cation is a bit more precisethan Tang's, e.g. we are explicit about theoverow threshold.

John Harrison University of Cambridge, December 1997
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Conclusions

� We con�rm (and strengthen) the main resultsof the hand proof. But we detect a few slipsand uncover subtle issues. This class of proofsis a good target for veri�cation.� The proof was very long (over 3 months ofwork), but most of this was devoted togeneral results that could be re-used.� It's a mistake to believe that only `trivial'mathematics is needed for veri�cationapplications. HOL Light's mathematicaltheories are essential.� Automation of linear arithmetic is practicallyindispensable. Better tools for nonlinearreasoning are needed.� The proof runtimes are very long owing to theextensive use of arithmetic done by inference.
John Harrison University of Cambridge, December 1997


