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Abstract. The Kepler conjecture asserts that no packing of congru-
ent balls in three-dimensional Euclidean space has density greater than
that of the face-centered cubic packing. The original proof, announced
in 1998 and published in 2006, is long and complex. The process of
revision and review did not end with the publication of the proof. This
article summarizes the current status of several long-term initiatives to
reorganize the original proof into a more transparent form and to pro-
vide a greater level of certification of the correctness of the computer
code and other details of the proof. A final part of this article lists errata
in the original proof of the Kepler conjecture.
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Introduction

In 2006, Discrete and Computational Geometry devoted an issue to the proof
of the Kepler conjecture on sphere packings, which asserts that no packing
of congruent balls in three-dimensional Euclidean space can have density
greater than that of the face-centered cubic packing [22], [13], [14], [15], [5].

The proof is long and complex. The editors’ forward to that issue remarks
that “the reviewing of these papers was a particularly enormous and daunt-
ing task.” “The main portion of the reviewing took place in a seminar run at
Eötvos University over a 3 year period. Some computer experiments were
done in a detailed check. The nature of this proof, consisting in part of
a large number of inequalities having little internal structure, and a com-
plicated proof tree, makes it hard for humans to check every step reliably.
Detailed checking of specific assertions found them to be essentially cor-
rect in every case tested. The reviewing process produced in the reviewers a
strong degree of conviction of the essential correctness of the proof approach,
and that the reduction method led to nonlinear programming problems of
tractable size.”

The process of review and revision did not end when the proof was published.
This article summarizes the current status of several long-term initiatives to
reorganize the original proof into a more transparent form and to provide
a greater level of certification of the correctness of the computer code and
other details of the proof.

The article contains two parts. The first part describes various initiatives
to give a formal proof of the Kepler conjecture. The second part gives
errata in the original proof of the Kepler conjecture. Most of these errata
are minor. The most significant new argument appears in a separate section
(Section 8). It finishes an incomplete argument in the original proof asserting
that there is no loss in generality in assuming (for purposes of the main
estimate) that subregions are simple polygons. The incomplete argument
was detected during the preparation of the blueprint edition of the proof,
which is described in Section 2.

In this article, the original proof refers to the proof published in [22].
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Part 1. Formal Proof Initiatives

1. The Flyspeck project

The purpose of a long-term project, called the Flyspeck project, is to give a
formal proof of the Kepler conjecture. This section makes some preliminary
remarks about formal proofs and gives a general overview of the current
status of this project.

1.1. Formal proof. A formal proof is a proof in which every logical in-
ference has been checked, all the way back to the foundational axioms of
mathematics. No step is skipped no matter how obvious it may be to a
mathematician. A formal proof may be less intuitive, and yet is less suscep-
tible to logical errors. Because of the large number of inferences involved, a
computer is used to check the steps of a formal proof.

It is a large labor-intensive undertaking to transform a traditional proof into
a formal proof. The first stage is to expand the traditional proof in greater
detail. This stage fills in steps that a mathematician would regard as obvi-
ous, works out arguments that the original proof leaves to the reader, and
supplies the assumed background knowledge. In a final stage, the detailed
text is transcribed into a computer-readable format inside a computer proof
assistant. The proof assistant contains mathematical axioms, logical rules
of inference, and a collection of previously proved theorems. It validates
each new lemma by stepping through each inference. No other currently
available technology is able to provide levels of certification of a complex
mathematical proof that is remotely comparable to that available by formal
computer verification. A general overview of formal proofs can be found
at [7, 21, 27].

Proof assistants differ in detail in the way they treat the formalization of
a theorem that is itself a computer verification (such as the proof of the
four color theorem or the proof of the Kepler conjecture). In general, a
formal proof of a computer verification can be viewed as a formal proof of
the correctness of the computer code used in the verification. That is, the
formal proof certifies that the the code is a bug-free implementation of its
specification.

1.2. Formal proof of the Kepler conjecture. As mentioned above, the
purpose of the Flyspeck project is to give a formal proof of the Kepler
conjecture. (The project name Flyspeck comes from the acronym FPK, for
the Formal Proof of the Kepler conjecture.) This is the most complex formal
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proof ever undertaken. We estimate that it may take about twenty work-
years to complete this formalization project.

The Flyspeck project is introduced in the article [12]. The project page
gives the latest developments [17]. The project is now at an advanced stage;
in fact, we estimate that the project is now about half-way complete. One
of the main purposes of this article is to present a summary of the current
status of this project.

In the original proof of the Kepler conjecture, there was a long mathematical
text and three major pieces of computer code. The written part of the
proof has been substantially revised with aims of the Flyspeck project in
mind. Section 2 compares this revised text with the original. There is now
a good match between the mathematical background assumed in the text
and the mathematical material that is available in the proof assistant HOL
Light. Section 3 describes the current level of support in HOL Light for the
formalization of Euclidean space and measure theory. In the years following
the publication of the original proof, S. McLaughlin has reworked and largely
rewritten the entire body of code in a form that is more transparent and more
amenable to formalization. Section 4 points out some difficulties in verifying
the computer code in its original form and documents the reimplementation.

There have been three Ph.D. theses on the Flyspeck project, one devoted
to each of the three major pieces of computer code. The first piece of
computer code uses interval arithmetic to verify nonlinear inequalities. R.
Zumkeller’s thesis develops nonlinear inequality proving inside the proof as-
sistant Coq [48]. Section 5 gives an example of this work. The second piece
of computer code enumerates all tame graphs. (The definition of tameness
is rather intricate; its key property is that the set of tame graphs includes all
graphs that give a potential counterexample to the conjecture.) G. Bauer’s
thesis, together with subsequent work with T. Nipkow, completes the formal
proof of the enumeration of tame graphs [36]. Section 6 gives a summary of
this formalization project. The third piece of computer code generates and
runs some 105 linear programs. These linear programs show that none of the
potential counterexamples to the Kepler conjecture are actual counterexam-
ples. S. Obua’s thesis develops the technology to generate and verify the
linear programs inside the proof assistant Isabelle [38]. Section 7 describes
this research.

The ultimate aim is to develop a complete formal proof of the Kepler con-
jecture within a single proof assistant. Because of the scope of the prob-
lem and the number of researchers involved, different proof assistants have
been used for different parts of the proof: HOL Light for background in Eu-
clidean geometry and the text, Coq for nonlinear inequality verification, and
Isabelle/HOL for graph enumeration and linear programming. This raises
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the issue of how to translate a formal proof automatically from one proof
assistant to another. Implementations of automated translation among the
proof assistants HOL, Isabelle, and Coq can be found at [39], [32], [46], [4].

2. Blueprint edition of the Kepler conjecture

The blueprint edition of the proof of the Kepler conjecture is a second-
generation proof that contains far more explicit detail than the original
proof. The blueprint edition is available at [18, 19]. Many proofs have been
significantly simplified and systematized. It has been written in a manner
to permit easy formalization. As its name might suggest, this version is
intended as a blueprint for the construction of a formal proof. This section
compares the blueprint edition with the original.

2.1. Lemmas in elementary geometry. A collection of about 200 lem-
mas that can be expressed in elementary terms has been extracted from
the original proof and placed in a separate collection [19]. This has several
advantages. First of all, these lemmas, although elementary, are precisely
the parts of the original proof that put the greatest burden on the reader’s
geometrical intuition. (Many of these lemmas deal with the existence or
non-existence of configurations of several points in R3 subject to various
metric constraints.) Also, the lemmas can be stated without reference to
the Kepler conjecture and all of the machinery that has been introduced to
give a proof. Finally, the proofs rely on similar methods and are best con-
sidered together [16]. Section 3 on Enhanced Automation gives an approach
to proving the lemmas in this collection.

These lemmas can be expressed in the first-order language of the real num-
bers; that is, they can be expressed in the syntax of first-order logic with
equality (allowing quantifiers ∀x, ∃x with variables running over the real
numbers), the real constants 0, 1, and ring operations (+), (−), (·) on R.
In fact, L. Fejes Tóth’s statement of the Kepler conjecture as an optimiza-
tion problem in a finite number of variables can itself be expressed in the
first-order language of the real numbers. (For this, the truncation used
by L. Fejes Tóth must be modified slightly so that the truncated Voronoi
cells are polyhedra.) Thus, it should come as no surprise that many of the
intermediate lemmas in the proof can also be expressed in this manner.

For example, consider the statement asserting the existence of a circumcenter
of a triangle: if three points in the plane are not collinear, then there exists
a point in the plane that is equidistant from all three. This can be expressed
in elementary terms as follows: for every (x1, y1), (x2, y2), (x3, y3), if there
do not exist t1, t2, t3 for which t1(x1, y1) + t2(x2, y2) + t3(x3, y3) = (0, 0) and
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t1 + t2 + t3 = 1, then there exists (x, y) such that

(x− x1)2 + (y − y1)2 = (x− x2)2 + (y − y2)2 = (x− x3)2 + (y − y3)2.

2.2. Background material. As we mentioned above, there is now a close
match between what the blueprint edition assumes as background and what
the proof assistant HOL Light provides, as described in Section 3. The
blueprint edition develops substantial background material in trigonometry,
measure and integration, hypermaps, and fans (a geometric realization of
a hypermap). It turns out that only a small number of primitive volumes
need to be computed for the proof of the Kepler conjecture. These primitives
include the volume of a ball, a tetrahedron, and right circular cone. No line
or surface integrals are required.

A hypermap consists of three permutations e, n, f (on a finite set D) that
compose to the identity e ◦ n ◦ f = I. A hypermap is the combinatorial
structure used by Gonthier in his formal proof of the four color theorem. In
2005, the proof of the Kepler conjecture was rewritten in terms of hyper-
maps, because it is better suited for formal proofs than planar graphs.

The Jordan curve theorem (JCT) has been formalized as a step in the Fly-
speck project [20]. In fact, something weaker than the JCT is needed. The
project only needs the JCT for curves on the surface of a unit sphere consist-
ing of a finite number of arcs of great circles; that is, a spherical polygonal
version of the JCT. In the proof of the Kepler conjecture, the combinatorial
structure of a cluster of spheres is encoded as a hypermap. An Euler char-
acteristic calculation, based on the JCT, shows that these hypermaps are
planar. The planarity of these hypermaps is a crucial property that is used
in the enumeration of tame graphs (Section 6). The background chapter in
the blueprint edition contains detailed proofs of these facts.

The blueprint edition contains several introductory essays that introduce
the main concepts in the proof, including the algorithms implemented by
the computer code.

The formalization of the blueprint text started in 2008 with work of J. Rute
(CMU) and the Hanoi Flyspeck group. The current members of this group
are Trần Nam Trung, Nguyễn Tất Thắng, Hoàng Lê Trường, Nguyễn Quang
Trưởng, Vũ Khắc Kỷ, Nguyễn Anh Tâm, Nguyễn Tuyên Hoàng, Nguyễn Đức
Phương, Vương Anh Quyền, Phan Hoàng Chơn, and managed by Tạ Thị
Hoài An. The blueprint formalization is still at an early stage.
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3. Formalizing the ordinary mathematics

This section describes some of the work on formalizing Euclidean space and
measure theory, and the development of further proof automation, which
should be useful in this endeavor.

The computer code in Flyspeck has so far received the lion’s share of the
formal effort. This is entirely reasonable since there are, or at least were,
real questions about the feasibility of reproducing these results in a formal
way. However, the Flyspeck proof includes a large amount of ‘ordinary’
mathematics, which also needs to be formalized. Here we are on fairly
safe ground in principle, because by now we understand the formalization
of mainstream mathematics quite well [47]. It is safe to predict that this
formalization can be done, and we can even hope for a reasonably accurate
estimate of the effort involved. Nevertheless, the formalization is certainly
non-trivial and will require considerable work.

3.1. Formalizing Euclidean space. Much of our work has been devoted
to developing a solid general theory of Euclidean space RN [25]. For Fly-
speck, we invariably just need the special case R3. While some concepts,
e.g. vector cross products, are specific to R3, most of the theory has been
developed for general RN so as to be more widely applicable. The theorem
prover HOL Light [24] is based on a logic without dependent types, but we
can still encode the index N as a type (roughly, an arbitrary indexing type
of size N). This means that theorems about specific sizes like 3 really are
just type instantiations of theorems for general N stated with polymorphic
type variables. The theory contains the following:

• Basic properties of vectors in RN , linear operators and matrices, di-
mensions of vector subspaces and other bits of linear algebra. For
example, the following is a formal statement of the theorem that a
square matrix A′ is a left inverse to another one A iff it is a right
inverse. Note that the double use of the same type variable N con-
strains the theorem to square matrices:
|- ∀A:real^N^N A’:real^N^N. (A ** A’ = mat 1) ⇔ (A’ ** A = mat 1)

• Metric and topological notions like distances, open sets, closure,
compactness and paths. Some of these are very general, others are
more specific to Euclidean space. Some results include the Heine-
Borel theorem, the Banach fixed-point theorem and Brouwer’s fixed-
point theorem. The following is a formal statement that continuous
functions preserve connectedness.
|- ∀f:real^M->real^N s. f continuous_on s ∧ connected s

⇒ connected(IMAGE f s)
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• Properties of convex sets, convex hulls, cones etc. Results include
Helly’s theorem, Carathéodory’s theorem, and various classic results
about separating and supporting hyperplanes. The following states
a simpler but not entirely trivial result that convex hulls preserve
compactness.

|- ∀s:real^N->bool. compact s ⇒ compact(convex hull s)

• Sequences and series of vectors and uniform convergence, Fréchet
derivatives and their properties, up to various forms of the inverse
function theorem, as well as specific 1-dimensional theorems like
Rolle’s theorem and the Mean Value Theorem. Here is the formal
statement of the chain rule for Fréchet derivatives.

|- ∀f:real^M->real^N g:real^N->real^P f’ g’.
(f has_derivative f’) (at x) ∧
(g has_derivative g’) (at (f x))
⇒ ((g o f) has_derivative (g’ o f’)) (at x)

3.2. Formalizing measure theory. Although the basic Euclidean theory
is an important foundation, and many of the concepts like ‘convex hull’ are
used extensively in the Flyspeck mathematics, perhaps the most important
thing to formalize is the concept of volume.

We define integrals of general vector-valued functions over subsets of RN ,
using the Kurzweil-Henstock gauge integral definition. We develop all the
usual properties such as additivity and the key monotone and dominated
convergence theorems. We also develop a theory of absolutely integrable
functions, where both f and |f | are gauge integrable; this is known to co-
incide with the Lebesgue integral. Here is a formal statement of the simple
theorem that integration preserves linear scaling:

|- ∀f:real^M->real^N y s h:real^N->real^P.
(f has_integral y) s ∧ linear h ⇒ ((h o f) has_integral h(y)) s

Using this integral applied to characteristic functions, we develop a theory
of (Lebesgue) measure, which of course gives volume in the 3-dimensional
case. The specific notion ‘measure zero’ is formalized as negligible, and
we also have a general notion of a set having a finite measure, and a function
measure to return that measure when it exists. For example, this is the basic
additivity theorem:

|- ∀s t. measurable s ∧ measurable t ∧ DISJOINT s t
⇒ measure(s UNION t) = measure s + measure t
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We have proved that various ‘well-behaved’ sets such as bounded convex
ones and compact ones, or more generally those with negligible frontier
(boundary) are measurable, e.g.

|- ∀s:real^N->bool. bounded s ∧ negligible(frontier s) ⇒ measurable s

The main lack at the moment is a set of results for actually computing the
measures of specific sets, as needed for Flyspeck. We can evaluate most
basic 1-dimensional integrals by appealing to the Fundamental Theorem of
Calculus, but we need to enhance the theory of integration with stronger
Fubini-type results so that we can evaluate multiple integrals by iterated
one-dimensional integrals. This work is in progress at the time of writing.

3.3. Enhanced automation. Using coordinates, many non-trivial geomet-
ric statements in R3, or other Euclidean spaces of specific finite dimension,
can be reduced purely to the elementary theory of reals. This is known to
be decidable using quantifier elimination [44, 3, 28]. However, in practice
this is often problematic because quantifier elimination for nonlinear formu-
las is inefficient. The problem is particularly severe if we want to have any
kind of formal proof, as we do in Flyspeck, since producing such a proof
induces further slowdowns [30, 33]. With this in mind, we have explored a
different approach to the case of purely universally quantified formulas [26],
based on ideas of Parrilo [40]. This involves reducing the initial problem to
semidefinite programming, solving the SDP problem using an external tool
and reconstructing a ‘sum-of-squares’ (SOS) certificate that can easily be
formally checked.

For example, suppose we wish to verify that if a quadratic equation ax2 +
bx+ c = 0 has a real root, then b2 ≥ 4ac. Using the SDP solver we find an
algebraic certificate b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c), from which
the required fact follows easily: (2ax + b)2 ≥ 0 because it is a square, and
4a(ax2 + bx + c) = 0 because x is a root, and so we deduce b2 − 4ac ≥ 0.
This method seems very useful for automating routine nonlinear reasoning
in a way that is easy and quick to formally verify, so that we don’t have
to rely on the correctness of a complicated program. It is even capable of
solving the coordinate forms of some of the simpler Flyspeck inequalities
directly, though it seems unlikely to be competitive with customized non-
linear optimization methods as described in Section 5. For example, one
simple Flyspeck inequality is the following, which after being reduced to a
real problem with 9 variables (three coordinates for each point) is solved by
SOS in a second:

||u−v || ≥ 2∧||u−w || ≥ 2∧||v−w || ≥ 2∧||u−v || <
√

8⇒ ||w−(u+v)/2 || > ||u−v ||/2
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A quite different approach to geometric theorem proving is to work in the
setting of a general real vector space or normed real vector space. In this
case, other decision methods are available [43]. In particular, one of these
decision procedures that we have implemented in HOL Light can sometimes
handle simple forms of spatial reasoning in a purely ‘linear’ way, and so be
much more efficient than the direct reduction to coordinates, even if we do
in fact have a specific dimension in mind. One real example from formalizing
complex analysis is the following in R2:

| ||w − z || − r| = d ∧ ||u− w || < d/2 ∧ ||x− z || = r ⇒ d/2 ≤ ||x− u ||

4. Standard ML reimplementation of code

This section describes a reimplementation of the computer code used in the
proof of the Kepler conjecture. The code has been substantially redesigned
to avoid various difficulties with the original implementation.

4.1. Code. The original proof of the Kepler conjecture relies significantly
on computation. Computer code is used extensively and is central both to
the correctness of the result and to a thorough understanding of the proof.

There are four major difficulties with understanding and verifying the orig-
inal code base. The first and most glaring difficulty is simply the amount of
code. At the website [10] that posts the code for the original proof there are
well over 50,000 lines of programs in Java, C++, and Mathematica (among
others). This represents only the calculations that Hales did himself. Samuel
Ferguson also completed many of the calculations with an entirely different
code base1 of 137,000 lines of C. By contrast, the proof of the four color
theorem by Robinson et al. [42] is less than 3,000 lines of C.

The second difficulty is in the organization of the code. The calculations
were done over the space of four years and involved thousands of execu-
tions of a multitude of independent programs. Section 1.2 identifies three
main computational tasks: tame graph generation, linear program bound-
ing, and nonlinear inequality verification. Each of these main tasks consists
of several subtasks. For example, verifying the inequalities required dozens
of relatively complicated preprocessing phases where second derivatives of
the relevant functions were bounded over fixed domains. As another ex-
ample, many linear programs were solved only after a branch and bound
period which were recorded in voluminous log files. In an attempt to or-
ganize the complex web of calculations, Hales devised a labeling scheme to

1There is a large amount of code copying in Ferguson’s code, resulting in a much larger
code base. The number of distinct lines is difficult to measure
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uniquely identify the calculations. However, even now some computations
relied upon by the proof are difficult to find in the original source code.
To locate, for instance, computation “calc-821707685” from the original
proof [22, p.159], one can search on the website [10] in vain. While records
of the computations were made, it is not always an easy matter to find them
without guidance from the authors.

The third difficulty lies in the complexity of the implementation. For in-
stance, the software developed to prove the inequalities upon which the origi-
nal proof rests is relatively complicated. Processing power at the time (1994-
1998) was just barely capable of completing the computations requested. To
keep the length of execution to days or weeks instead of months or years, the
code is extensively optimized. The optimizations were often implemented
without comment in the source and in some cases are difficult to understand.

The final difficulty is that the original code uses C and C++ to carry out
interval arithmetic calculations based on floating point arithmetic. In the
process, it explicitly sets the IEEE 754 [29] rounding modes on the pro-
cessor’s floating point unit. While floating point is desirable for its speed,
there are difficulties with using floating point for software that requires a
very high level of rigor such as that supporting mathematical proof. The
first is that reasoning about floating point instructions requires a relatively
deep understanding of the machine architecture [35]. For instance, setting
the rounding mode changes the state of the processor itself. Such an in-
struction has a global effect on all subsequent floating point computations.
In the original code base the rounding modes are explicitly changed at least
400 times. Moreover, compilers, libraries, and even processors are notorious
for unsound implementations of the 754 standard.

4.2. Reimplementation. In 2004 we decided to reimplement the original
code base. We decided that the new implementation should not require
floating point numbers and rounding modes. Though speed was important,
we wanted the code to be independent of any particular interval arithmetic
implementation. This meant we could use a fast floating point implemen-
tation of interval arithmetic for our daily work, but could use a slower but
more trustworthy implementation such as MPFI [41] to double check im-
portant computations. We also wanted to organize the new implementation
such that any of the many computations upon which the proof relies could
be evaluated from a single interface. This would allow Flyspeck developers
to find and easily check the text of the proof during the formalization pro-
cess. Finally, we wished to bring the computational aspects of the Kepler
conjecture closer to the level of simplicity and clarity necessary for formal-
ization by a proof assistant. We began this work in the spirit of Robinson et
al. [42], which simplified the original code of Appel and Haken [1], and was



12 HALES, HARRISON, MCLAUGHLIN, NIPKOW, OBUA, AND ZUMKELLER

used by Gonthier to construct the fully formal proof [7] in the Coq proof
assistant.

We chose Standard ML for the reimplementation for a number of reasons.
It has a formal definition [34], and thus programs have a meaning apart
from the particular compiler used. It has an efficient compiler, named ML-
ton [45]. (Our reimplementation runs between 50% and 200% the speed
of the original implementation compiled with GCC.) MLton has the ability
to use external libraries written in languages other than SML with relative
ease. This allowed us, from one programming environment, to control mul-
tiple linear programming solvers, interval arithmetic implementations, and
nonlinear optimization packages. SML has an expressive module system,
and thus it was simple to write our code with respect to an abstract type of
interval arithmetic. Thus we could use multiple independent implementa-
tions with ease. As of 2008, most of the code has been completely rewritten
in SML and is executable from a single command-line program. The code
is freely available at the project website [31].

In the original implementation, the myriad computations were done with
many different programs written in a half dozen programming languages.
The results of these computations are not always easy to find or interpret.
Now all the computations are executed from the same source, with orga-
nized output. In addition to giving us added confidence that the original
computations were sound, we have a fairly complete suite of software sup-
port for the Flyspeck project. We are now in the process of organizing and
reevaluating the thousands of computations upon which the proof depends.

5. Proving nonlinear inequalities with Bernstein bases

The hardest computational part of the original proof of the Kepler conjecture
is the verification of a list of about a thousand nonlinear inequalities. This
section presents a technique aimed at proving them, based on polynomial
approximation and Bernstein bases. We feel that this approach better fits
the requirements of formal proof, as outlined in Section 4.2. We hope to
refine the method to cover all Flyspeck inequalities.
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We exhibit the method on a single inequality calc-586468779. The original
proof contains the following definitions [9]:

pt := −π
3

+ 4 arctan
√

2
5

δoct :=
π − 4 arctan

√
2

5

2
√

2

∆(y) :=
1
2

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 y2

3 y2
2 y2

1

1 y2
3 0 y2

4 y2
5

1 y2
2 y2

4 0 y2
6

1 y2
1 y2

5 y2
6 0

∣∣∣∣∣∣∣∣∣∣
a0(y) := y1y2y3 + 1

2(y2
1y2 + y1y

2
2 + y2

1y3 + y2
2y3 + y1y

2
3

+ y2y
2
3 − y1y

2
4 − y2y

2
5 − y3y

2
6)

a1(y) := a0(y1, y5, y6, y4, y2, y3)

a2(y) := a0(y2, y4, y6, y5, y1, y3)

a3(y) := a0(y4, y5, y3, y1, y2, y6)

γ(y) := −δoct

6

√
∆(y) +

2
3

3∑
i=0

arctan

√
∆(y)

ai(y)

The statement of the inequality is:

(1) ∀y ∈ [2, 2.51]6. γ(y) ≤ pt

Define the difference of two intervals by [a1, b1] − [a2, b2] = [a1 − b2, b1 −
a2]. Interval arithmetic, used to prove the inequalities in the original proof,
suffers from the dependency problem: the minimum and maximum of the
formula x−x are overestimated because [a, b]− [a, b] = [a−b, b−a], although
x − x is clearly 0. Subdividing [a, b] into [a, a+b

2 ] and [a+b
2 , b], and then re-

evaluating the formula yields an improved result. However, depending on
the problem, the number of required subdivisions can be very large. This is
why checking some inequalities takes a very long time.

5.1. From geometrical functions to polynomials. Fortunately, better
methods than interval arithmetic are available, if the function under consid-
eration is polynomial. A quick look at γ tells us that (1) is not polynomial,
since it has occurrences of

√
·, 1/·, and arctan. Can it nevertheless be re-

duced to a polynomial problem? Two strategies come to mind:

First, algebraic laws such as
√
a ≤ b ⇔ a ≤ b2 (if b ≥ 0) and a

b ≤ c ⇔
a ≤ bc (if b > 0) can often be used to eliminate occurrences of

√
· and 1/·.

The list of trigonometric identities is endless. For our example, Vega’s rule
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arctan a+arctan b = arctan a+b
1−ab seems useful. Unfortunately, this technique

quite often yields huge expressions that are difficult to deal with by virtue of
their sheer size. Also, an algebraic transformation to a polynomial problem
may simply be impossible (we suspect that this is the case for (1)).

A second technique is based on replacing γ with a polynomial g that domi-
nates it, but is still smaller than pt. Clearly, if there exists a g such that

(2) ∀y ∈ [2, 2.51]6. γ(y) ≤ g(y)

and

(3) ∀y ∈ [2, 2.51]6. g(y) ≤ pt,

then by transitivity (1) holds.

Such a polynomial g can be obtained by replacing
√
·, 1/· and arctan with

polynomial approximations. We only need to ensure that we use upper
approximations for positive occurrences and lower approximations for neg-
ative ones. Only occurrences whose arguments contain variables need to be
replaced, since e.g.

√
2 is a (constant) polynomial itself.

In the definition of γ the function arctan occurs positively, so it is replaced

by an upper approximation arctan. The term
√

∆(y)

ai(y) is first unfolded to√
∆(y) · 1

ai(y) . Both the square root and reciprocal occur positively again
here, so they can be replaced by upper approximations sqrt and rcp, re-
spectively. This yields arctan(sqrt(∆(y)) · rcp(ai(y))) in all four summands.
There remains only

√
· occurring negatively after − δoct

6 , which is to be re-
placed by a lower approximation sqrt.

We choose the following approximations:

arctan(t) := arctan
√

2
5

+
25
27

(
t−
√

2
5

)

rcp(t) :=
1
4
− 37t

1600
+

t2

1000
− 13t3

640000
+

t4

6400000

sqrt(t) := 8
√

2 +
3

64(π − 4 arctan
√

2
5 )

(t− 128)

sqrt(t) := 8
√

2 +
1

16
√

2
(t− 128)

These approximations are valid on the domain (1). For example,

∀t ∈ ∆([2, 2.51]6).
√
t ≤ sqrt(t).
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This can be established by elementary means, knowing that ∆([2, 2.51]6) ⊆
[128; 501]. The latter can be shown automatically by the method outlined
in the next subsection.

In summary, we arrive at the following definition of g:

g(y) := −δoct

6
sqrt(∆(y)) +

2
3

3∑
i=0

arctan(sqrt(∆(y)) · rcp(ai(y)))

In form, it is almost identical to the definition of γ. Our construction of
g therefore ensures (2). Moreover, the approximations were chosen (using
polynomial interpolation) in a way such that

γ(2, 2, 2, 2, 2, 2) = g(2, 2, 2, 2, 2, 2) = pt.

This is important, because otherwise (3) cannot hold.

5.2. Bounding polynomials. In order to prove (1), it remains to be shown
that g(y) ≤ pt. This can be done with the help of Bernstein polynomials.
We briefly outline the case of a single variable x here.

The ith Bernstein basis polynomial of order k is defined as

Bk
i (x) :=

(
k

i

)
xi(1− x)k−i.

For a polynomial p and a vector b ∈ Rk, if

p(x) =
k∑
i=0

bi · Bk
i (x)

then b is called the Bernstein representation of p. In this case

∀x ∈ [0; 1]. p(x) ≤ max
i
bi.

This property is tremendously useful: it gives us an upper bound on p,
namely the largest coefficient of p’s Bernstein representation. By a change
of variable we can reduce any interval to [0, 1]. The generalization to the
multivariate case is straightforward [6, 48].

In order to bound a polynomial it thus suffices to convert it into Bernstein
representation. This can be done by a matrix multiplication (the Bernstein
basis of order k forms a basis of the vector space of all polynomials of degree
up to k). For practical purposes it is however crucial to use a more efficient
algorithm (cf. [6, 48]).

Note that g contains irrational coefficients. This is a consequence of re-
quirement (5.1) and cannot be avoided. However, we were able to choose
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the approximation polynomials in a way such that the transcendental parts
can be factored out (hence the occurrence of π − 4 arctan

√
2

5 in the defini-
tion of sqrt). As can be easily checked with symbolic algebra software, the
polynomial p(y) :=

√
2(g(y) − pt) has rational coefficients! It can thus be

converted to a Bernstein representation without rounding, using the algo-
rithm presented in [48]. With this method the only divisions are by powers
of 2, which can be efficiently represented using dyadic numbers.

The polynomial p consists of 12945 monomials and has total degree 18. A
prototype implementation in Haskell returns 0 as the maximum for p in
about ten minutes. Thus

√
2(g(y)− pt) ≤ 0 and g(y) ≤ pt.

6. Tame graph enumeration

Tame graphs are particular plane graphs that represent potential counterex-
amples to the Kepler conjecture. The Archive is a list of over 5000 plane
graphs. The original proof generates the Archive with the help of a Java
program that enumerates all plane graphs. Tameness is defined in Section 18
and the enumeration is sketched in Section 19 of [22]. This section sketches
the formally machine-checked proof of Claim 3.13 and Theorem 19.1 in the
original proof [22]:

Theorem 1. Any tame plane graph is isomorphic to a graph in the Archive.

There are two potential sources of errors in the original proof: the publica-
tions only sketch the details of the enumeration, and the referees only made
a passing glance at the implementation, consisting of more than 2000 lines
of Java.

We recast the Java program for the enumeration of all tame graphs in logic,
proved its completeness with the help of an interactive theorem prover, ran
it, and compared the output to the Archive. It turns out that the original
proof was right, the Archive is complete, although redundant (there are at
most 2771 tame graphs). Doing all this inside a logic and a theorem prover
requires two things:

• The logic must contain a programming language. We used Church’s
higher-order logic (HOL) based on λ-calculus, the foundation of func-
tional programming. Programs in HOL are simply sets of recursion
equations, i.e. pure logic.
• The programming language contained in the logic must be efficiently
executable and such executions must count as proofs. The theorem
prover that we used, Isabelle/HOL [37] fulfills this criterion. If all
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functions that appear in a term are either data, e.g. numbers, or
functions defined by recursion equations, Isabelle/HOL offers the
possibility to evaluate this term t in one big and relatively efficient
step to a value v, giving rise to the theorem t = v.

The enumeration of all tame graphs generates 23 million plane graphs —
hence the need to perform massive computations in reasonable time.

Now we give a top-level overview of the formalization and proof of complete-
ness of the enumeration of tame graphs in HOL. For details see [36]. The
the complete machine-checked proof, over 17000 lines, is available online in
the Archive of Formal Proofs at afp.sf.net [2].

6.1. Plane graphs. Following the original proof, we represent finite, undi-
rected, plane graphs as lists (= finite sets) of faces and faces as lists of
vertices. Note that by representing faces as lists they have an orientation.
The enumeration of plane graphs requires an additional distinction between
final and non-final faces. Hence a face is really a pair of a list of vertices
and a Boolean. A plane graph is final iff each of its faces is. In final graphs
we can ignore the Boolean component of the faces.

6.2. Enumeration of plane graphs. The original proof characterizes plane
graphs by an executable enumeration and sketches a proof of completeness
of this enumeration. We have followed the original proof and taken this enu-
meration as the definition of planarity. The enumeration of plane graphs in
the original proof proceeds inductively: you start with a seed graph with two
faces, the final outer one and the (reverse) non-final inner one. If a graph
contains a non-final face, it can be subdivided into a final face and any num-
ber of non-final ones. Because a face can be subdivided in many ways, this
process defines a tree of graphs. By construction the leaves must be final
graphs, and they are the plane graphs we are interested in: any plane graph
of n faces can be generated in n− 1 steps by this process, adding one (final)
face at a time. For details see [22] or [36].

The enumeration is parameterized by a natural number p which controls the
maximal size of final faces in the generated graphs. The seed graph Seedp
contains two (p+3)-gons and the final face created in each step may at most
be a (p + 3)-gon. As a result, different parameters lead to disjoint sets of
graphs.

The HOL formalization defines an executable function next-planep that maps
a graph to a list of graphs, the successor graphs reachable by subdividing
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one non-final face. The plane graphs are the final graphs reachable from
Seedp via next-planep for some p.

6.3. Enumeration of tame graphs. The definition of tameness in the
original proof is already quite close to a direct logical formulation. Hence
the HOL formalization is very close to this. Of course pictures of graphs
had to be translated into formulae, taking implicit symmetries in pictures
into account. We found one simplification: in the definition of an admissible
weight assignment one can drop condition 3 (a condition on the 4-circuits
in graphs) without changing the set of tame graphs. What facilitated our
work considerably was that a number of the eight tameness conditions in
the original proof are directly executable. The details are described else-
where [36].

The enumeration of tame graphs is a modified enumeration of plane graphs
where we remove final graphs that are definitely not tame, and prune the
search tree at non-final graphs that cannot lead to tame graphs anymore.
The published description [22] is deliberately sketchy, and the precise formu-
lation of the pruning criteria is based on the original Java programs. This
is the most delicate part of the proof because we need to balance effective-
ness of pruning with simplicity of the completeness proof: weak pruning
criteria are easy to justify but lead to unacceptable run times of the enu-
meration, sophisticated pruning techniques are difficult to justify formally.
Since computer-assisted proofs are still very laborious, simplifying those
proofs was of prime importance. In the end, the HOL formalization defines
a function next-tamep from a graph to a graph list. It computes the list of
plane successor graphs next-planep g and post-processes it as follows:

(1) Remove all graphs from the list that cannot lead to tame graphs
because of lower bound estimates for the total admissible weight of
the final graph.

(2) Finalize all triangles in all of the graphs in the list (because every
3-cycle in a tame graph must be a face).

(3) Remove final graphs that are not tame from the list.

A necessary but possibly not sufficient check for tameness is used in the last
step. Hence the enumeration may actually produce non-tame graphs. This
is unproblematic: in the worst case a fake counterexample to the Kepler
conjecture is produced, but we do not miss any real ones.

Although we have roughly followed the procedure of the original proof, we
have simplified it in many places. In particular we removed the special
treatment of Seed0 and Seed1, which is a fairly intricate optimization that
turned out to be unnecessary.
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The following completeness theorem is the key result:

Theorem 2. If a tame and final graph g is reachable from Seedp via next-
planep then g is also reachable from Seedp via next-tamep.

Each step next-tamep is executable and an exhaustive enumeration of all
graphs reachable from a seed graph is easily defined on top of it. We call
this function tameEnump. By definition, tame graphs may contain only
triangles up to octagons, which corresponds to the parameters p = 0, . . . , 5.

6.4. Archive. In order to build on the above enumeration of all tame graphs
without having to rerun the enumeration, the results of running tameEnump

with p = 0, . . . , 5 are put into an Archive and isomorphic graphs are elimi-
nated. This results in 2771 graphs, as opposed to 5128 in the original proof.
The reasons are twofold: there are many isomorphic copies of graphs in the
Archive and it contains a number of non-tame graphs, partly because, for
efficiency reasons, the original proof did not enforce all tameness conditions
in its Java program. The new reduced Archive is also available online [2].

Finally we can prove Theorem 1: if g is tame plane graph, Theorem 2 and the
definition of tameEnum tell us that g must be contained in tameEnump for
some p = 0, . . . , 5. Hence it suffices to enumerate tameEnump, p = 0, . . . , 5,
and check that, modulo graph isomorphism, the result is the same as the
Archive. This is a proposition that can be proved by executing it (because
the HOL formalization also includes a verified executable test for graph
isomorphism which we do not discuss).

7. Verifying linear programs

This section reports on the current state of the formal verification of the
linear programming part of the proof of the Kepler conjecture. The results
of the linear programming in the original proof are recorded in several giga-
bytes of log files. This section presents the formalization of the generation
and bounding of these linear programs in the mechanical proof assistant
Isabelle [37]. A more detailed version of the material presented here can be
found in [38].

This formalization relies on the archive of tame graphs. Each tame graph
(except the graphs associated with the face-centered cubic and hexagonal
close packings) represents a potential counterexample to the Kepler conjec-
ture. Each potential counterexample obeys certain constraints. The original
proof refutes each potential counterexample by building a linear program
from the constraints and showing that these linear programs are infeasible.
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A structure, which we call a graph system, makes this precise in a formal
environment. An instance of a graph system is a tame graph which obeys
the constraints listed in the definition of a graph system. The current for-
malization does not use all of the constraints of the original proof but only
those that do not require branch and bound strategies. Our current notion
of graph system can be viewed as a detailed formalization of what is called
basic linear programs in [22, §23.3]. Because the current formalization does
not capture not all constraints of the original proof, we cannot hope to re-
fute all potential counterexamples. Nevertheless we manage to refute most
of them.

We represent tame graphs as hypermaps. As mentioned in Section 2, a
hypermap is just a finite set D of darts together with three permutations on
D: the edge, the face, and the node permutation that compose to the identity
e ◦ n ◦ f = I. This representation greatly simplifies the axiomatization of
a graph system. For a detailed description of how we represent hypermaps
and for a complete list of all of the axioms of a graph system see [38, §4].

Figure 1 summarizes how we generate and solve the linear programs. We
apply the axioms of a graph system to each tame graph. This results in
a large Isabelle theorem which is a conjunction of linear equalities and in-
equalities. We then normalize this conjunction to bring it into the form of
a matrix inequality

(4) Ax ≤ b.
The entries of A and b are symbolic expressions which contain various real
constants (such as π) that are needed to define the axioms of a graph system.
In order to apply linear programming, we need to replace A and b with
numerical approximations. We achieve this via a formalization of interval
arithmetic in Isabelle, and arrive at numerical matrices A′, A′′ and b′ for
which we have the formally proven Isabelle theorems

(5) A′ ≤ A ≤ A′′, b ≤ b′

We then apply a simple preprocessing step which gives us formally proven
a-priori bounds x′ and x′′ for x such that

(6) x′ ≤ x ≤ x′′.
It is then possible to obtain a certificate from an external linear programming
solver like GLPK (Gnu Linear Programming Kit) that allows us to formally
reach a contradiction from Ax ≤ b. The beauty of a certificate is that we
can use results obtained from an untrusted source (in our case this untrusted
source is a heavily optimized linear program solver programmed in C) in a
trusted and completely mechanically verifiable way.

In this way, we proved the inconsistency of 2565 of the graph systems but
failed to prove the inconsistency of the remaining 206. This yields a success
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Graph System 
Axioms Tame Graph

Large Conjunction of (In)equalities

A ! x ! b

A’ ! A ! A’’

b ! b’

x’ ! x ! x’’

False

Certificate from
external LP solver

Figure 1. Refuting a potential counterexample to the Ke-
pler conjecture

rate of about 92.5%. Future work will extend the notion of graph system
and generate linear programs that take all the constraints of the original
proof into account.

Part 2. Errata in the Original Proof

8. Biconnected graphs

This section gives further detail to the argument of [22, §12.7 p.131]. There
it is claimed that the proof of the main estimate [22, Theorem 12.1] can be
reduced to polygonal standard regions. This claim is correct. However, the
justification of this claim is not complete in the original proof. This section
gives complete justification of the claim.

In the original proof, the boundaries of standard regions may fail to be sim-
ple polygons. In fact, the failure of the boundaries to be polygons may be
quite severe: the boundaries may contain multiple components and articu-
lation vertices. An articulation vertex in a graph is a vertex whose removal
increases the number of connected components of the graph. A connected
graph is biconnected if it contains no articulation vertex.
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In the original proof, each standard region is first prepared by a process of
erasure (described in [22, §11.1]), then deformed in a way to transform its
boundary into a simple polygon. The deformation is made in such a way that
the values of two key functions vor0,R and τ0,R are left unchanged. These
are the functions that enter into the main estimate [22, Theorem 12.1].

What the original proof fails to consider is a hypothetical situation such as
that shown in Fig. 2, where the rigid movement of set of vertices (such as the
illustrated triangle with vertex w) is blocked by a nearby vertex v that is not
visible from w, when the distance between v and w drops to the minimum
value 2. This section presents a proof that this hypothetical situation does
not occur.

The strategy of the proof in this section is to produce a biconnected graph.
In a biconnected planar graph with at least three vertices, each face is a
simple polygon. Thus, by producing a biconnected graph, we achieve our
objective. In the original proof of the Kepler conjecture, biconnected graphs
are not mentioned by name. Nevertheless, most of the graphs that occur in
the late stages of the original proof are biconnected.

In more detail, the proof in this section will produce a sequence of admissible
deformations of a decomposition star D in such a way that the individual
standard regions R are preserved in number and identity (but not in shape)
by the deformations. The deformations will preserve the values of vor0,R(D)
and τ0,R(D), for each standard region R. The deformations will change the
combinatorial structure of the graph formed by all the subregions of the
decomposition star. At the conclusion of the deformation, the decomposition
star D will have a graph (formed by all the subregions of the decomposition
star) that is biconnected. As in the original proof, the decomposition star
is first simplified by a process of erasure, before the deformations begin.

In the remainder of this section, we adopt notation, definitions, and conven-
tions without further comment from [22].

8.1. Context. We work in the following restrictive context for Theorem 3
and its proof. We fix a packing centered at a vertex at the origin. As
described in Section 12.6 of the original proof, we assume that all upright
quarters are erased, except loops (that is, those surrounded by anchored
simplices). Let U be the set of (non null) vertices of of height at most 2.51.
As usual, we say two edges {u1, u2} and {u′1, u′2} cross if the interiors of the
triangles formed by {0, u1, u2} and {0, u′1, u′2} intersect.

We form the set of edges E′ between vertices in U , consisting of
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v u

w

Figure 2. In this figure (not to scale), segments represent
geodesic arcs on the unit sphere. The shaded region is a sub-
region whose boundary is not a simple polygon. We wish to
rigidly slide the triangle containing the vertex w until a new
visible distinguished edge forms (say from w to u). We will
show that this rigid motion does not decrease the distance
between two vertices (say w and v) to the minimum distance
2.

• all standard edges; that is, {v, w} ⊆ U such that 0 < ||v−w || ≤ 2.51.
• all edges {v, w} ⊆ U of an anchored simplex, whenever the upright
diagonal of the anchored simplex is an unerased loop.
• all edges {v, w} ⊆ U such that 0 < ||v−w || ≤

√
8, where {v, w} does

not cross any other edge in previous two items. (If two of these edges
cross, pick only one of them. This can only happen with conflicting
diagonals of a quad cluster.)

These edges do not cross. A special simplex {0, u, v, w} has one edge {v, w} of
length at least

√
8, called the special edge. A special edge has length at most

3.2. The other vertex u is called a special vertex (or corner). Let E = E′\S,
where S is the set of special edges (that is, the edges of special simplices
shared with an anchored simplex). The projection of the line segments
formed by E to the unit sphere is a planar graph. The complement of this
graph in the unit sphere is a disjoint union of connected components. The
closures of these connected components are called subregions.

We call a loop subregion one that contains an unerased loop {0, v}. If R is
a loop subregion, then there are no enclosed vertices of height ≤ 2.51 over
the subregion. The corners of R are the anchors of the upright diagonal
together with the special corners of the subregion. The subregion R is star
convex with center point at the projection of v to the unit sphere. It follows
that the boundary of R is a simple polygon.



24 HALES, HARRISON, MCLAUGHLIN, NIPKOW, OBUA, AND ZUMKELLER

The graph Γ with vertices U and edges E is not necessarily connected. The
aim is to deform U (and D) to create a biconnected graph (without changing
the values of vor0,R(D) and τ0,R(D) for standard regions R; the values for
individual subregions will change). Once the graph Γ is biconnected, the
subregions are simple polygons as desired.

The deformation of U is admissible if it satisfies the following three condi-
tions.

• If the graph Γ is not connected, the deformation acts by a rotation
about the origin on the vertices of a single chosen connected com-
ponent of Γ, leaving all other vertices of U fixed. (For example,
in Figure 2, the entire triangle with vertex w may be rotated.) In
particular, ||v || , for v ∈ U , is constant.
• If the graph Γ is connected, but not biconnected, with a chosen
articulation vertex a, then the deformation acts by a rotation about
the axis {0, a} on the vertices of a single component of Γ\{a}, leaving
all other vertices of U fixed.
• The distance between v, w remains at least 2, for all v, w ∈ U .

The deformation stops when either of the following halting conditions are
met:

(1) ||v − w || ≤
√

8, where the edge {v, w} 6∈ E′, with {v, w} ⊆ U , does
not cross any edge in E′, or

(2) ||v−w || decreases to 2 for some v, w ∈ U , and {v, w} crosses an edge
in E′.

We warn that the deformation is allowed to assume configurations in which
the distance between some u ∈ U and the upper endpoint of an unerased
upright diagonal d is less than 2. This is not a problem because the vertex
u does not end up as a corner of the loop subregion to which the upright
diagonal d belongs. (In particular, the first halting condition prevents a new
special vertex from being added to a loop subregion.) Thus, when a single
subregion is considered in isolation, all distances between pairs of vertices
in that subregion are at least 2.

In the restrictive context that has been described in this section, we have
the following result.

Theorem 3. If the graph Γ = (U,E) is not biconnected, then a nontriv-
ial admissible deformation of U exists. The second halting condition never
occurs. The admissible deformation can always be continued until the first
halting condition holds.
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Figure 3. Theorem 3 breaks into various cases: two edges
with distinct endpoints, three or more edges, two edges, or a
single edge passing through the triangle {0, v, w}.

We break the proof of Theorem 3 into cases according to the number and
combinatorial structure of the edges {u1, u2} that pass through the triangle
{0, v, w}. Lemma 4 shows that we cannot have two such edges {u1, u2} and
{u′1, u′2} with distinct endpoints. It follows that there is an endpoint u2

shared by every edge that passes through the triangle {0, v, w}. Lemma 9
shows that there cannot be three or more edges. Finally, the cases of one
or two edges {u1, u2} are treated in further subsections (Fig. 3). Each sub-
section is organized around one of the main cases (with introductory Sec-
tion 8.2): the four graphs of Fig. 3 are treated in the four Sections 8.3, 8.4,
8.5, 8.6, respectively.

When U is deformed until the first halting condition holds, a new edge
{v, w} can be added to E. The theorem is repeated to add further edges,
until a biconnected graph is obtained. The remainder of this section explains
why the second halting condition never occurs. For this, we assume on the
contrary, that ||v − w || = 2, where {v, w} belong to different connected
components of Γ (if Γ is not connected) and different connected components
of Γ\{a} (if a is an articulation vertex of a connected graph Γ). In short, we
say that v, w belong to different bicomponents. We may also assume that
{v, w} crosses some edge of E′.

8.2. Preliminary lemmas. The first lemma shows that a vertex does not
cross over an edge during a deformation; the halting conditions for the vertex
are met before it reaches the edge. Recall that the term geometric consid-
erations refers to a specific collection of methods introduced in [22, §4.2]
to prove the existence and non-existence of various simple configuration of
points in R3.

Lemma 1. Let S = {0, v, , u1, u2} is a set of four distinct points in R3 whose
pairwise distances are at least 2. Suppose that ||u || ≤ 2.51, for all u ∈ S. If
the segment {0, v} meets the segment {u1, u2}, then ||v − u1 || , ||v − u2 || ≤
2.51.

Proof. This follows by geometric considerations. �
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Lemma 2. Let S = {v, w, u1, u2, v0} be a set of five distinct points in R3

whose pairwise distances are at least 2. Suppose that the segment {v, w}
passes through {v0, u1, u2}. Assume

||u1 − u2 || ≤ 3.2
||v0 − u || ≤ 2.51, for u ∈ S

Then ||v − w || > 2.

Lemma 3. Let S = {v, w, u1, u2, v0} be a set of five distinct points in R3

whose pairwise distances are at least 2. Suppose that the segment {u1, u2}
passes through {v0, v, w}. Assume

||u1 − u2 || ≤ 2.91
||v0 − u || ≤ 2.51, for u ∈ S

Then ||v − w || > 2.

Proof. Both lemmas follow by geometric considerations. �

By these two lemmas, we may assume that for each edge {u1, u2} that {v, w}
crosses, we have that {u1, u2} passes through {0, v, w} and that ||u1−u2 || >
2.91. This means that the edge {u1, u2} is an edge of an anchored simplex,
so that the edge is special or bounds a loop subregion. This loop subregion
will provide the key to the proof, because we will show that it prevents the
distance between v and w from becoming 2, as assumed (Fig. 4).

Remark 1. As an aside, we mention that this issue of biconnected graphs
is a major issue only in the proof of the Kepler conjecture and not in the
proof of the dodecahedral conjecture [23]. In the proof of the dodecahedral
conjecture there are no loops of anchored simplices, and without loops there
are no difficulties: edges of length at most

√
8 can be be used instead of the

set E′. Lemmas 2 and 3 suffice.

8.3. Edge crossings with distinct endpoints.

Lemma 4. There does not exist a set S = {0, v, w, u1, u2, u
′
1, u
′
2} of seven

distinct points in R3 whose pairwise distances are at least 2 and that satisfies
the following conditions.

• The edges {u1, u2} and {u′1, u′2} do not cross.
• The edges {u1, u2} and {u′1, u′2} both pass through {0, v, w}.
• ||u || ≤ 2.51 for all u ∈ S.
• ||v − w || = 2.
• ||u1 − u2 || , ||u′1 − u′2 || ≤ 3.2.
• u1 and u′1 lie in the same half-space bounded by the plane {0, v, w}.
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v

u

w

L

Figure 4. In this figure (not to scale), segments represent
geodesic arcs on the unit sphere. The shaded regions repre-
sent subregions. The situation of Fig. 2 does not exist (as
will be shown). There is an intervening loop subregion L
that forces v and w to be more than the minimum distance
apart.

• The directed segment from v to w crosses the segment {u′1, u′2} before
the segment {u1, u2}.

Note that the last two conditions can always be achieved by suitable labels
on the points {u1, u2, u

′
1, u
′
2}.

Proof. This is a direct consequence of Lemmas 6 and 8. �

Lemma 5. Let S = {u, v, w} be a triangle such that each side has length at
least 2, and such that ||u − v || ≤ 2.51, ||u − w || ≤ 2.51, ||v − w || = 2. Let
X be the set of points in the convex hull of S that have distance at least 1.2
from each vertex of S. Then the diameter of X is less than 1.044.

Proof. Let x = ||u − v || and y = ||u − w || . Assume x ≥ y. As u moves
away from v, along a fixed line through v and an initial position u0, the
region X expands. Thus, we may assume that x = 2.51. The boundary
of X is a polygonal curve consisting of line segments and concave arcs of
circles. The diameter is realized by the distance between two vertices pi(y)
of the polygonal curve. We consider two cases according to y ≤ 2.4 and
y ≥ 2.4 because the structure of the polygonal curve changes at y = 2.4. We
calculate ||pi(y)− pj(y) || directly, checking for each (i, j) that the distances
are less than 1.044. �
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Lemma 6. Let S = {0, , v, w, u1, u2, u
′
1, u
′
2} ⊆ R3 be a configuration of seven

points that satisfies the conditions of Lemma 4. Then there exist a point p
on the segment {u1, u2} and a point p′ on the segment {u′1, u′2} such that
||p− p′ || < 1.044.

Proof. Let u ∈ {0, v, w}. By the metric constraints, the distance from u to
the segment {u1, u2} (resp. {u′1, u′2}) is at least√

22 − (3.2/2)2 = 1.2.

Let p (resp. p′) be the point of intersection of the segment {u1, u2} (resp.
{u′1, u′2}) with the convex hull of {0, v, w}. By Lemma 5, we have ||p−p′ || <
1.044. �

Lemma 7. Let S = {u1, u
′
1, u2, u

′
2} ⊆ R3 be a set of four distinct points

such that the distance between each pair of points is at least 2. Assume that

||u1 − u2 || ≤ 3.2, ||u′1 − u′2 || ≤ 3.2.

If any of the following conditions hold:

• (A): ||u1 − u′2 || , ||u′1 − u2 || ≥ 2.91;
• (B): ||u1 − u′1 || , ||u2 − u′2 || ≥ 2.85, ||u1 − u′2 || ≥ 2.91; or
• (C): ||u1 − u′1 || ≥ 3.64, ||u1 − u′2 || ≥ 2.91;

then every point on the segment {u1, u2} has distance greater than 1.044
from every point on the segment {u′1, u′2}.

Proof. Assume for a contradiction that the assumptions hold and that the
conclusion is false for some configuration. The metric constraints can be
used to show that the segments {u1, u2} and {u′1, u′2} can be stretched along
their axes without decreasing any edge length. Thus we may assume without
loss of generality that ||u1−u2 || = ||u′1−u′2 || = 3.2. Decreasing one dihedral
angle of the simplex S at a time, we may move the segments closer together,
until all four edges {ui, u′j} attain their minimum length. Then we have
three rigidly determined simplices (A), (B), (C) (with equality constraints).
An explicit coordinate calculation of the distance between the two segments
shows that the distance is greater than 1.044 in each case. �

Lemma 8. Let S = {0, , v, w, u1, u2, u
′
1, u
′
2} ⊆ R3 be a configuration of seven

points that satisfies the conditions of Lemma 4. Then there do not exist a
point p on the segment {u1, u2} and a point p′ on the segment {u′1, u′2} such
that ||p− p′ || < 1.044.

Proof. Assume for a contradiction that such p, p′ exist. In Lemma 7, we may
assume that none of the conditions A, B, C hold. By obvious symmetry,
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without loss of generality, we may assume by case A that ||u2− u′1 || < 2.91.
By Lemma 3, this implies that {u′1, u2} does not pass through {0, v, w}. By
the conditions of the lemma, the segment {u1, u

′
1} does not meet the plane

{0, v, w}, so that {u1, u
′
1} does not pass through {0, v, w}. This means that

the triangle {u1, u
′
1, u2} is linked around {0, v, w}; and some edge of {0, v, w}

passes through {u1, u
′
1, u2}. Up to symmetry there are two cases: (1) {0, v}

passes through {u1, u
′
1, u2}, or (2) {v, w} passes through {u1, u

′
1, u2}.

In the first case, recall that {u′1, u′2} does not cross {u1, u2}. So u′2 is enclosed
over (0, {u1, u

′
1, u2}). Then {u′2, u1} and {u′2, u′1} pass through {0, v, w}. By

Lemma 3, we have ||u′2 − u1 || , ||u′2 − u′1 || ≥ 2.91. As we are assuming that
C does not hold, we have ||u1 − u′1 || ≤ 3.64. We claim that {0, u′2} passes
through {u1, u

′
1, u2}. Otherwise, u′2 lies in the convex hull of {0, u1, u

′
1, u2}

and a coordinate calculation shows that the upper bounds on the edges
of the simplex {0, u1, u

′
1, u2} are inconsistent with the lower bounds on the

distances from u′2 to the vertices of the simplex. Since {0, u′2} passes through
{u1, u

′
1, u2} we may use geometric considerations to show that ||u′2 || > 2.51.

This is contrary to the assumptions of Lemma 4.

In the second case, {v, w} passes through {u1, u
′
1, u2} and through {u′1, u′2, u2}.

Geometric considerations give ||u1 − u′1 || > 2.85 and ||u2 − u′2 || > 2.85. As-
suming that B does not hold gives ||u1 − u′2 || < 2.91. The first paragraph
of the proof now gives that {u2, u

′
2, u1} links around the triangle {0, v, w}.

The edge {v, w} does not pass through {u2, u
′
2, u1}. (This can be seen by

drawing the relative positions of p(u), for u ∈ S, in the projection p of the
points to a plane orthogonal to {v, w}.) Thus, we are in the first case, which
has already been treated. �

8.4. Triple edge crossings. By Lemma 4, there is a common endpoint
u2 such that every edge of E′ that passes through {0, v, w} has u2 as an
endpoint. Next we show that there cannot be three such edges.

Lemma 9. There does not exist a set of seven distinct points

S = {0, v, w, u1, u
′
1, u
′′
1, u2}

in R3 that satisfies the following conditions.

• The distance between each pair of distinct points in S is at least 2.
• The edges {u1, u2}, {u′1, u2}, and {u′′1, u2} pass through {0, v, w}.
• ||u || ≤ 2.51, for all u ∈ S.
• ||v − w || = 2.
• ||u− u2 || ≤ 3.2, for u = u1, u

′
1, u
′′
1.

Proof. Assume S exists. We may pivot w around the axis {0, v} until ||w−
u2 || ≤ 2.51. (The metric constraints on edge lengths show that the condition
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∆ > 0 is preserved for the simplices {u, u2, v, w} and {u, u2, w, 0}, for u =
u1, u

′
1, u
′′
1, throughout this pivot.) A similar pivot of v gives ||v−u2 || ≤ 2.51.

We may order the vertices in cyclic order around {0, u2} as
(w1, w2, w3, w4, w5) = (w, u1, u

′
1, u
′′
1, v),

so that setting d(wi, wj) = dih(0, u2, wi, wj), we have

d(w1, w5) =
4∑
i=1

d(wi, wi+1) ≥ d(w2, w3) + d(w3, w4).

Interval calculations2 give d(w2, w3), d(w3, w4) ≥ 0.7 and d(w1, w5) < 1.4.
We obtain an immediate contradiction:

1.4 > d(w1, w5) ≥ 0.7 + 0.7.

�

8.5. Double edge crossings. This subsection treats the case of two edges
crossings in the proof of Theorem 3. We continue to assume the general
context of Theorem 3. As usual, the edge {u1, u2} ∈ E′ crosses {v, w}.

Lemma 10. Let {u1, u2, w, v} be a set of four distinct points in R3 (in the
given context). Assume that ||v − ui || ≤ 2.51, for i = 1, 2. Assume that
no edge of E′ crosses {v, w} in the open half-space A containing v bounded
by the plane {0, u1, u2}. (That is, {u1, u2} is the first edge to cross {v, w},
moving from v toward w.) Assume there is a loop subregion L along {u1, u2}
on the A-side of {u1, u2}. Then {u1, u2} is a special edge of E′ with corner v.
In particular, {u1, u2} 6∈ E, so that it is not a bounding edge of a subregion.

Proof. Assume for a contradiction that {u1, u2} is not special. Note that
loop subregions have simple polygonal boundaries and remain rigid under
all the deformations. In particular, the upright diagonal, special corners,
and so forth remain rigidly positioned with respect to the corners of the
subregion.

Since there are no further edges crossing {v, w}, the subregion L extends to
v. Hence v is a corner of the subregion L. It is either an anchor or a special
corner (with respect to L). However, it cannot be a special corner, by the
assumption that {u1, u2} is not a special edge. Hence it is an anchor. Also,
u1 and u2 are anchors.

To reach a contradiction, we consider possible locations of the upright diag-
onal {0, u}, and show that it has nowhere to go (Figure 5). Since {u1, u2}
is an edge, the points u1, u2 are consecutive anchors (excluding region B).
Also, the upright diagonal of any unerased loop has at least four anchors (say

2calc-2799256461, calc-5470795818
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A

BC

D

B

C

Dv

u1 u2

Figure 5. The upright diagonal u cannot be placed over
any of the regions A,B,C,D. The lines (not to scale) repre-
sent geodesic arcs on the sphere passing through the pairs of
points in {p(u1), p(u2), p(v)}, where p denotes projection to
the unit sphere.

v, u1, u2, w). Moreover, some anchored simplex around the upright diagonal
is not an upright quarter (because of the edge {u1, u2}). Geometric consider-
ations based on these constraints (say ||w−u1 || ≥ 2.51) show that the fourth
anchor w is not in A. This prevents u from being located over the region A.
A vertex uj cannot be enclosed over an upright quarter {0, u, v, ui}. This
excludes region C. Finally, an edge {v, ui} of length at most 2.51 cannot
pass through a triangle {0, u, uj} of sides at most 2.51, 2.51,

√
8 (excluding

D). �

Lemma 11. Let {u1, u2, w, v} be a set of four distinct points in R3 (in the
given context). Assume that ||v − ui || ≤ 2.51, for i = 1, 2. Assume that
no edge of E crosses {v, w} in the open half-space A containing v bounded
by the plane {0, u1, u2}. (That is, {u1, u2} is the first edge to cross {v, w},
moving from v toward w.) Then both edges {u1, v} and {u2, v} belong to E.
In particular, there is a circuit of the graph Γ through v, u1, u2.

Proof. If there is a loop subregion L along {u1, u2} on the A-side of {u1, u2},
Lemma 10 implies that {u1, u2} is a special edge of E′ with corner v. In
particular, {u1, v} and {u2, v} are edges of E. The conclusion follows in this
case.

Now assume that there is no loop subregion along {u1, u2} on the A side of
{u1, u2}.

Let S be the finite set of points of U enclosed over the simplex {0, u1, u2, v}.
We show by contradiction that S is empty. The plane {0, v, w} separates
S into a disjoint union S = S1 ∪ S2, according to those in the same half-
space as ui, i = 1, 2. We form the convex hull of the projection p to the
unit sphere of the points Si ∪ {ui, v}. As in [22, §12.13], form a sequence of
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geodesic arcs on the unit sphere from p(ui) to p(v). Let p(wi), for wi ∈ Si,
be the other endpoint of the arc starting at p(ui) (or set wi = v if Si = ∅.
For some w′ ∈ {w1, w2} \ {v}, the edges {w′, ui} do not cross any edges of
E. Furthermore, geometric considerations show that ||w′ − ui || ≤ 2.51, for
i = 1, 2. By the criteria for forming edges of E, we must have {w′, ui} ∈ E
for i = 1, 2. This contradicts the assumption that {v, w} does not cross any
edges of E over A. Hence S = ∅.

Since S = ∅, the edges {v, ui} do not cross any edges of E. By the criteria
for forming edges of E, they belong to E. This completes the proof. �

We are ready to prove the next major case of Theorem 3. We continue
to work in the general context of that theorem, with v and w in different
bicomponents of the graph Γ.

Lemma 12. In this context, there does not exist a set of six points {0, v, w, u1, u
′
1, u2}

where {u1, u2} and {u′1, u2} pass through {0, v, w} and such that

||u1 − u2 || ≤ 3.2, ||u′1 − u2 || ≤ 3.2.

Proof. We may assume that {u1, u
′
1} are ordered so that the cyclic order

around {0, u2} is (w1, w2, w3, w4) = (v, u′1, u1, w). By the previous results,
there are at most two edges that pass through {0, v, w} in this manner.
In particular, the part of the line segment {v, w} between the crossings of
{u1, u2} and {u′1, u2} lies in a single subregion L.

We claim that we do not have ||v − u′1 || , ||v − u2 || , ||w − u1 || , ||w − u2 || ≤
2.51. Otherwise, we break into two cases and derive a contradiction as
follows. Either (1) L is a loop subregion, or (2) L is not a loop subregion,
but both regions adjacent to L (along edges {u1, u2}, {u′1, u2}) are loop
subregions. In case (1), {u1, u2, u

′
1} are corners of the loop subregion L.

Hence, they lie on a circuit in Γ formed by the corners of that loop subregion.
If ||v−u2 || , ||v−u′1 || ≤ 2.51, then by Lemma 11, the points {v, u′1, u2} lie on
a circuit in Γ. A similar conclusion holds if corresponding inequalities hold
||w − u2 || , ||w − u1 || ≤ 2.51. If all four inequalities hold, then these circuits
put v, w in the same bicomponent of Γ, which is contrary to hypothesis. In
case (2), then by Lemma 11, {v, u2}, {v, u′1} ∈ E, so {u′1, u2} is a special
edge and L is a loop subregion. This is contrary to the assumption of case
(2). Hence we may assume by symmetry and without loss of generality that
||v − u′1 || ≥ 2.51 or ||v − u2 || ≥ 2.51.

We may stretch along the edges {u2, u1}, {u2, u
′
1}, moving u1, u

′
1, until ||u2−

u1 || = ||u2 − u′1 || = 3.2. We may add inequality

||u2 || ≤ 2.23,
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for otherwise by geometric considerations ||u2−u′1 || > 3.2. Similarly, ||u′1 || ≤
2.23. If ||u2 − v || ≥ 2.51, we may pivot v toward u2 around the axis {0, w}
until ||u2− v || ≤ 2.51. Similarly, we may assume that ||u2−w || ≤ 2.51. Set
d(i, j) = dih(0, u2, wi, wj). Then interval arithmetic calculations3 give the
contradiction:

1.3 > d(1, 4) = d(1, 2) + d(2, 3) + d(3, 4) > 0.5 + 0.8 + 0 = 1.3.

�

8.6. Single edge crossings. This subsection treats the proof of Theorem 3
in the case of a single edge crossing {u1, u2}. This is the final case of the
proof. We continue to assume the notation and general context of that
theorem. In particular, v and w lie in different bicomponents of the graph
Γ.

Lemma 13. Let {0, u1, u2, v, w} be a set of five distinct points such that
{u1, u2} is the only edge of E′ that crosses {v, w}. Then ||v − w || > 2.

Proof. We assume for a contradiction that ||v − w || = 2. We consider four
cases depending on lengths.

Case 1: ||u−ui || ≤ 2.51, for i = 1, 2 and u = v, w. By Lemma 11, there are
circuits running through {u, u1, u2}, for u = v, w. This is contrary to the
assumption that v, w lie in different bicomponents of the graph Γ. (In the
remaining cases, there is no loss in generality to assume ||w − u2 || ≥ 2.51.)

Case 2: ||w − u2 || ≥ 2.51, ||v − u1 || ≥ 2.51. Geometric considerations give
the contradiction ||u1 − u2 || > 3.2.

Case 3: ||w − u2 || ≥ 2.51, ||v − u2 || ≥ 2.51. Geometric considerations gives
the contradiction ||u1 − u2 || > 3.2.

Case 4: ||w − u2 || ≥ 2.51, ||v − ui || ≤ 2.51, for i = 1, 2. The edge {u1, u2}
cannot be a special edge of E′. Otherwise, v, w are corners of the same loop
subregion. This contradicts the running assumption that these two vertices
belong to separate bicomponents of the graph Γ. By Lemma 10, there is no
loop subregion along {u1, u2} on the v-side. Since {u1, u2} has length greater
than

√
8, there is a loop subregion L bounded by the edge, and it must then

lie on the w-side. Thus, w is a corner of L and the circuit of Γ described by
the boundary of L passes through w, u1, u2. By Lemma 11, there is a circuit
of Γ through v, u1, u2. Hence, v, w lie in the same biconnected component,
which is contrary to the running assumption. �

3calc-7431506800, calc-5568465464, calc-4741571261, calc-6915275259
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9. Errata listing

The abridged version of the Kepler conjecture in the Annals [11] was gener-
ated by the same tex files as the unabridged version in [22]. For this reason,
it seems that every correction to the abridged version should also be a cor-
rection to the unabridged version. We list errata in the unabridged version.
The same list applies to corresponding passages in the abridged version.

Each correction gives its location in [22]. The location `+n counts down
from the top of the page, or if a section or lemma number is provided, it
counts from the top of that organizational unit. The location `-n counts
up from the bottom of the page. Footnotes are not included in the count
from the bottom. Every line containing text of any sort is included in the
count, including displayed equations, section headings, and so forth. The
material to the left of  indicates original text, and material to the right
of the arrow gives replacement text. The original text and replacement text
appear in italic. Comments about the corrections appear in roman. Please
report further items to Hales.

In addition to the corrections to the text mentioned below, there have been
some corrections to the computer code, including some typos in the listings
of nonlinear inequalities. They are described in detail in [8].

9.1. Listing.

[p.47,Lemma 5.16] Q  F

[p.49,`+2] supposed  suppose

[p.63,Lemma 7.10] S-system  Q-system

[p.73][p.124] Some applications (such as Lemma 11.27) of Theorem 8.4 rely on the
proof of the theorem, which is more general than the statement of the theorem.
There are no errors or gaps here, but the wording of the theorem should have been
phrased differently so that it would not have been necessary to refer to the proof.
The proof is based on a finer decomposition into pieces. These finer pieces are
sometimes used.

[p.75,Remark 8.11] show shows

[p.78,`-7] constraints  constraint

[p.86,`+14] Let {0, v} be the diagonal of an upright quarter in the Q0  Let v be
a vertex with 2t0 < |v| <

√
8. Section 9 assumes that the diagonal belongs to a

quarter in the Q-system, but Lemma 10.14 uses these results when {0, v} has 0 or
1 anchors. To make this coherent, we should assume throughout Section 9 that we
have the weaker condition that whenever {0, v} has two or more anchors, it is a
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diagonal of a quarter in the Q-system. The proofs of Section 9 all go through in
this context. (Lemma 9.7 is all that is relevant here.)

[p.87,Definition 9.3] In definition of ∆(v,W e), we can have some Q (as in Fig 9.1)
with negative orientation. In this case, Ev∩Ei can clip the other side. We want the
object without clipping. ∆(v,W e) should be understood as the unclipped object.

[p.88,Definition 9.6] The definition is poorly worded. First of all, it requires that
the subscript to ε to be a vertex, but then in the displayed equation, it makes
w/2 the subscript, which is not a vertex. To define ε′, move from w/2 along the
ray through x′ until an edge of the Voronoi cell is encountered. If v, w, u are the
three vertices defining that edge, then set ε′v(Λ, x) = u. Degenerate cases, such as
when two different edges are encountered at the same time, can be resolved in any
consistent fashion. In [19], these degeneracies are avoided altogether, by replacing
functions ε, ε′ with sets Φ,Φ′.

[p.88,Lemma 9.7,`+2] w and v w and u

[p.88,L. 9.7,Claim 1] with |w − w′| ≤ 2t0, and  with

[p.88,L. 9.7,`+5] Then:  Let R′w = {x ∈ Rw ∩ (0, {u,w}) | ε0(x, {u,w}) = u}.
Assume that R′w is not empty. Then:

[p88,L. 9.7,Claim 3] Rw  R′w

[p.89,`+2] {w, v}  {w, u}
[p.92,`+16,`+21] maxj uj  maxj |uj |
[p.93,`-4] obstructed from w  obstructed from w′

[p.93,`-2] from some  for some

[p.99,`+1] start  star

[p.105,Lemma 10.14] In the proof of the cases involving 0 or 1 anchor, a combination
of the decompositions from Section 8.4 and Section 9 are used. These decompo-
sitions haven’t been shown to be compatible. Instead, it is better to combine
∆(v,W ) with t0-truncation on the rest of the quad-cluster. With a t0 truncation,
we no longer have the non-positivity results from Section 8. (The quoins give a
positive contribution.) However, a routine calculation shows that the estimate on
∆(v,W ) is sufficiently small so that we still obtain a constant less than −1.04 pt.

[p.116][p.121] Definition 11.7 allows masked flat in definition of 3-unconfined. Def-
inition 11.24 requires no masked flats in the same definition. Use Definition 11.24
(no masked flats), rather than 11.7. Where masked flats occur, treat them with
Lemma 11.23, parts (1) and (2).

[p.116,`+1] Lemma 4.16  Lemma 4.17

[p.117,before Lemma 11.9] two others  three others

[p.117,Def 11.8] y1  y1
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[p.119,Definition 11.5] By definition, we require a masked flat quarter to be a strict
quarter.

[p.121] See p.116.

[p.121,`-5] 0.2274  0.02274

[p.123. flat case (2)] It is missing isolated quarters cut from the side. To fix this,
in condition 2(f), η456 ≥

√
2  η456 ≥

√
2 or η234 ≥

√
2

[p.124] See p.73.

[p.126] Theorem 12.1 needs to be stated in a form that allows the application in
pp.251-252 and Lemma 13.5. In these applications, the regions are smaller than
standard regions. Yet in the statement of the theorem, the regions are standard
regions. This is not a problem in practice, because the proof is at a much finer
level of decomposition than standard regions. However, the wording should to be
changed so that the theorem applies precisely.

[p.126] Theorem 12.1 should include σR(D) ≤ sn with s3 = 1pt and s4 = 0, and
τR(D) ≥ t3 = 0.

[p.131] Section 8 gives the deformation arguments that produce a biconnected
graph.

[p.139,Lemma 12.18,proof,`+3] C0(|v|, π)  Cu
0 (|v|, π)

[p.139,Lemma 12.18,proof,`+6] τ0(Cu
0 (2t0, π))− πmax  τ0(Cu

0 (2.2, π))− πmax

[p.144,`+11,`+17] 2t20  (2t0)2

[p.146] S±n  of 3-crowded, 3-undefined, and 4-crowded combinations

[p.148,§13.6] This entire section is misplaced. It belongs with §25.5 and §25.6.
[p.149,before 13.7] the diagrams Figs 25.1–25.4

[p.149,p.156] The definition of δloop was accidently dropped from the published ver-
sion. Set δloop(4, 2) = 0.12034 δloop(5, 1) = 0.24939. These constants and their
properties appear in the earlier 2002 arXiv preprint of the proof The Kepler con-
jecture (Sphere Packings VI).

[p.156,Lemma 13.5,`+4] respectively for τR(D) respectively, for σR(D) and τR(D)

[p.164,`-1] This shows. . . occur.  This completes the proof.

[p.173,`+4] Insert the subscript on b, as in Proposition 15.5, starting on page 173:
b  bq.

[p.182,Lemma 16.7] The bound of 0 has not been shown to hold on each half. This
is not a direct consequence of Theorem 8.4 as claimed. This can be fixed as follows.
Let v1, v3 be the corners giving the endpoints of the long edge of the acute triangle
at 0, and let v2, v4 be the other two corners. If either vertex v1, v3 has height greater
than 2.3 show that the vor0-scored quad cluster scores less than −1.04 pt. For this,
we may use the deformations of Lemmas 12.10. The length of the diagonal along
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the acute face remains fixed and at least
√

8. We claim these deformations produce
a diagonal of length less than

√
8 between opposite corners of the quadrilateral. (If

not, the deformations produce a rhombus with side 2 and diagonals both greater
than

√
8, which is a geometric impossibility.) We cut the quad cluster along the

diagonal of length
√

8 and continue with deformations until the top edges on each
simplex are (y4, y5, y6) = (2, 2,

√
8). We may apply calc-474496219 and calc-

8990938295 to the two separate simplices to obtain the result. Now we may assume
that the heights of v1, v3 are at most 2.3. If either height is at least 2.1, the result
follows from calc-5127197465, which gives the bound of 0 on each half.

Finally, we have the case where both heights are at most 2.1. We may apply
dimension-reduction techniques so that that the each of the two remaining corners
v 6= v1, v3 of the quad cluster either has height 2 or has distance 2 from v1 or v3.
We then reprove Lemma 16.8 without using the bound of 0 and Lemma 16.9 for
tetrahedra without the bound −1.04 pt. This appears in calc-1551562505 and
calc-3013446042.

If the dimension reduction drops the cross-diagonal {v2, v4} all the way to
√

8, then
we may swap diagonals and continue, until both diagonals are exactly

√
8. In this

case, by the cases already considered, we may assume that each corner has height
at most 2.1. Also, geometric considerations give that the other edges are at most
2.02:

E(2, 2, 2,
√

8, 2.1, 2.1, 2, 2, 2.02) >
√

8.

The result follows in this case by calc-4723770703.

[p.241] Mixed is defined so as to include the pure analytic case. In earlier articles,
‘mixed’ excludes the pure analytic. mixed mixed or pure

[p.243,`+13,`+14,`+15] Delete three sentences: ‘Let v12 be . . . We let . . . Break the
pentagon . . .’

[p.248,last displayed formula] =  + so that it reads∑
i

fRi
(D) ≤ σ̂(Qi) + vorR′,0(D) + πR

[p.252,§25.7,Cases 2 and 3] ‘The flat quarter’ is mentioned, but there are no flat
quarters that have been introduced into the context. This passage has been dis-
placed from its original context.

[p.254,`+7] to branch combine  to combine
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