
Metatheory and Reflection in Theorem Proving:

A Survey and Critique

John Harrison
University of Cambridge Computer Laboratory

New Museums Site
Pembroke Street

Cambridge
CB2 3QG
England

jrh@cl.cam.ac.uk

15th February 1995

Abstract

One way to ensure correctness of the inference performed by computer
theorem provers is to force all proofs to be done step by step in a simple, more
or less traditional, deductive system. Using techniques pioneered in Edinburgh
LCF, this can be made palatable. However, some believe such an approach will
never be efficient enough for large, complex proofs. One alternative, commonly
called reflection, is to analyze proofs using a second layer of logic, a metalogic,
and so justify abbreviating or simplifying proofs, making the kinds of shortcuts
humans often do or appealing to specialized decision algorithms. In this paper
we contrast the fully-expansive LCF approach with the use of reflection. We
put forward arguments to suggest that the inadequacy of the LCF approach
has not been adequately demonstrated, and neither has the practical utility
of reflection (notwithstanding its undoubted intellectual interest). The LCF
system with which we are most concerned is the HOL proof assistant.

The plan of the paper is as follows. We examine ways of providing user ex-
tensibility for theorem provers, which naturally places the LCF and reflective
approaches in opposition. A detailed introduction to LCF is provided, em-
phasizing ways in which it can be made efficient. Next, we present a short in-
troduction to metatheory and its usefulness, and, starting from Gödel’s proofs
and Feferman’s transfinite progressions of theories, look at logical ‘reflection
principles’. We show how to introduce computational ‘reflection principles’
which do not extend the power of the logic, but may make deductions in it
more efficient, and speculate about their practical usefulness. Applications
or proposed applications of computational reflection in theorem proving are
surveyed, following which we draw some conclusions. In an appendix, we at-
tempt to clarify a couple of other notions of ‘reflection’ often encountered in
the literature.

The paper questions the too-easy acceptance of reflection principles as a
practical necessity. However I hope it also serves as an adequate introduction
to the concepts involved in reflection and a survey of relevant work. To this
end, a rather extensive bibliography is provided.

0

1 Extending theorem provers

Computer theorem provers typically implement a certain repertoire of inference
mechanisms. For example, they may solve tautologies, do first order reasoning
by resolution, perform induction, make simplifying rewrites and allow the user to
invoke other more delicate logical manipulations.

Certain systems (e.g. fast tautology checkers) are only useful for applications in
a quite restricted field. Others, by virtue of the generality of the logic they imple-
ment and the theorem proving procedures they provide, are of wider applicability,
whether or not such wider applicability was an original design goal. HOL was orig-
inally intended mainly for the verification of hardware, but has subsequently been
applied to software and protocol verification, work in other embedded formalisms
like temporal logic and CCS, and even in pure mathematics.

When a theorem prover is of such general applicability, it is difficult for its sup-
plier to provide a basic repertoire of theorem proving facilities which is adequate
for all purposes. The most desirable policy is to make the theorem prover exten-
sible, i.e. provide a facility for augmenting this basic repertoire. At its simplest,
this might consist of a macro language to automate certain common repeated pat-
terns of inference. However this does not address the question of implementing
radically different proof procedures from those already included. In particular a
macro language is likely to have limited facilities for direct construction of terms
and formulas, since one has to demarcate the valid inferences somehow — one can’t
allow arbitrary formulas to be nominated as ‘theorems’. So what are the options?

1. If some new inference rule proves useful, simply augment the theorem prover’s
basic primitives to include it.

2. Allow a full programming language to manipulate the basic rules, so that users
may write arbitrarily complex inference rules which ultimately decompose to
these primitives.

3. Incorporate a principle of reflection, so that the user can verify within the
existing theorem proving infrastructure that the code implementing a new
rule is correct, and add that code to the system.

We should say that some theorem provers adopt a mixture of these policies.
For example Nuprl has ‘sacred’ and ‘profane’ forms. In its sacred incarnation, all
inference is done by decomposing to the primitive rules of Martin-Löf type theory.
However in practical applications, various additional facilities such as binary deci-
sion diagrams and arithmetic decision procedures have sometimes been grafted onto
it. Furthermore, the third option has been investigated by Nuprl researchers over
the course of many years; we shall discuss this further below.

If the first of the three options is taken, then considerable care should be ex-
ercised to ensure that the proposed extension is sound. If users are allowed to
tailor the system themselves, what are we to make of claims that a theorem has
been proved using that system? If a user’s bespoke variant is unsound, they are no
longer using the original theorem prover at all, but some incorrect mutation of it.
The supplier will be unwilling to concede that the proof has been performed to a
satisfactory standard. It can hardly be held up as meeting an objective standard
of correctness. In a small user community (e.g. within a single research establish-
ment) consultation with peers may help to achieve a considered view of how sound
an enhancement is. However in a wider community with people at work on personal
projects, this is not realistic.

In practice then, for sociological reasons, major changes must be implemented
by the supplier. This may be enforced by making the system ‘closed’ (no source

1

code available, for example). However the suppliers still need to exercise careful
judgement over which new facilities to add. It’s very tempting to add just one more
‘obviously sound’ extension, and reason by induction that the addition of n such
‘obviously sound’ extensions will not compromise the system. Experience shows
that such ‘obviously sound’ extensions are frequently not sound at all. Perhaps the
suppliers will attempt to verify, informally or formally, that the code with which they
are augmenting the system is correct. If this is done formally, then the approach
looks similar to the third (reflection), but reflection has the distinguishing feature
that the proof is conducted in the existing theorem prover.

Even with careful thought, this does not seem a principled way of making a
reliable system. Nevertheless we do not mean to suggest that it is an intellectually
disreputable policy. On the contrary, if the purpose of theorem proving is to high-
light flaws in informal reasoning, it may be most efficient to add lots of facilities in
an ad hoc way in order to get quickly to the interesting and error-prone parts of the
reasoning. Certainly, a final assertion of correctness means less than it otherwise
might, but the bugs that are found may emerge more quickly. For example, inter-
esting work on a ‘hybrid’ system including HOL and a fast symbolic model checker
is reported by Joyce and Seger (1993b). This allows one to tackle leading-edge
problems in hardware verification while still taking advantage of the higher level of
abstraction that HOL permits.

Such a policy has been argued for by Rushby (1991), and one can point to sim-
ilar ideas elsewhere. For example, some work on floating point verification at ORA
reported by Hoover and McCullough (1992) aims to prove correctness asymptoti-
cally as the precision of the arithmetic tends to infinity. Though this is useless at
giving true error bounds, experience shows that it does quickly highlight many bugs
in software. Another example: computer algebra systems are widely used (much
more so than theorem provers) despite sometimes giving wrong answers.

2 The LCF approach to theorem proving

The Edinburgh LCF system, described by Gordon, Milner, and Wadsworth (1979),
was developed by Milner and his research assistants in the mid 70s, in response to
dissatisfaction both with highly automatic provers and with low-level proof checkers.
A prover of the latter kind was developed as Stanford LCF by Milner (1972) and
provided much of the motivation. Edinburgh LCF was ported from Stanford LISP to
Franz LISP by Huet and formed the basis for the French ‘Formel’ research project.
Paulson (1987) reengineered and improved this version, resulting in Cambridge
LCF. The original system implemented a version of Scott’s Logic of Computable
Functions (hence the name LCF), but as emphasized by Gordon (1982), the LCF
approach is applicable to any logic.

In LCF-like systems, the ML programming language is used to define data types
representing logical entities such as types, terms and theorems. The name ML is
derived from ‘Meta Language’; effectively LCF systems do have a kind of meta-
logic, but an explicitly algorithmic one, where the only way to demonstrate that
something is provable is to prove it. Since its LCF-related origin, the ML language
has achieved a life of its own. It is a higher-order functional programming language
with polymorphic types together with a typesafe exception mechanism and some
imperative features. A reasonably formal semantics of the Standard ML core lan-
guage has been published — see Milner, Tofte, and Harper (1990) and Milner and
Tofte (1991).

A number of ML functions are provided which produce theorems; these im-
plement primitive inference rules of the logic. For HOL there are 8 such rules;
Nuprl, which implements Martin-Löf’s constructive type theory, requires well over

2

a hundred. For HOL, these primitive inference rules have been proved sound via a
set-theoretic semantics devised by Andy Pitts and published in Gordon and Mel-
ham (1993). Pottinger (1992) has also proved that they are complete with respect
to Henkin’s general models1. Thus, provided only the primitive ML inference rules
are used, any theorem resulting will be ‘correct’. Such adherence to the primitive
rules is enforced by encoding theorems as an ML abstract datatype whose only con-
structors are the primitive inference rules of the logic. Anything of type thm must
have arisen by applying the primitive rules.

This trustworthiness is attractive, but proofs of nontrivial facts in terms of
primitive inferences are often extremely tedious, and the approach so far offers few,
if any, advantages over a simple proof checker. Simple proof checkers are not to be
scorned, since they have been used to check substantial parts of mathematics. A
pioneering example was the work by Jutting (1977), formalizing the famous book
by Landau (1966) in the AUTOMATH system of de Bruijn (1980). More recently,
a large and disparate body of mathematics has been checked in the Mizar system
described by Rudnicki (1992), and there is even a journal ‘Formalized Mathematics’
devoted to Mizar formalizations2.

Nevertheless, it is attractive to be able to direct proofs at a higher level, rather
than perform proofs of trivial tautologies or facts of arithmetic explicitly. This is
even more important in verification applications than in pure mathematics, since
the proofs, though shallower, tend to be much more involved and intricate because
there are few abstraction mechanisms to hide the layers of complexity; though see
Melham (1993).

This can be done in LCF provers: using ML programming, one can program
complicated patterns of inference, provided they ultimately decompose into primi-
tives. Hence one can write derived inference rules which work at a higher level. In
order to exploit them, a user may just call the functions, without understanding
how they decompose into primitives. Only the original implementor of the derived
rule need understand that. Because of the abstract datatype, a user can have equal
confidence in the correctness of the resulting theorems, since ultimately they must
arise by primitive inference.

The user or derived rule is still free to decompose and rebuild terms and formulas
in any way desired in order to decide on proof strategy etc. — and the extremely
simple term structure of HOL makes this very convenient. Nevertheless all theorems
must be built by primitive inference. In this way, the LCF approach can offer the
reliability and controllability of a low level proof checker together with the power
and flexibility of a more sophisticated prover, provided someone is prepared to put
in the work required to provide useful derived inference rules.

For the sake of completeness, we should add that ‘morally’, a true LCF imple-
mentation has rather simple primitive rules. Primitives in HOL range in complexity
from reflexivity of equality to simultaneous parallel substitution. They do not in-
clude rewriting or arithmetic decision procedures. An alternative policy, exemplified
by the PVS system described by Owre, Rushby, and Shankar (1992), is to make
the primitives powerful. This means that less programming is required to build
up a suitable set of high-level operations, and that these high-level operations may
be more efficient. However it has the defect that it’s much harder to be confident
about the correctness of such complex primitives, and in any case which primitives
are useful can depend on context (for example, users of an embedded formalism

1Actually this was without considering polymorphism, but from a proof-theoretic perspective,
HOL’s polymorphism is obviously a conservative extension since any type instantiations can be
floated back up the proof tree.

2For more information about this journal, which is surprisingly inexpensive, contact: Fondation
Philippe le Hodey, MIZAR Users Group, Av. F. Roosevelt 134 (Bte7), 1050 Brussels, Belgium,
fax +32(2)6408968.

3

may require unusual proof procedures). On the other hand, one can argue that
HOL goes too far in the direction of parsimony, e.g. in insisting that arithmetic
be done in the logic. Indeed, ICL ProofPower3 relaxes this restriction and takes
numeral addition as a primitive rule.

Readers should be aware that the word ‘tactic’ is widely used in the theorem
proving literature to refer to what we have been discussing, i.e. a compound proof
step which ultimately decomposes to some given primitives. In HOL, as in the
original LCF system, the word ‘tactic’ is reserved for cases where the high-level
proof step works in a backward (goal-directed) manner. To avoid ambiguity and
irrelevant distinctions, we refer to ‘derived rules’, regardless of whether the steps
are forward or backward. However in reading some of the quotes below, the more
general use of the word ‘tactic’ should be borne in mind.

The advantages of LCF

One obvious advantage of the LCF approach is that the user can feel a good degree
of confidence that a purported theorem really is a theorem. The critical code is
confined to that implementing the primitive rules (and any support functions they
use).

However it should be admitted that there is also a dependence on the correctness
of the ML implementation, in particular the correctness of its type system. If for
this or other reasons one finds the assertion of trustworthiness unconvincing, it is
quite easy to change the system to record proofs. This has actually been done in
HOL by Wong (1993), so that each primitive inference is logged. (Indeed some
LCF-style provers such as Nuprl and Coq already store proof trees or lambda-term
witnesses.) Such a proof may then be checked by a simpler external program,
written in any chosen programming language. For an overview of various pieces
of research in HOL connected with these ideas, see Gordon, Hale, Herbert, von
Wright, and Wong (1994). In particular, it may be feasible to prove a simple proof
checker correct. An important part of such a project is to analyze carefully what
constitutes a HOL proof, and to this end the notion of HOL proof has itself been
formalized in HOL by von Wright (1994). In the process a few errors and obscurities
in the logical core were uncovered.

Whether or not one personally considers it worthwhile, such proof checking is
recommended by certain procurement standards for safety critical software, e.g.
MOD (1991):

32.3.1 In practice, it is very unlikely that Formal Proofs of any size
will be created by hand. Instead, they will be developed using theorem
proving assistants, which are interactive programs that carry out symbol
manipulation under the guidance of a human operator. But theorem
proving assistants are large programs whose correctness cannot readily
be demonstrated by Formal Proof. It is, however, possible to remove
the reliance on the correctness of the theorem proving assistant from the
case for correctness of an application by arranging that a version of the
final proof (omitting all history of its construction) is passed from the
theorem proving assistant to a proof checker. For reasonable languages,
such a proof checker could be a very simple program (perhaps ten pages
in a functional programming language) that could be developed to the
highest level of assurance.

Naturally, it is possible for non-LCF systems to provide a low-level proof script
— for example see Kromodimoeljo and Pase (1994) for a discussion of adding proof

3ProofPower is a trademark of International Computers Limited.

4

logging to the NEVER system. However in making a theorem prover capable of
producing primitive inferences, one is effectively writing a second, LCF-style mode
for an existing theorem prover. Furthermore, if the primitive inferences are complex,
their correctness can still be questioned, so perhaps even LCF’s decomposition to
simple primitives will need to be emulated. It seems much more elegant to adopt
the LCF approach from the start.

The LCF approach offers great flexibility to ordinary users, who may extend the
system with customized derived rules. Slind (1991) has remarked:

From a certain point of view, the LCF approach to theorem proving is
Socialist and hence deserves its own Manifesto: ‘The user controls the
means of (theorem) production’.

The rules added by a user do not need to be verified; if there is an error, then the
proof procedure may fail, but because of the ML type discipline, will never produce
an invalid ‘theorem’. Users do not need to provide theoretical justification for
adding a new derived rule, still less prove the correctness of the code implementing
it. They simply have to design it to decompose to primitive inferences. In simple
cases this is straightforward; in more complex cases it is not, but arguably it is
normally easier than performing correctness proofs of the code.

The inherent inefficiency of LCF?

These advantages are undeniable; however it appears that there is a heavy price to
pay: every derived rule and proof procedure must be forced into the straitjacket
of decomposing to primitive rules. Apart from seeming rather unnatural in some
instances, it is hardly likely to be as efficient as a hand-coded proof procedure. This
of course is not necessarily a problem; the key question is whether it is a serious
constraint in practice.

Indeed, the view firmly embedded in theorem proving folklore is that it is a
serious constraint, making the LCF approach ultimately untenable for practical
examples. LCF has certainly been influential, but it is subsidiary features of it,
such as the use of tactics to implement backward proof, or the general stress on
interactive rather than fully automatic proving, which have been most widely imi-
tated. Systems which adhere to the pure LCF philosophy are rare. In fact, of those
widely used in verification examples, HOL is arguably the only system which does.
Characteristic criticisms of LCF are these from Davis and Schwartz (1979):

. . . the Edinburgh LCF system . . . employs the device of “tacticals” to
obtain a modest degree of extensibility. However an LCF tactical is
limited to a fixed combination of existing rules of inference. This has
the virtue that no correctness proof in our sense is needed but also
have [sic] the obvious limitation that no really new inference rule can be
adjoined.

from Armando, Cimatti, and Viganò (1993):

The major drawback of this approach is that each proof procedure (even
the most sophisticated ones) must ultimately invoke the basic inference
rules. In many cases this turns out to be both unnatural and ineffective.
Indeed, most of the decision procedures for decidable theories (e.g. the
truth table method for propositional calculus) can be hardly rephrased
as proof strategies based on the inference rules of the corresponding cal-
culus. Moreover, the performance of the translated proof strategies is
much less effective than a direct implementation of the original proce-
dure.

5

from Reif and Schönegge (1994):

In our opinion the currently available validation mechanisms are not
powerful enough for large applications, for example in software verifica-
tion. . . . For example, in HOL (and most of the other systems above)
extensions are correct per construction but the application of large tac-
tics is inefficient. For practical applications this is a bad compromise.

and from Basin (1994):

. . . , I believe that tactics alone are insufficient to provide a proper level
of reasoning for interactive theorem proving and additional mechanisms
for metatheoretic extensibility are required. For example, we should
be able to extend a prover with new kinds of simplifiers and decision
procedures that are not hampered by the need to produce a proof with
primitive rules.

When encountering such trenchant criticism one naturally expects to find theo-
retical justification or the results of case studies to lend support to the assertions.
However here one searches in vain for any such thing. Indeed, in the same conference
Arthan (1994) writes:

I would feel a lot more confident in predicting the way theorem prover
architecture should go, if more was known about the complexity issues
both theoretical and practical that we face. . . . Are there natural the-
orem proving problems with a reasonably tractable decision procedure
but with no tractable means of finding proofs from primitive inferences?

It appears that nobody has ever answered this last question convincingly. But
it is of central importance. Such is the power and intellectual simplicity of the
LCF approach that it seems foolish to enter more nebulous and complicated areas
like reflection unless there is some good reason for supposing the LCF approach
practically insufficient4. It may be too much to expect a rigorous theoretical answer
to Arthan’s question, since complexity theory often reveals the difficulty in proving
apparently simple facts; witness the status of the P = NP problem. But we should
be able to say something useful.

The sufficiency of LCF

We will maintain that the inefficiency of the LCF approach has often been over-
played. Our remarks will apply to HOL, and to some extent the validity of our
remarks will depend on the logic’s being higher order, as well as other details per-
haps. First there are two obvious practical counterarguments:

• HOL is currently a widely used theorem proving system. Experience shows
that in the overwhelming majority of cases, the difficulty in proving a theorem
in HOL is not due to inefficiency, and few users are constrained by such
inefficiency. Rather, the difficulty is in providing a proof at all; the key time
factor is user thinking time! This means that quite substantial changes (for
better or worse) in the efficiency of the basic proof procedures may have
minimal impact on the productivity of users. One of the lessons of LCF
is that proofs can be guided at quite a low level without its becoming too

4Apart of course from sheer intellectual curiosity. This is a laudable motivation but it should
not be confused with the dictates of practice. To parody Dijkstra, it is important to distinguish
the research fields of ‘theorem provers’ and ‘theorem proving’.

6

tedious, provided a few well-chosen derived rules are provided. Only when
running derived decision procedures on large examples does efficiency become
important. This argument is less strong in the case of automatic provers,
though, and might have less force for interactive provers too if users come to
rely on more sophisticated derived rules.

• Computers are getting faster all the time, and it may be that what today
is an efficiency problem ceases to be one tomorrow. The author has heard
anecdotal evidence of rewrites taking half an hour in very early versions of
LCF. Today, for a rewrite in HOL to take even one second is unusual. Of
course, if the size of typical proofs expanded in time with the development
of machines, this argument would no longer hold. But such a correlation
seems improbable. In its early days, Unix ran a little more slowly because it
was written in C rather than assembler. Even at the time the slowdown was
modest considering the organizational advantages of a higher level language.
Nowadays nobody considers it (and almost nobody writes assembler).

There are several more specific arguments. These are contentions which seem
hard to justify by theoretical musings; rather they need case studies. However we
believe current experience provides some strong support for them. For a detailed
examination of sources of inefficiency in HOL, see Boulton (1993).

1. Most other proof procedures may be implemented in a fairly natural way
using primitive inferences. Instead of plugging terms together in an ad hoc
manner, such transformations may be justified at each stage by matching
against a suitable theorem, requiring only a few primitive inferences each
time to instantiate the theorem and perform, say, a Modus Ponens step.

2. In most cases of sophisticated inference rules, inference is (or may be construed
as) only a small part. Search often dominates, which can be done without
requiring any primitive inferences; this need not even be written in ML or
performed by HOL itself.

3. Much of the inefficiency of derived rules in HOL arises from poor (or ex-
cessively simpleminded) programming. Using more careful or sophisticated
programming, many of the efficiency problems disappear.

4. There are many implementation improvements that can be applied to ML
systems. Questions of primitive inference aside, ML is often an order of mag-
nitude slower than C in comparable applications.

Before looking at these matters in more details, let us give an example to illus-
trate some of the above assertions. HOL’s rewriting rules and tactics take a set of
equational theorems and repeatedly replace instances of the left hand sides by cor-
responding instances of the right hand sides in another term. The subterms to be
rewritten and the number of repeated rewrites may be precisely controlled, but by
default the term is searched for matching subterms in top-down order, repeatedly
until no more are possible.

The initial search for matching subterms can be implemented quite indepen-
dently of the primitive inferences required to perform the rewrite. In HOL, term
nets 5 are used to achieve fast lookup, and only the apparent matches thrown out by
this matcher are actually tried. This part appears to dominate rewriting’s efficiency,
especially when there are a large number of rewriting theorems. Perhaps more so-
phisticated algorithms such as those given by Hoffmann and O’Donnell (1982) could

5A well-known indexing technique for tree structures, originally added to Cambridge LCF by
Paulson.

7

be tried instead; the point is that the matching is unaffected by any need to perform
inference. The rewriting of a subterm is performed using a few instantiations, and
the buildup of the whole term done by iterating congruence rules for equality —
not much slower than simply plugging the terms together in an ad hoc way. In
fact Boulton (1993) minimized the rebuilding of unchanged subterms by exploiting
failure, an optimization which is orthogonal to the question of performing inference
and indeed should perhaps be applied to the implementation of term substitution
in HOL’s core.

Using theorems to justify inference

The contention above was that most patterns of inference carried out ad hoc may be
implemented in terms of primitive inference in a fairly straightforward fashion and
with only a moderate slowdown. To some extent, this is particularly true of HOL,
since higher order logic provides the power to encode quite sophisticated structures
in theorems. This idea has long been used by HOL experts; for an early example see
Melham (1989). In recent work, Harrison (1993) defines a generic representation of
univariate polynomials using lists:

(poly [] x = 0)∧
(poly (CONS h t) x = h+ x × (poly t x)

Now it is possible to prove (by list induction), for example that every polynomial
is differentiable. Then for any specific instance it is necessary only to instantiate this
‘proforma’ theorem and perform some rewrites to unwind the recursive definition.
It is not necessary to repeat the whole proof every time. Using similar proformas
quite sophisticated inferences are encoded, for example:

` ∀l a b. a < b ∧
(∀x. a < x ∧ x < b⇒ FORALL (POS x) l)
= a < b ∧

FORALL (POS (a+b2)) l∧
(¬∃x. a < x ∧ x < b ∧ EXISTS (ZERO x) l)

meaning that all of a finite set (list) of polynomials are strictly positive throughout
an interval if and only if they are all positive at the middle of the interval and are
nonzero everywhere in it.

In fact, examples like this awaken one to the fact that HOL’s logic incorporates
a simple functional programming language, and many operations which could be
implemented outside can alternatively be internalized in the logic and executed by
primitive inference. Of course this is quite a lot slower, but it seems unlikely to mark
the difference between tractability and intractability except right at the boundary
of what is possible using special proof procedures. One would expect the slowdown
to be linear.

This does however presuppose an important condition. If a transformation from
` E[t] to ` E′[t] is to be justified by appeal to a pre-proved theorem ` ∀x. E[x]⇒
E′[x], the Modus Ponens step must check that E[t] and E[t] are equal. In a good
ML implementation, this will be an efficient operation since internally the two t’s
are actually the same as pointers (i.e. are EQ in LISP parlance). Thus a traversal
of the two trees will terminate once t is reached, and the efficiency only depends
on the structural complexity of E[x] with respect to x (as would any applicative
implementation). If a full traversal were required each time, it would be a severe
efficiency bottleneck. Unfortunately, current versions of HOL use α-equivalence,
not equality, as the condition in most derived rules, and the α-equivalence test does
not succeeds quickly when terms are EQ (though HOL88 performs a single EQ test,

8

it does not repeat this test as it traverses subterms). It is our opinion that this
should be changed, e.g. by performing an equality test first. (Standard ML does
not provide something like LISP’s EQ, so the more obvious optimization of putting
an EQ test inside the α-equivalence function is not possible.)

With this proviso, it is close to being plausible that anything implementable
in ML using purely functional programming can also be implemented inside the
logic with only a moderate constant factor slowdown. Cases where this is not true
are likely to be where the type system constrains the generality of a proforma
theorem; for example one might want to state a theorem for arbitrary iterations of
the function space constructor. (In more general type systems like Nuprl’s, even
this may be unproblematical.)

For example, it is useful to be able to justify inductive definitions using the
Tarski fixpoint theorem, but to interpret ‘monotonicity’ not just for unary relations
(sets) but relations of arbitrary arities; i.e.

(∀x1 . . . xn. R x1 . . . xn ⇒ S x1 . . . xn)⇒ (∀x1 . . . xn. E[R] x1 . . . xn ⇒ E[S] x1 . . . xn)

This particular case can be dealt with in various ways while maintaining an
instantiation linear in the number of variables (indeed repeating the proof every
time satisfies the constraint and does not use so many primitive inferences each
time).

Separating search from inference

A lot of theorem proving procedures involve substantial amounts of search, but once
the search is complete, it may be simple to produce a proof in terms of primitive in-
ferences. For example, a resolution proof may involve searching through thousands,
even millions, of clauses for a refutation. Once found, however, the path to a refu-
tation is usually quite short, and provided the clauses and unifiers are recorded, can
easily be transformed into a HOL proof using a little instantiation and propositional
reasoning. Other tableau-based decision procedures for first order logic have actu-
ally been developed in HOL in this way; see work by Kumar, Kropf, and Schneider
(1991) and Schneider, Kumar, and Kropf (1992). Similar remarks apply to many
arithmetic decision procedures, and some of these have actually been implemented
in HOL as very useful practical tools by Boulton (1993).

Some other intersting procedures are those like the factorization of polynomials
(or numbers!), the finding of antiderivatives and the solution of equations. These
are difficult, computationally intensive or require sophisticated heuristics. Never-
theless, once a putative answer is found, it is a relatively straightforward matter
to check its correctness — all that is required for a formal proof. Based on this
observation, Harrison and Théry (1993) discuss using a link between HOL and the
Maple computer algebra system. More general than using external oracles to pro-
duce checkable answers is the idea of delegating all the proof-finding to an external
‘proof planner’. This idea has been explored by Bundy, van Harmeleu, Hesketh,
and Smaill (1991).

Other optimizations

There are a number of other techniques which may make the LCF approach more
efficient. For example, in many situations (Nuprl typechecking obligations are a
good example) the same trivial theorem is proved over and over again. It may
be that by cacheing (aka ‘memoizing’) previous theorems, a substantial gain in
efficiency could be obtained. An example of this situation for arithmetic theorems
is described by Boulton (1993).

9

A more general technique for optimizing LCF implementations has been pro-
posed by Boulton (1993): lazy theorems. The idea is to delay the inference phase
of rules until later, accumulating a function closure during ‘inference’ and only ex-
ecuting it when and if the final theorem is needed (as already happens in HOL
backward proof — it is exactly how tactics work). This offers some potential for
making interactive proof more efficient, while postponing costly inferences until
later (even overnight perhaps). If that were the only gain, the idea could more
simply be achieved by ‘slow’ and ‘fast’ modes, where no inference is done in the
latter. However it may be that lazy theorems can help to manage the separation of
search and inference automatically, allowing the programmer to employ a more free
and easy style, using inference rules during exploratory search where convenient.
Furthermore there may be special situations where inferences can be more efficiently
decided on after examining the whole ‘proof’; for an example of this phenomenon,
see the work on BDDs in HOL by Harrison (1995).

Partial evaluation

There is a substantial research area of ‘partial evaluation’ which aims to optimize
functional programs by precomputing parts of them. The idea is similar to the
well-known idea of constant folding in compilers, but much more sophisticated. A
very nice summary is the following, from Bjørner, Ershov, and Jones (1988):

In the large, the goal of PE is to construct, when given a program and
some form of restriction on its usage (e. g. knowledge of some but not
all of its input parameter values), a more efficient new or “residual”
program that is equivalent to the original program when used according
to the restriction.

Some HOL derived rules have been manually optimized to perform computation
before they see all their arguments. For example, the rewriting rules canonical-
ize the rewrites and set up the term net before they are applied to the term to
be rewritten. There may be considerable potential for similar optimizations to
be made automatically. Ideally, whole sequences of primitive inferences might be
folded down to something much more efficient. Work on applying partial evalua-
tion to HOL is being undertaken by Welinder (1994), and preliminary results are
promising. We should point out that the use of imperative features, in particular
proof recording, at the level of primitive inferences, is likely to all but destroy the
potential optimizations.

Incidentally, papers by Danvy (1988) and Talcott and Weyhrauch (1988) explore
some possible connections between partial evaluation and reflection.

Difficult cases

It seems, then, that the cases where a tractable proof by primitive inference is hard
to find are likely to be algorithms making essential use of imperative features (arrays,
shared data structures) and not allowing a cheap checking process. Binary Decision
Diagrams as described by Bryant (1992) constitute just such an algorithm, and so
present an interesting challenge. Harrison (1995) implements BDDs as a derived
rule, encountering a slowdown of something like 40 times over a direct Standard ML
implementation. This is a significant factor, but not outrageously large considering
that BDDs were chosen precisely because they were a challenge. Furthermore the
second of the palliatives discussed above applies to some extent, since very often
a well chosen variable ordering makes a tremendous difference to the efficiency of
a BDD-based tautology check. Deciding on a good variable ordering can be done
without requiring primitive inference.

10

There are other special theorem proving algorithms which might be at least as
hard to implement satisfactorily in an LCF-style system. For example the method
invented by Wu (1978) for solving geometrical problems is remarkably powerful
— see Chou (1988) for some impressive examples. This involves manipulation of
polynomials of very high degree, so much so that complicated but asymptotically
fast FFT-based algorithms for multiplication are a sine qua non for large examples.
It remains to be seen whether a reasonably fast implementation could be done in
the LCF style.

There is a somewhat different example where a proof by primitive inference
is likely to be dramatically less efficient: arithmetic. (And more generally, any
situation where we end up duplicating a hardware facility inside the logic, but this
seems the only real example.) Rather than using the machine arithmetic we must
perform inference inside the logic even to add a couple of integers. We can use
a binary or decimal representation inside the logic, and consequently the speed of
arithmetic operations on numbers of size n is likely to be O(log2(n)) or O(log2(n)2).
From a purely theoretical point of view of course, machine arithmetic is no different
when one allows arbitrary precision. However from a practical perspective, the
constant factor difference in speed may be enormous. How serious this problem
is depends on whether manipulation of large numbers occurs frequently in typical
applications. Replicating in HOL the work described by Boyer and Yu (1992) could
be quite difficult, though of course one might follow ProofPower in softening the LCF
ideal slightly and using the bignums provided by (or written in) the implementation
language to perform arithmetic in the logic.

Finally, it is worth noting that in cases where the terms involved become very
large, there may arise hidden overheads; for example when instantiating a theo-
rem with a very large assumption, a complete traversal of the assumption term is
required to check that the instantiated variable is not free. It may even be that
a decomposition to primitive inferences forces a retraversal many times, whereas
metaknowledge might convince us that one check suffices. Sometimes this can be
achieved, paradoxically, by making certain aspects of the theorem explicit in the
logic, rather than relying on the way the primitive rules work, as discussed by Har-
rison (1995). It is not clear whether it represents a serious difficulty in any practical
cases. An analogy can be drawn with the way some languages or compilers insert
bounds checks into all array references. The programmer may know for a fact that
they are unnecessary because of the detailed structure of the program. This is one of
the reasons why C, which does not perform such checks (and in general cannot, be-
cause array dereferencing may be applied to arbitrary pointers), often outperforms
superficially similar languages.

In conclusion, it is not clear that there are any useful practical proof procedures
which are impossible to accommodate in the pure LCF approach. Indeed from a
more theoretical (and unrealistic) perspective it has not been demonstrated that any
proof procedure suffers more than a constant factor slowdown when implemented in
the LCF style. Certainly it does not seem that many applications naturally demand
such procedures. The most likely exceptions are fast model-checking algorithms like
BDDs which are much used in hardware verification. It is not clear that software
verification makes similar demands, and likely that pure mathematics does not —
more justification of this last claim may be found below. In any case, if reflec-
tion is to represent a substantial practical advance, justifying its greater difficulty,
verification of essentially imperative code is likely to be required.

11

3 Metatheory

Various antinomies have been discovered since antiquity, which were classified by
Ramsey (1926) into ‘logical’ and ‘epistemological’ contradictions. The classic exam-
ple of a logical paradox is Russell’s6 which arises by considering “the set of all sets
which are not members of themselves”, or the equivalent using predication instead
of set membership. These paradoxes all seem to involve some kind of self-reference
inside the logical system, and have been avoided by adding a notion of type, either
explicitly as in Type Theory or implicitly as in hierarchical set theories 7 or those
based on stratified formulas.

Typical examples of epistemological paradoxes are the Liar (“this statement
is false”) and Santa Claus8 (“if this statement is true then Santa Claus exists”).
These also involve a kind of self reference, but involving questions which go beyond
mathematics — for example a sentence referring to itself. In order to avoid them
it is usual in formal logic, following Tarski (1936) and Carnap (1937), to enforce
a strict separation between the object logic and the metalogic (which is used to
reason about the object logic).

In a formal logical system, it may sometimes happen that the most natural form
of reasoning is metareasoning. For example, inferences in Hilbert-style proof systems
are greatly eased by using the Deduction Theorem, which states that A ` p⇒ q if
and only if A ∪ {p} ` q.

Metatheorem or higher order theorem?

When one discusses a particular formal system, there is a straightforward distinction
between an object-level theorem and a metatheorem. Sometimes a metatheorem
may say essentially the same as an object level theorem. For example, the metalevel
statement `object φ corresponds to the object level statement φ. In general it may be
impossible to state an object level theorem with the same import as a metatheorem.
Nevertheless it is crucial to note that what can be stated at the object level depends
critically on the nature of the object level formal system. Consider the following
breathtakingly categorical statements from Aiello and Weyhrauch (1980):

. . . if the reasoning system you are dealing with has no capability of
explicitly representing metatheoretic knowledge, many of the statements
in elementary math books cannot even be expressed. This might not be
interesting if such meta-statements never appeared in practice. On the
contrary they arise very often in mathematics books . . .

and Aiello, Cecchi, and Sartini (1986):

. . . in reading a book on algebra one realizes that most of the stated
lemmas and theorems are in fact metatheorems.

No instances of these putative metatheorems are cited. However Matthews
(1994) is more explicit:

Mathematics is not done with a proof development system in quite the
same way as it is done in a textbook, even when the two look like one
another. For instance in a book on algebra one might read:

6Zermelo arrived at the same paradox at much the same time but chose to make little of it.
7Zermelo’s original system was based on Cantor’s ‘limitation of size’ doctrine, which held that

collections were paradoxical simply because they were ‘too big’. However the subsequent addition
of the Axiom of Foundation amounts to an admixture of type theory.

8Gödel’s proof can be viewed as a formalized version of the Liar, and Löb’s of Santa Claus.
Interestingly, Löb’s theorem predated the informal version of the paradox, which was the suggestion
of one of his paper’s referees.

12

‘If A is an abelian group, then, for all a, b in A, the equivalence

n times︷ ︸︸ ︷
(a ◦ b) ◦ . . . ◦ (a ◦ b) =

n times︷ ︸︸ ︷
(a ◦ . . . ◦ a) ◦

n times︷ ︸︸ ︷
(b ◦ . . . ◦ b)

holds’

. . . On the other hand, instead of a book, imagine a proof development
system for algebra; there the theorem cannot be stated, since it is not a
theorem of abelian group theory, it is, rather, a meta-theorem, a theorem
about abelian group theory.

Underlying this is the implicit assumption that we are talking about an ax-
iomatization in first order logic. In a higher order logic, or in an embedding in
set theory (conventional foundational systems for mathematics) iterated operations
and algebraic structures are definable, and the argument collapses. Indeed, to take
this argument to its extreme, if I allow only arithmetic statements involving ground
terms in my ‘logic’ then anything with a variable in it is a metatheorem. This is
not a frivolous point. According to Edwards (1989) a major part of Kronecker’s
objections to ‘Cantorian’ mathematics was that for him it made no sense to talk
about ‘all functions’ or even ‘an arbitrary function’, even though the corresponding
statement for a particular instance was something he found perfectly acceptable.
A comment of similar import made by the referees of the paper by Aiello and
Weyhrauch (1980) is parried thus:

. . . in elementary algebra we are taught how to manipulate equations

. . . This manipulation of equations (i.e. syntactic expressions) is straight-
forwardly metamathematical. It is the ability to do this directly that
makes our formalization attractive.

This seems to be making the weaker claim that proof strategies and manipulative
techniques, which connect mathematical results and are used to derive them, can
be said to be outside the formal system. This is true — however it is not clear that
a purely algorithmic metalogic (i.e. the ML programming language) is inadequate
for this, and LCF-style systems have it. In any case, as we shall see below, there
is no difficulty in incorporating syntactic techniques into a higher order framework
without an explicit metatheory. Is it evident that there is any need for a more
elaborate metatheory? Well, one sometimes sees in mathematics books assertions
like ‘the other cases are similar’, ‘we may assume without loss of generality that
x < y’, or ‘the case of an upper semilattice is treated analogously’. These have
the flavour of metatheorems in that they relate similar proofs rather than theorems.
But bear in mind that when presenting proofs informally, this is just one of many
devices used to abbreviate them. Certainly, a way of formalizing statements like this
is as metatheorems connecting proofs. But another is simply to do (or program the
computer to do!) all the cases explicitly. There seems no reason to suppose this is
inadequate in practice. Performing similar proofs in different contexts may anyway
be a hint that one should be searching for a suitable mathematical generalization
to include all the cases. For example, the similarity of the proofs of arithmetical
theorems for different kinds of limits (pointwise limits of real functions, limits of real
functions at infinity, limits of real sequences) leads to more general limit notions
like nets and filters — see for example Dudley (1988).

Of course, we are not denying that there are many fascinating things one can
do with proofs. For example, some very interesting work has been done on finding
computational content of classical proofs via a generalized double-negation transla-
tion in Nuprl; see for example the paper by Constable and Murthy (1990). There

13

are lots of other interesting avenues of investigation, for example translating proofs
of analytic number theory into very weak systems of arithmetic, as described by
Takeuti (1978). However we claim:

1. Such interests are largely the preserve of logicians rather than ‘mainstream’
mathematicians, and are of no obvious relevance in verification work.

2. It is unusual to want to feed the results back into the system; their interest
arises as an independent piece of mathematics.

3. Many of the manipulations are algorithmic, and can be investigated using only
minor modifications of the LCF method (for example, storing proof trees as
concrete objects, as already done by several systems including Nuprl).

Metalogical frameworks

In response to the proliferation of theorem provers for different logics, a number
of ‘generic theorem provers’ or ‘logical frameworks’ have been developed. Well-
known examples include the Isabelle system described by Paulson (1994), Lambda
Prolog described by Felty and Miller (1988) and the LF system described by Harper,
Honsell, and Plotkin (1987). These provide a simple metalogic in which different
object logics can be represented. Proof procedures are provided which are intended
to be applicable to a wide variety of logics. The objective is to avoid needing to
write a new theorem prover from scratch for each new logic one is interested in.
Users, though they may in fact be proving facts at the metalevel, often need not be
aware of the nature of the metalogic.

Usually the metalogic chosen is rather weak; Isabelle for example uses intuition-
istic second order logic based on lambda calculus, without any numbers or recursive
data types. This is ideal for formalizing object logics; in particular, binding con-
structs like universal quantifiers can be implemented using lambda-calculus binding
in the metalogic. The framework is designed to support object-level reasoning in a
uniform manner. However it is not sufficient to perform much metatheoretic rea-
soning beyond the fact that a particular object-level statement is a theorem. In
fact the metalogic is usually so weak that even proving the Deduction Theorem for
a Hilbert-style object axiomatization is impossible.

It is of course possible to extend the metalogic. As was pointed out by Randy
Pollack, the LF logic can be embedded as a natural subset of the much more pow-
erful Calculus of Constructions, as implemented in the Coq and LEGO provers.
Pollack, in unpublished work, proved the Deduction Theorem for a Hilbert-style
propositional logic in the LEGO prover, and Taylor (1988) verified a tactic for LF
encodings in LEGO, which proves equations in an associative semigroup using list
equality of the fringes of the term trees.

Alternatively one can break away from traditional framework logics. Matthews
(1994) explores the use of Feferman’s FS0 system as a metalogic. This has indepen-
dent interest as FS0 was proposed theoretically by Feferman (1989) for precisely
the purpose of representing formal systems — perhaps even as an explication of
what constitutes a formal system. Matthews gives a detailed sketch of how to prove
cut-elimination for propositional logic in FS0 (the algorithm is simple enough, but
the usual textbook formulation uses induction over higher ordinals, not directly
available in FS0, for the termination proof). For a general plea for more extensive
use of metatheoretic reasoning, see the paper by Basin and Constable (1991).

Metatheoretic proofs share something with verification proofs: they are mostly
a detailed and messy technical execution of a fundamentally simple, though often
ingenious, idea. Nevertheless, as the reader may have guessed from the examples
cited, the existing work on metatheoretic proof in computer theorem provers is

14

surprisingly limited. Probably the most substantial example is the proof of Gödel’s
first Incompleteness Theorem by Shankar (1994), but apparently this was done
without any interest in exploiting it metatheoretically in the theorem prover.

Seamless use of metatheory

The power of metatheoretic reasoning arises from the ability to step back from
the constraints of a formal system and exploit syntactic properties, and their con-
nection with semantics. For example the Löwenheim-Skolem theorems prove that
there exist groups, rings, fields, Boolean algebras and any first order axiomatiz-
able structures of arbitrary infinite cardinality. By means of a syntactically based
classification of structures we are able to prove a theorem of attractive generality.
A more substantial example is ‘Lefschetz’s principle’ in algebraic geometry, pithily
but imprecisely stated by Weil (1946) as:

There is but one algebraic geometry of characteristic p.

Now, as pointed out by Tarski and noted by Seidenberg (1954) there is quite
a simple quantifier elimination procedure for the first order theory of algebraically
closed fields. Using routine logical equivalences and the facts that, for any poly-
nomials p(x) and q(x), p(x) = 0 ∧ q(x) = 0 ≡ gcd(p, q)(x) = 0 and p(x) =
0 ∨ q(x) = 0 ≡ p(x)q(x) = 0, it suffices to eliminate the universal quantifier from
∀x. p(x) = 0⇒ q(x) = 0. But in an algebraically closed field p(x) splits into linear
factors, each of which must therefore divide q(x). Hence the above is equivalent to
p(x) dividing q(x)d where d is the (formal) degree of p(x).

Consequently, once the characteristic is specified (allowing us to decide ground
sentences), the first order theory is complete, and all models are elementarily equiv-
alent. So Lefschetz’s principle is literally true if we restrict ourselves to first order
statements. It is possible to take it further, again using techniques of mathemati-
cal logic, as showed by Eklof (1973). These and other examples of applications of
mathematical logic to pure mathematics are surveyed by Kreisel (1956), Robinson
(1963), Kreisel and Krivine (1971) and Cherlin (1976).

Higher order logic provides sufficient resources to carry out what is essentially
metatheoretic reasoning (in the sense that it operates on syntactically demarcated
subsets of the logic) without in any way tampering with or extending the simple
inference mechanisms. Datatypes representing syntactic objects like terms can be
set up, and interpretation functions into the logic defined to connect the internal
representation to the corresponding constructs in logic. For example, the usual
set-theoretic semantics of first order logic with respect to some interpretation and
environment (valuation) can be defined in an obvious manner (bound variables are
the only nontrivial consideration, and they are easily dealt with). Indeed, the simple
logic of the Boyer-Moore prover, of which more later, allows an evaluation function
(MEANING) to be defined on terms under a given variable assignment. As Boyer and
Moore (1981) emphasize:

There is nothing magic or “meta” about this function.

For reasons connected with the undefinability of truth demonstrated by Tarski
(1936) it is not possible to define a semantics for the whole logic inside itself. Nev-
ertheless useful subsets can be dealt with, and in rich type theories such as Nuprl,
stratification by universe level allows one to come very close to this ideal. Howe
(1988) has actually implemented such a scheme in Nuprl and verified an embedded
term rewriting system, including matching algorithms. This appears to go beyond
any of the work on reflection proper in Nuprl which we will discuss below. The
stress in Howe’s work was on verifying theorem proving procedures. More recently,

15

the present author has been experimenting with proving some more ‘mathematical’
results using similar techniques in HOL.

Let us reiterate: in many cases everything can be done in the formal system as
it stands, if that system is higher order or supports set theory. Full internalization
of semantics is impossible by Tarski’s theorem, which may show itself in practice
by the type system providing an obstacle. Nevertheless a lot of interesting things,
including more or less all the usual metatheorems about first order logic, can be
done in this way.

4 Logical reflection

Gödel (1931) showed how quite simple logical theories can act as their own metathe-
ory, and derived important metamathematical results from the exercise. It is a
straightforward, though tedious, matter to encode formulas, and hence lists of for-
mulas and proofs, as numbers9. We will write the Gödel number of a formula φ as
pφq. Furthermore, under any sensible encoding, all the important syntactical opera-
tions on encoded formulas, e.g. substitution, are recursive (computable), and hence
so is provability itself. For a rather more detailed development, which discusses
many of the points we touch on here, see Smoryński (1991).

Now even in quite a spartan number theory, the representable relations and func-
tions are precisely the recursive ones, so provided the set of axioms S is recursive,
one can define a quantifier-free predicate Prov such that

Prov(p, pφq)

means intuitively that p is the Gödel number of an encoded proof from S of the
encoded counterpart to φ. (When one wishes to be explicit about the system of
axioms, one writes ProvS .) If we make the following abbreviation:

Pr(pφq) = ∃p. Prov(p, pφq)

then one can prove formally that the following ‘derivability conditions’ hold.

1. If ` φ then ` Pr(pφq)

2. ` Pr(pφq) ∧ Pr(pφ⇒ ψq)⇒ Pr(pψq)

3. ` Pr(pφq)⇒ Pr(pPr(pφq)q)

The first of these is easy, since any true existential formula (i.e. one of the form
∃x. P [x] with P [x] quantifier-free) must be provable, for if ∃x. P [x] is true, there
is some n with P [n]. This is a purely decidable fact so ` P [n] and by elementary
logic ` ∃x. P [x]. The second is a routine piece of syntax manipulation since Modus
Ponens is usually one of the basic proof rules. The third one is a bit harder. For
the converse of 1 to hold, i.e. ‘if ` Pr(pφq) then ` φ’, it is sufficient to make an
additional assumption of 1-consistency, i.e. that all provable existential formulas
are true, since Pr(pφq) is such an existential statement and it is true precisely when
` φ.

Now, using a diagonalization argument, Gödel was able to exhibit a statement
φ which expressed its own unprovability in the system.

` φ ≡ ¬Pr(pφq)

9Similar techniques can be applied to formal systems including hereditarily finite sets or free
recursive datatypes, with the possible advantage that the Gödelized form of a formula may be
quite readable, instead of just a huge number.

16

If ` φ, then by (1) above, ` Pr(pφq); but this means ` ¬φ and therefore the
system is inconsistent. So assuming the system is consistent, φ is unprovable, and
furthermore it is true, since it asserts precisely that unprovability. This is Gödel’s
First Incompleteness Theorem. Note that it only depends on the first derivability
condition.

Consistency is not sufficient to rule out ` ¬φ. However 1-consistency certainly
is, since now if ` ¬φ then ` Pr(pφq), and since all provable existential statements
are true, ` φ, again contradicting consistency. Gödel’s argument itself shows that if
S is consistent, so is S ∪ {¬φ}, and therefore consistency does not in general imply
1-consistency. Rosser (1936) modified Gödel’s proof by defining10

Prov(p, pφq) ≡ Prov(p, pφq) ∧ ∀q ≤ p. ¬Prov(q, p¬φq)

If φ is the analog of Gödel’s sentence φ for this new notion of provability, it
turns out that just assuming consistency, neither φ nor ¬φ is provable. What’s
more, assuming the system is consistent, Pr and Pr are evidently coextensive.

Gödel’s argument above may itself be formalized using the provability predicate.
This essentially means that instead of (1), we use (3), which can be seen as (1) ‘at
one remove’. Note also that by combining (1) and (2) we see that if ` ψ ⇒ ϕ then
` Pr(pψq) ⇒ Pr(pϕq). Applying this, and (2) again, to ` Pr(pφq) ⇒ (φ ⇒ ⊥),
which is true by construction of φ (here ⊥ denotes ‘false’, and for any ψ, ¬ψ ≡ ψ ⇒
⊥), we find that ` Pr(pPr(pφq)q) ⇒ (Pr(pφq) ⇒ Pr(p⊥q)). But by (3) we also
have ` Pr(pφq) ⇒ Pr(pPr(pφq)q), and so ` Pr(pφq) ⇒ Pr(p⊥q). On the other
hand, ` ⊥ ⇒ φ is trivial, and so again ` Pr(p⊥q) ⇒ Pr(pφq). This shows that
` φ ≡ ¬Pr(p⊥q).
¬Pr(p⊥q) is an assertion that the system is consistent, and so is usually abbre-

viated Con (or ConS when one makes the system explicit). We have thus, assuming
all three derivability conditions, deduced Gödel’s Second Incompleteness Theorem,
that a system of the kind we are considering is unable to prove its own consistency.
We have shown, moreover, that the statement of consistency is logically equivalent
to the unprovable sentence produced in the proof of Gödel’s first theorem.

As noted by Feferman (1960), there is an intensionality involved in an assertion
of consistency. In fact using Rosser’s notion of provability Pr, we get a notion of
consistency Con which is (assuming the system is consistent) coextensive with Con
yet such that ` Con. Indeed manifestly ` ¬⊥, so we can assume Prov(p, p¬⊥q)
for some p. Now if q ≥ p then ¬Prov(q, p⊥q) by definition, and since the system
is assumed consistent, ∀q < p. ¬Prov(q, p⊥q). The former is trivially provable
in the logic, and the second must be too because it’s decidable (only bounded
quantification). Putting these together we find ` ∀p. ¬Prov(p, p⊥q).

Of course this coextensiveness cannot, on pain of contradicting Gödel’s second
theorem, be proved inside the logic, and Pr must fail to satisfy one of the derivability
conditions, but it nevertheless has some significance as regards the transfinite pro-
gressions of theories discussed below. Even using the standard notion of provability,
Feferman showed that for theories like ZF and PA which can prove consistency of
finitely axiomatized subsystems, one can produce alternative predicates represent-
ing the same set of axioms (using a trick reminiscent of the Rosser construction)
such that Con becomes provable. This means one needs to distinguish carefully
between ‘natural’ and ‘pathological’ representations of the same axiom set. Resnik
(1974) discusses the philosophical significance of this fact.

10Strictly, p¬φq should be read as Neg(pφq) where Neg is the negation function on encoded
formulas.

17

Reflection principles and transfinite progressions

While Gödel’s theorems show the limitations of formal systems, they also point to
a systematic way of making a given system stronger. Given some axiom system S0,
a natural way of strengthening it is the addition of a new axiom amounting to a
statement of S0’s consistency.

S1 = S0 ∪ {ConS0}

This gives a new system, and a corresponding new provability predicate and
assertion of consistency. Now the procedure can be iterated, giving S2, S3 and so
on. The iteration can even be continued transfinitely:

Sλ =
⋃
α<λ

Sα

This was first investigated by Turing (1939), who showed that the limiting sys-
tem (unioning over all constructive ordinals α) arising from Peano arithmetic by
repeatedly adding statements of consistency was capable of proving all true universal
sentences of number theory (i.e. those of the form ∀x. P [x] with P [x] quantifier-free).
For example, it could prove Fermat’s Last Theorem, if true. Turing’s explorations
were carried much further by Feferman (1962), who coined the term ‘reflection
principle’ for an assertion, like a statement of consistency, which amounts to an
expression of trust in a system of axioms (presumably so called because it arises by
‘reflecting upon’ those axioms from outside).

In contrast to an arbitrary procedure for moving from Aκ to Aκ+1, a
reflection principle provides that the axioms of Aκ+1 shall express a
certain trust in the system of axioms Aκ.

A stronger reflection principle would be an assertion of soundness with respect
to some standard model, e.g. the natural numbers for arithmetic theories.

` Pr(pφq)⇒ True(pφq)

As it stands this so-called global reflection schema cannot be expressed in the
logic, since it was shown by Tarski (1936) that there is no definable predicate True
corresponding to arithmetic truth. However we can express something intuitively
similar by the following schema (in which φ is any sentence):

` Pr(pφq)⇒ φ

This schema, now known as the local reflection schema, was also considered by
Turing. Since the special case where φ is ⊥ is a statement of consistency, this
statement is at least as strong. In fact it was proved by Löb (1955) that an instance
of the above schema is provable precisely when the corresponding φ is itself already
provable. Note that Gödel’s second theorem is a special case of Löb’s theorem,
again setting φ to ⊥.

Turing conjectured that the limiting system from repeatedly adding the local
reflection schema would be properly stronger than that resulting from repeatedly
adding a statement of consistency. This conjecture was refuted by Feferman: in
fact the limiting systems have equal power. However a still stronger schema, the
uniform reflection principle 11

` ∀n. Pr(pφ[n]q)⇒ φ[n]

11pφ[n]q is really a shorthand for something like subst(n,pφq), i.e. the result of substituting the
encoding of numeral n for the unique free variable of φ. This function subst is primitive recursive.

18

was shown by Kreisel and Lévy (1968) to be, with respect to first order number
theory among others, equivalent to transfinite induction up to ε0, which was pre-
cisely the additional property used by Gentzen in his consistency proof for number
theory12, and Feferman showed that a transfinite iteration based on it proves all
true sentences of number theory.

It is possible for a consistent theory to become inconsistent on the addition of
the local reflection schema, or even a simple statement of consistency. For example,
Gödel’s theorem shows that if S is consistent, so is T = S ∪ {¬ConS}, but ConT
implies ConS , so the further addition of ConT to T yields an inconsistent system.
However it follows from Feferman’s work that a 1-consistent system remains so even
on transfinitely many additions of the uniform reflection schema.

A more recent exposition of such matters is given by Feferman (1991). Since his
original coining, the meaning of ‘reflection principle’ has become slightly specialized
towards statements like the local reflection schema which seem to make a connection
between a theory and its metatheory of the form ‘if φ is provable then it is true’.
For example, Kreisel and Lévy (1968) say:

By a “reflection principle” for a formal system S, we mean, roughly, the
formal assertion stating the soundness of S: If a statement φ (in the
formalism S) is provable in S then φ is valid.

It may be that a slight shift in the perceived metaphor is behind this changed
usage: the Gödelization is a representation which mirrors the actual proof system.

Rather than stressing its role in making a logical system stronger, Kreisel and
Lévy exploit the fact that the reflection schema for S is unprovable in S to yield
a way of comparing the strengths of logical systems. If a system T can prove the
reflection principle for S, then T is properly stronger than S. It is claimed that
the intuitive significance of the reflection schema tends to make such proofs easier
to find than those for a simple statement of consistency which is, as noted above,
a special case and thus in principle weaker. Smoryński (1977) also gives results on
the strength of reflection principles.

Finally, we should observe that although the full reflection schema is unprov-
able, it may happen that by suitably restricting the kinds of provability allowed
in Prov, the analogous schema becomes provable. In particular, this happens in
Peano Arithmetic and Zermelo-Fraenkel set theory, if provability is only allowed
from a fixed finite set of the axioms. (We discuss this situation for ZF set theory in
an appendix.) Following Troelstra (1973), where the logical complexity of formulas
in proofs in Heyting arithmetic is restricted, we refer to these as ‘partial reflection
schemas’.

5 Computational reflection

In contrast to the reflection principles above, consider the following reflection rule:

` Pr(pφq)

` φ
The addition of this may be inconsistent (again, consider the 1-inconsistent

system T above). However 1-consistency guarantees not only that the new sys-
tem is 1-consistent, but actually has the same theorems. Indeed, 1-consistency
includes assertions of the form ‘if ∃p. Prov(p, pφq) is provable then it is true’, and

12Weil referred to Gentzen as the lunatic who justified induction on the natural numbers, ω,
using induction on a higher ordinal.

19

∃p. Prov(p, pφq) is true precisely when ` φ. For this form of reflection, we might
work in two different logical systems S and T . Then the following rule:

`S PrT (pφq)

`T φ
is, provided S is 1-consistent, a conservative extension of T . In what follows we
will usually assume, for simplicity, that we are dealing with a single logical system.
In this case, it is important to note that the provability predicate Pr is an arith-
metization of the original notion of provability (without the new reflection rule).
By assuming 1-consistency, we have noted that the new notion of provability is
extensionally the same as the old one. However since we certainly can’t prove 1-
consistency inside the system, we should not expect to be able to duplicate this
fact there. So if one wishes to embed applications of the reflection rule inside the
formalized proofs, the natural arithmetization gives a new notion of provability Pr1.
Then we have for example:

` Pr1(pPr(pφq)q)⇒ Pr1(pφq)

If one then wishes to apply reflection based on Pr1 inside a formalized proof,
yet another provability predicate Pr2 results, and so on. It is not possible to close
up this procedure with a single syntactic notion of provability Pr which satisfies
the three derivability conditions, for then:

` Pr(pPr(pφq)q)⇒ Pr(pφq)

and by Löb’s theorem and 1-consistency, ` φ for any φ and the system is incon-
sistent. However one can work with an infinite tower of provability predicates in
several ways — see the later description of the Nuprl work for two examples.

Now, suppose for some predicate DP and a class of formulas φ we can prove the
following:

` DP (pφq)⇒ Pr(pφq)

In that case the following schema is also a conservative extension:

` DP (pφq)

` φ
This forms the basis for computational reflection in theorem proving. DP might

be a recursive predicate encoding an efficient decision procedure for formulas whose
proofs were otherwise difficult. Now, first we must prove the ‘correctness’ theorem
` DP (pφq) ⇒ Pr(pφq) for some class of formulas φ, and thereafter may prove
` DP (pφq) in order to deduce ` φ. In fact, DP may itself include a condition that
the formula concerned is in the chosen class, allowing the correctness theorem to be
proven without restriction on φ.

Generalities

The idea of computational reflection is not to make a formal system stronger, but
rather to make its deductive process more efficient by utilizing information which
avoids having to construct formal proofs in full detail. The first question to ask
is whether we should expect to achieve worthwhile gains in efficiency. Davis and
Schwartz (1979), among the earliest advocates, do not marshal any convincing ar-
guments:

20

On the basis of ordinary mathematical experience we have every reason
to expect that the difficulty (in the precise sense we have defined) of
various important theorems will be greatly decreased this way. Although
we have been unable to formulate and prove any metatheorems that
would serve as a formal demonstration of this conjecture, we can point
to some suggestive evidence. It is well known in proof theoretic research
that the addition of new rules of inference to so-called cut-free systems
can drastically decrease the length of proofs. . . . we have seen that the
introduction of an appropriate “algebra” rule of inference shortens to 1
the difficulty of a sentence which asserts an algebraic identity.

The appeal to ‘ordinary mathematical experience’ is vague. Experience with
Mizar and HOL in pure mathematics has shown no hint that expansion into prim-
itive inferences is not feasible. Admittedly, only a tiny part of mathematics has
been formalized, but there seems no obvious reason to expect any other branches
to be different in this regard. This is conjectural — maybe proofs involving a lot
of geometric insight will prove hard to formalize for example — but at least our
conclusion is supported by some practical experience. The Bourbaki project has
developed large parts of mathematics based, notionally, on set theory as covered in
the first volume. How large the proofs would be if written out in formal detail is
an interesting question.

Since cut-free sequent proofs are a theoretical device and nobody would dream
of basing a general computer theorem prover on them, the second point is irrelevant
— it’s hardly surprising that by artificially hobbling the logic one can make the sizes
of proofs explode. In a similar way, the Deduction Theorem in Hilbert-style proof
systems can dramatically shorten proofs, obviating the need for a lot of intermediate
steps, but as conceded by Matthews, Smaill, and Basin (1991) a theorem prover is
not likely to be based on a Hilbert-style axiomatization.

Finally, judging efficiency on the basis of the number of inferences, without
regard to the computational complexity of those inferences, is not acceptable if the
argument is supposed to be one of practical utility. We discuss this in more detail
below.

Theoretical potential

From a theoretical perspective, it is certainly true that many theorems have unfea-
sibly long proofs13. For most interesting deductive systems, there can be no (total)
recursive bound on the length of the smallest proof of ψ in terms of pψq, since
that would make the logical system decidable, only bounded proof search being re-
quired. Indeed, a modification of Gödel’s diagonalization argument allows us, given
any total recursive function f , to exhibit a sentence φ with the following property
14

` φ ≡ ∀p. Prov(p, pφq)⇒ length(p) > f(pφq)

Now, whether or not there are proofs of φ whose length is bounded by f(pφq)
is decidable, and so φ is provable iff it is true. But it cannot be false, since that
would mean there exists a proof of it (indeed, one within the stated length bounds).
Therefore φ must be true, and have no proof within the stated bounds; on the
other hand it does have some proof. Thus we have exhibited a sentence which
is true and even provable, yet such that all proofs are unfeasibly long (given some

13Interpreting ‘length’ as something like the number of symbols in the proof based on a finite
alphabet, which is a reasonable measure as far as practical feasibility goes.

14This is a slight gloss; though all recursive functions are representable, in general they may be
represented by a relation.

21

suitable f , which might be a very large constant function for example). Gödel (1936)
has pointed out that the lengths of proofs of already provable facts may decrease
dramatically when a logic is extended to higher orders — for a recent treatment see
Buss (1994). We might hope that the reflection rule will allow similar savings.

This however doesn’t justify the quote above, which contained the crucial word
‘important’. The real question is: are sentences like φ just theoretical pathologies,
or are we likely to hit a theorem with no feasible proof in the course of using a theo-
rem prover in mathematics or verification? As far as I know, nobody has given any
grounds for deciding this question, though it is discussed by a few papers in Clote
and Kraj́ıc̆ek (1993). At the moment, there are no examples, but that doesn’t prove
anything. There is an analogy with the incompleteness of Peano arithmetic; theo-
retical examples of unprovable sentences have been known since Gödel’s work, but
only very recently have there emerged examples, like those presented by Paris and
Harrington (1991), which could conceivably be called mathematically mainstream.
It might be very much harder to find an unfeasible statement of say, higher order
logic or set theory. Indeed, systems of natural deduction are not so-called through
some accident, but because it appears they really correspond to how mathematicians
prove theorems. As Gentzen (1935) says:

It is remarkable that in the whole of existing mathematics only very few
easily classifiable and constantly recurring forms of inference are used,
so that an extension of these methods may be desirable in theory, but
is insignificant in practice.

That certainly seems the message of the, admittedly limited, usage of theorem
provers in pure mathematics. On theoretical grounds, we cannot bury the LCF
approach till someone comes up with an example. If and when they do, it might
be so exceptional that a one-off extension of the axiom system is a reasonable
response. That such examples should frequently recur seems highly implausible.
In any case, adding a reflection principle to help us deal with such instances still
yields a recursively enumerable set of theorems — we are after all talking about a
machine implementation. So this too has its own unfeasible statements, and why
should they be any less likely to occur in practice?

Practical potential

We have seen that as yet there is no evidence for supposing the LCF approach
inadequate for proofs in pure mathematics. However, theorem provers are more
usually used for verification tasks, and here the theorems tackled are rather different:
bigger but shallower. It seems possible that the sheer size of theorems will create
new problems for the LCF approach, i.e. that the size of fully-expanded proofs will
have much poorer asymptotic behaviour than the complexity of some other decision
procedure. Consider the following system of classical biconditional logic. The only
logical connective is bi-implication (≡). The axioms are all substitution instances
of:

` p ≡ p
` (p ≡ q) ≡ (q ≡ p)
` (p ≡ (q ≡ r)) ≡ ((p ≡ q) ≡ r)

and the sole rule of inference is the following variant of Modus Ponens (aka Detach-
ment):

22

` p ≡ q ` p
` q

Leśniewski (1929) pointed out that a formula is provable in this system if and
only if every propositional variable in it occurs an even number of times. He also
showed that this is equivalent to being valid in the usual sense, so he same ob-
servation obtains for the equivalential fragment of any conventional axiomatization
of propositional logic. Using this metatheorem we can justify saying a formula is
provable simply by pairing off the propositional variables. A less striking but more
realistic example is algebraic simplification using associative and commutative laws
and/or cancellation. Given an assertion of the form:

a1 + . . .+ an = b1 + . . .+ bn

we can justify its truth just by showing that the sets {a1, . . . , an} and {b1, . . . , bn}
are equal. To produce a proof by primitive inferences, though, we need to delicately
rewrite with the associative and commutative laws to make the two sides identical.

But let us look more critically at this example. How are we to compare the sets
{a1, . . . , an} and {b1, . . . , bn}? Of course it depends on how terms are represented
inside the theorem prover. But in any case the problem of testing n-element sets for
equality is known — see Knuth (1973) for example — to be O(n2) in the worst case
(assuming a constant-time pairwise equality test is available). Even if the subterms
are pairwise orderable somehow, we can’t do better than O(n log(n)). It’s not hard
to devise algorithms using primitive inferences which have the same complexity.
(Such a thing exists in HOL, called AC CONV.) Even if it weren’t possible, we could
use the techniques explained earlier to write a higher order function operating on
‘syntax’ without any special metatheory. Of course there may be a significant con-
stant factor difference, but nevertheless, the example is hardly especially persuasive
from the perspective of efficiency. Perhaps there is an argument that the LCF-style
coding is much less natural. To an extent this is true, but then any encoding of an
algorithm in a strict formalism like a programming language is ‘unnatural’ — it’s
just a question of degree.

It seems, then, that to get worthwhile gains from reflection, we may have to
move away from such simple examples, and consider the kinds of complex special-
purpose algorithms which are sometimes implemented in provers. But now we
want to reason about real programs, and execute them as real programs, rather
than simulating them inside the logic, or we will encounter a dramatic slowdown,
probably worse than sticking to the LCF approach all along! This raises a host of
new questions.

Computational reflection and code verification

A reasonable logic is quite capable of representing a wide variety of theorem prov-
ing procedures on encoded formulas as recursive functions inside the logic. The
higher order type theory of systems like HOL and Nuprl corresponds nicely to an
idealized functional programming language — one where all functions are total.
Similarly NQTHM’s logic corresponds closely to pure LISP. Verification of nontriv-
ial algorithms may already be within reach in this way. For example Aagaard and
Leeser (1994) have verified a Boolean simplifier formalized in Nuprl, corresponding
to about 1000 lines of Standard ML code. However, if we are going to verify an
abstract recursive function in the logic and and then run an implementation in a
real programming language (probably the implementation language of the theorem
prover — LISP, ML or whatever), we should ask:

23

1. How exactly do we regiment the process of iteratively adding code to a running
implementation? We are trying to repair the hull of a ship while it is sailing,
without bringing it into dry dock.

2. How do we justify the correspondence between an idealized mathematical
description inside the logic and an implementation in a real programming
language? We know that the latter has awkward features like finite limits for
arithmetic, complicated evaluation orders and subtle semantics for nontermi-
nation and exceptional conditions.

3. How do we represent inside the logic imperative language features like arrays
and pointers? As we have argued above, it is important to reason about
these features if we want to implement certain important proof procedures
effectively.

A satisfactory answer to the first question depends on the implementation lan-
guage. In languages such as LISP the seamless use of compiled and interpreted code
makes it much easier. In an LCF-style system, there are some quite formidable
problems; we must somehow rip open an abstract type, tinker with it to add a
new constructor, and then close it up again. An alternative is to perform the final
addition of code ‘informally’ after performing the proof, then restart the enhanced
system. The user must take responsibility for correctly sequencing the additions
and editing the source code. We might call this ‘informal reflection’.

A completely satisfactory answer to the second and third points is: don’t just
verify an abstract version of an algorithm, verify actual code using the formal se-
mantics of the implementation language15. This means embedding the syntax and
formal semantics of the implementation language in the logic. Here we make sev-
eral presuppositions, most notably that the implementation language has a suitable
formal semantics which is stable and likely to be adequate and tractable for serious
proofs. These are properties satisfied by very few, if any, languages. The difficulty
of code verification of this kind is serious, and as far as we are aware no substantial
examples exist. Finally, porting the theorem prover to another language (e.g. a
different ML dialect) becomes much harder, since not only must the system itself
be modified, but so must the proofs based on the formalized semantics of the old
language.

All existing instances of reflection make the leap from an abstract to a concrete
implementation via a naive syntactical transformation without complete formal
justification. The correctness proof in abstracto is much easier, and perhaps for most
practical purposes the distinction between the abstract description and the concrete
implementation is not likely to trip one up. Nevertheless the third point is still
problematical; it is our belief that for many efficient proof procedures, imperative
code is required, and it is not so easy to associate such constructs with parts of
the logic in a convincing way. Arrays can be identified with functions, as in some
versions of Floyd-Hoare logic, but care needs to be taken over indexing exceptions,
and the problem of aliasing makes any proofs much harder.

Another difficult question is: what do we mean by ‘correct’ in this context? The
minimal requirement is that if a procedure terminates, it always produces something
valid. This is a partial correctness condition — we do not prove termination — and
may well be the best we can do in many cases. Resolution methods performing
unbounded search, or algorithms based on that of Huet (1975) for higher order
unification (used with great success in practice in the TPS, Isabelle and LAMBDA
systems) may fail to terminate. In the case of complicated heuristic procedures, it

15Of course one can still doubt that the compiler correctly implements the language, or that
various issues abstracted away, like running out of memory, are really irrelevant; but these are not
new problems arising with reflection.

24

may be quite impossible to demarcate formally those instances where termination
is to be expected.

Even if termination can be proved, the proof may require much more complex
mathematics than that required to prove partial correctness. We are not aware of
any particularly convincing practical instances, but justifying bounds for the so-
lution of Diophantine equations requires deep analytic number theory — see the
work of Baker (1975) in this regard. It may even happen that termination is only
provable in a stronger logic — following the work of Kreisel (1952) it has become a
fashionable research topic to classify logics on the basis of which functions they can
prove total. In the unlikely event that we want to actually prove complexity bounds,
we might even need to go beyond the resources of present-day mathematics. For
example, as a consequence of work by Ankeny (1952), the efficiency of some impor-
tant number-theoretic algorithms, e.g. for primality testing as discussed by Bach
(1990), is apparently dependent on the truth of the Extended Riemann Hypothesis.

The main reason the question of termination should interest us is that most of the
abstract versions of proof procedures are modelled in the logic as total functions.
Reasoning about partial functions is widely believed to be much more difficult.
Nevertheless, a serious attempt to address partiality in reflected proof procedures
is surveyed by Giunchiglia, Armando, Cimatti, and Traverso (1994).

A more extreme point is that many of the most efficient algorithms aren’t correct
in a strict sense. They may assume that machine arithmetic will never overflow for
example. Now it may be an entirely justifiable assumption on the basis that machine
resources would become exhausted before it could happen. But to carry through
details like this in a formal proof is much more complicated. To take an analogy
with physics: if I want to analyze the dynamics of a person riding a bicycle, I
intuitively know that I can neglect relativistic effects, and use classical mechanics.
But arriving at a general theorem from which this fact can be read off might be
extremely difficult — harder than simply applying relativistic mechanics in the first
place.

6 Computational reflection in practice

Reflection is a popular topic for investigation in theorem proving, and one might
expect large numbers of real systems to have experimented with it. On the whole,
experiments have been limited to small projects. We shall examine three significant
implementations, and one relevant proposal.

FOL

Perhaps the first actual use of reflection in a formal reasoning system was by
Weyhrauch (1980). His FOL system is an implementation of first order logic which
allows reasoning in multiple theories. It provides a notion of ‘simulation structure’,
which may be described as a computable, partial model. A full model is unattain-
able since even facts about ground terms may be uncomputable. However one can
associate with a logical system L some simulation structure S giving a restricted
part of the information that a model would provide, in the shape of some kind of
evaluator. For example, one might associate with the addition symbol an evaluator
which rewrites expressions involving addition and other ground terms. This process
of association is called ‘semantic attachment’, because it stands in place of a full
model. The resulting couple is called an ‘L/S pair’ or ‘context’ (in some related
work a context includes the currently proved set of theorems). The standard set-
theoretic account of first order logic semantics has been tweaked to use simulation
structures rather than full models by Weyhrauch and Talcott (1994).

25

One of the contexts in FOL is called META, and formalizes the syntax of FOL’s
own logic, including the structure of formulas and logical derivability. Then a
reflection principle is asserted which justifies a transition between `object φ and
`meta Probject(pφq). The principle allows these statements to be interderived both
ways; these processes are usually referred to as ‘reflection up’ (left to right) and
‘reflection down’ (right to left).

At its simplest, this connects inference in the object theory with computation
in the metatheory. The syntax operations and inference rules of the object logic
are just function symbols in the metalogic, and may, by semantic attachment, be
associated with the natural operations on formulas. This identification of ‘theorem
proving in the theory’ with ‘evaluation in the metatheory’ (to coin an FOL slo-
gan) is reminiscent of LCF. However since a full logic is available to formalize the
metatheory, it is more general. Metatheorems can be proven which justify certain
kinds of inference without needing to expand down to the original primitives. A
simple illustrative example is given in Weyhrauch (1982) based on a Hilbert-style
axiomatization of propositional logic.

The obvious defect of the FOL approach is that there is no check on the user
attaching arbitrary actions to function symbols. Logical consistency is not enforced.
For example, one might make the evaluator transform 1 + 1 into 1. This doesn’t
affect FOL’s appeal as an AI project, but for the approach to make inroads into the
formal verification community something better is needed.

This is being worked on by a number of researchers in Italy. FOL has been
reimplemented and reengineered as GETFOL, and attempts are being made to
achieve formal demarcation of acceptable proof strategies rather than permitting
arbitrary attachments. An interesting summary is given by Armando, Cimatti,
and Viganò (1993). Proof strategies in the object theory are simply terms in the
metatheory. It is possible to demarcate, purely syntactically, terms which implement
safe proof strategies; so-called ‘logic tactics’. These are built from existing primitives
using a few simple connectives like the conditional, much as in LCF. However it is
possible to use more general metatheoretic reasoning should it prove necessary.
The next step being considered is to compile proven proof procedures down to the
implementation language (apparently using a naive transliteration) to make them
more efficient than interpreting them in the metatheory. This ‘flattening’ process
has already been investigated in distinct but related work by Basin, Giunchiglia,
and Traverso (1991).

NQTHM

The NQTHM prover, described in detail by Boyer and Moore (1979), is a fully au-
tomatic theorem prover for a quantifier free first order logic. The logic has its roots
in Primitive Recursive Arithmetic (PRA), as developed by Skolem and Goodstein
(1957), but allows arbitrary recursive types, not just the natural numbers. There
is no separate class of formulas. An induction rule is available, but there are no
explicit quantifiers. The logic is represented using LISP syntax. The prover has no
real interactive features, but the user may direct the prover by choosing a suitable
chain of lemmas, each of which can be proved automatically.

One of the earliest practical applications of reflection in a major theorem prover,
indeed the earliest where the stress was placed on soundness, was the work of Boyer
and Moore (1981) in adding a reflection principle to NQTHM. (Note that they do
not use the word ‘reflection’ to describe the process, but rather talk about adding
‘metafunctions’.) This was then used to implement a simplifier which performs can-
cellation in arithmetic equations. Other simplifiers, including a tautology checker,
have also been verified. Apparently metatheoretic extension is a facility not widely
used in practice, but it is not just a theoretical flight of fancy.

26

The implementation of reflection in the Boyer-Moore prover does not entail the
full internalization of the logic’s rules of inference. Rather, a denotation function
MEANING is defined (just an ordinary recursive function, as has been mentioned
already). This gives the value of an encoded term (the coding is rather simple, since
the logic is in LISP syntax to start with) under a given assignment to variables.

If the user wishes to introduce a term-transforming function fn as a new logical
primitive, then first, as usual with definitions in NQTHM, the prover must show
that the recursion equations given define a unique total function. However in more
recent work, EVAL is used instead of MEANING, and the former allows partial recursive
functions. Nevertheless, most users stick to total functions, probably because they
are easier to work with.

Then the prover must prove a metatheorem, which states that for any formula
F and any assignment A, then first fn(F) is also a formula (the system is untyped,
so this is not automatic), and second that MEANING(A,F) = MEANING(A,fn(F)).
That is, the simplified term is always equal to the original term under any variable
assignment. Note that the transformation function may be parametrized by free
variables, provided it obeys the above strictures under all assignments.

If these obligations are proved, the system installs compiled INTERLISP code
corresponding to fn. This jump deserves detailed consideration. INTERLISP does
not behave quite like the encoded abstract pure LISP environment. In particular
there is a finite limit for integers, with silent wrapping on overflow. Boyer and
Moore pay careful attention to these difficulties, using for example a custom addi-
tion function badd1 which fails on overflow. One or two other tweaks are applied,
mostly for reasons of efficiency rather than correctness. The approach is careful,
but informal. Recent versions of NQTHM are based on Common LISP, which has
bignums, obviating the need for many of the precautions.

Another point to note is that what in some systems would be automatic type
correctness conditions (for example, that fn maps terms to terms), must, since we
are in the untyped world of LISP, be proved explicitly. Indeed, if the system has
already been extended unsoundly (the user may posit inconsistent axioms, precisely
in order to derive an inconsistency!) then the proof may be nonsense and the
newly installed metafunction might not just derive falsity, but fail in arbitrary and
damaging ways. In more recent work this has been guarded against.

It has to be said that the cancellation function is easily implemented in the LCF
style with adequate efficiency. But Boyer and Moore report that the correctness
proof was actually rather easy (taking one of the authors just a day), so we should
not take this example as truly indicative of the potential state of the art. We are not
aware of any verification of imperatively implemented metafunctions, though there
is extensive work on imperative program verification in NQTHM, e.g. that described
by Boyer and Yu (1992). Recently Moore (1994) has produced an efficient, purely
applicative version of the BDD algorithm, whose verification may be tractable,
though it does depend on hash tables.

Nuprl

Nuprl, described by Constable (1986), is an LCF-descended theorem prover which
supports an extension, including for example inductive types, of a type theory as
described by Martin-Löf (1985). It is intended as an environment for constructive
mathematics and computer programming, and for exploring their connections. The
richness of the Nuprl type theory generates a profusion of additional primitive infer-
ences compared with HOL16. Furthermore the system stores proof trees as concrete
objects, so invocation of primitive inferences is particularly expensive in space and

16It is not clear whether the kinds of optimizations we have been looking at above, in particular
cacheing of theorems, would render this less problematic.

27

hence garbage collection time. Finally, in applied work, decision procedures have
often been tacked on to Nuprl, and the user community is more accustomed to
them; it is however desirable to place them on a firmer theoretical footing. All
these facts make computational reflection especially appealing.

We have already discussed the work of Howe, where the connection between an
internalization of derivability and the logic itself is made via a function in the logic.
However Nuprl researchers have also experimented with adding explicit reflection
rules allowing the deduction of H ` G from ` Pr(pH ` Gq). As noted already,
there are problems in fixing a single provability predicate Pr allowing embedded
instances of the reflection rule. In Nuprl, two possibilities have been pursued.

The first is explained in Knoblock and Constable (1986). The idea is that
repeatedly adding the reflection rules gives rise to a sequence of logics PRL0, PRL1,
PRL2, The reflection rule connects formalized provability at one level to the
logic in the level below it. This is rather complex because there are an infinite
number of levels. Nevertheless for many purposes ‘provability in some PRLk’ can
be taken as the standard notion of provability. As far as we are aware, no practical
work has been done using this scheme.

The second alternative, described in Allen, Constable, Howe, and Aitken (1990)
is to have just one logic and restrict the reflection rule. The reflection rule is
parametrized by a natural number called the ‘reflection level’, and in any instance
of the reflection rule, embedded instances must have a lower reflection level. With
this feature the reflection rule remains a conservative extension to the logic, although
its eliminability from proofs cannot be proven inside the logic.

A further step in this direction is described by Howe (1992). He proposes a slight
modification of the Nuprl type theory, including for example a ‘denotation’ (better:
‘evaluation’) function, which allows a particularly clean internalization of the logic’s
semantics. (The presence of dependent types blurs the distinction between syntax
and semantics, so one shouldn’t read the terminology used here too critically.) The
semantics is stratified by universe level; at a given level the evaluation semantics of
lower universe levels can be completely formalized. Using this internal semantics,
Howe was able to derive the reflection rule without extending the logic.

Most of the work in reflection proper appears to be theoretical, and we are not
aware of any practical applications. The position of the Nuprl community on some
of the issues raised above regarding real programming languages is not entirely clear.

HOL

No work on reflection has actually been done in HOL, but Slind (1992) has made
some interesting proposals. His approach is distinguished from those considered
previously in two important respects.

First, he focuses on proving properties of programs written in Standard ML
using the formal semantics to be found in Milner, Tofte, and Harper (1990). This
contrasts with the other approaches we have examined, where the final jump from
an abstract function inside the logic to a concrete implementation in a serious
programming language which appears to correspond to it is a glaring leap of faith.

Second, he points out that absolute program verification is not necessary. It suf-
fices to show that some new piece of code behaves in the same way as another piece
of code which is implemented in the normal LCF way as a composition of primitive
inference rules. More precisely, if an ML function f is a ‘safe’ derived rule returning
a theorem, and we can prove that for some function g which returns a term list-term
pair, dest thm o f = g then we may safely incorporate mk thm o g as a new rule.
Here mk thm and dest thm are the abstraction and representation functions which
move between a concrete implementation of sequents and the abstract type thm of
theorems.

28

How realistic is this proposal? The more modest requirement for proofs of
program equivalence has considerable promise. It seems more suited to simple low-
level proof procedures which have a straightforward but inefficient proof in terms of
primitive inferences. The use of program equivalence is less appealing in instances
where a reasonable proof by primitive inferences must deviate substantially from
the ‘standard’ presentation. Nevertheless, as far as it goes, it may allow reasonably
tractable correctness proofs without forcing the practitioner to worry about the
low-level codification of the semantics.

It is conceivable that a useful set of equational transformations for reasoning
about Standard ML programs could be derived from the operational semantics of
Standard ML. On the other hand, the semantics of Standard ML is not trivial, and
has certain defects from the point of view of correctness proofs. For example, it
says nothing about the behaviour of arithmetic operations; in practice some imple-
mentations use machine arithmetic while others use infinite precision arithmetic. If
one takes program verification seriously, these issues have to be addressed.

There has been some work in HOL on the formal semantics of ML by Syme
(1993), VanInwegen and Gunter (1993) and Maharaj and Gunter (1994). But this
is in its early stages, and more than just a formalized semantics is needed to make
program verification tractable. One approach might be to isolate a sufficient core
of ML for the implementation of HOL, and attempt to produce a formal semantics
for it. The difficulty is that, if our arguments are correct, the appeal of reflection
is greatest where the verification is of imperative code. This is known to be more
difficult; see Mason and Talcott (1992) for some preliminary work in this direction.

Finally, it is interesting to observe how Slind dealt with the problem of inserting
compiled code into an LCF-style implementation. His technique makes essential
use of first-class environments, a relatively new feature of the New Jersey compiler.
It may be that it holds interesting lessons for the incremental extension of abstract
data types in general, not just in connection with LCF-style theorem proving.

Conclusion

Extensibility of theorem provers is an important issue, and if demands of rigour are
to be taken seriously, the relative merits of reflection and the pure LCF approach
should be analyzed carefully.

For many purposes, ostensibly metatheoretic reasoning can be implemented
without any logical extensions. In any case, there are various subtly different no-
tions described as ‘reflection’, and it is important to distinguish them. The most
interesting from the point of theorem proving technology is computational reflection
used to make inferences more efficient without unprincipled addition of new rules.

Programming a derived rule in LCF requires a certain discipline, and in com-
plex cases, good programming skills are needed. There is certainly an argument
that verifying a direct implementation is more natural. It’s rather like coding an
algorithm which appears naturally imperative in a pure functional language. Nev-
ertheless there seems no convincing evidence that it is fundamentally inadequate
from the efficiency point of view. Airy claims about the hopeless inefficiency of
LCF-style provers on real examples have limited support in theory and are contra-
dicted by practice (HOL is used!). We have looked at techniques which often render
LCF proof procedures quite efficient. It has not clearly been established that there
are any efficient proof procedures which cannot be implemented as a HOL derived
rule with more than a moderately large constant factor slowdown. This constant
factor may well be practically important, but it seldom separates tractability from
intractability. As we have remarked, the efficiency of proof procedures is, within
reason, not a major issue in interactive theorem proving.

29

Reflection is an intellectually attractive idea, in that it offers a way of adding
efficient proof procedures while maintaining a guarantee of soundness. However the
fact that despite all the research reports and proposals it has only once been used
in a major practical prover, and even there not much in practice, speaks against
it. Furthermore we have argued that the most interesting proof procedures such
as Binary Decision Diagrams depend for their efficiency on imperative features
such as arrays or shared data structures. Most real implementations are written
in C, a difficult language to reason about formally. If reflection principles are
to accommodate such programs, then the state of the art in program verification
needs to advance, or the correctness proofs will be unbearably difficult. Then the
difficulties of dynamically adding code to a running implementation need to be
taken seriously. Finally, it seems hard to exploit reflection while at the same time
generating a checkable low-level proof log.

There is considerable intellectual and practical benefit in sticking to the pure
LCF approach in HOL, and the case against it is questionable. Whether HOL
exhibits an unusual synergy in this regard is an interesting question, and our con-
clusions, even if correct for HOL, do not necessarily extend to other systems. Re-
flection offers many interesting ideas and challenges, but it isn’t yet ready to push
back the boundaries of what is feasible in theorem proving. Attempts to present it
as a practical necessity and panacea for theorem proving in real world applications
seem naive.

Acknowledgements

I am grateful to John Herbert and Roger Hale of SRI International for asking me to
write this paper, and for valuable discussions. I have also profited from conversations
with and advice from Richard Boulton, Thomas Forster, Mike Gordon, Doug Howe,
Ken Kunen, Joseph Melia, Andy Pitts and especially Konrad Slind. The views
expressed are my own responsibility, and should not be identified with any of the
people named above, or with SRI. Apart from those already mentioned, comments
on a draft version from Paul Curzon, Tim Leonard, Tom Melham, John Staples
and especially Bob Boyer, have been very helpful and I hope have led to some
improvements.

Appendix: Other kinds of reflection

In their interesting survey paper Giunchiglia and Smaill (1989) propose a distinction
between a ‘reflection principle’ (strengthening the logic) and the process of ‘reflec-
tion’ (merely making the deductive process more efficient). This corresponds to
our distinction between ‘logical reflection’ and ‘computational reflection’. However
there are at least two other uses of the term ‘reflection’ in the literature, and here
we attempt to clarify them. We should add that there are a few instances which
do not fit easily into the categorization we have chosen. An example is reflection in
logic programming, as proposed by Bowen and Kowalski (1982) which is perhaps
a blend of logical and procedural reflection. Perlis (1985) and Perlis (1988) discuss
self-reference in first order logic, which bears some relation to logical reflection.
A more mathematical treatment is given by Smoryński (1985), who also gives a
readable account of Gödel’s theorems and logical reflection schemas.

30

Set theoretic reflection

Zermelo-Fraenkel set theory and most other modern variants present the set theo-
retic universe as a cumulative hierarchy of sets17. This is built up from the empty
set, and possibly a given collection of ‘urelements’, by iterating the powerset con-
struction. The successive levels are usually written Vα where α runs through the
ordinal numbers. The recursive definition splits into two cases, for successor and
limit ordinals:

Vα+1 = ℘(Vα)

Vλ =
⋃
α<λ

Vα

The complete ‘universe’ is usually written V ; we can write:

V =
⋃
α

Vα

but we should be aware that V is not a set, and the above is really a figure of speech
for the formal assertion:

∀x. ∃α. Ordinal(α) ∧ x ∈ Vα
All sets contained in Vω, and hence in Vn for some finite ordinal n, are hereditar-

ily finite (i.e. they are finite and all their members are in turn hereditarily finite).
Vω itself is the first infinite set. All Zermelo’s axioms are satisfied if the ‘universe’ is
the set Vω+ω, i.e. all sets arise from applying the powerset operation finitely often
to the empty set or the first infinite set.

Using the Axiom of Replacement (available in ZF but not in Zermelo’s original
system), we can show that there is actually a set Vω+ω, as follows: by recursion and
the Axiom of Replacement, we can construct a function whose range is Vω+ω, and
the Axiom of Union then allows us to collect the range in a new set. The iteration
may similarly be continued to any transfinite ordinal. Consequently the hierarchy
extends much further than it need do without Replacement.

A set-theoretic reflection principle asserts, roughly speaking, that some re-
stricted initial portion of the ZF hierarchy (which will of course be a set occurring in
the next level up) ‘reflects’ the structure of the whole universe. Crudely speaking,
any property true in V is also true in some Vα. This is a vague statement and
cannot be taken too literally. For example, ‘every set is a member of V ’ is clearly
false if V is replaced by any Vα. However a more consistent relativization, ‘every
set in Vα is a member of Vα’, is true. Under this kind of interpretation, reasonable
statements are obtained.

In particular, if we restrict ourselves to ‘properties’ expressible in an orthodox
first order axiomatization of ZF set theory, the natural formalization of the reflection
principle turns out to be provable. This was first shown by Montague (1966) and
Lévy (1960); the latter coined the term ‘reflection principle’ and initiated a thorough
study of such principles. Let us write φR for the ‘relativization’ of some formula
φ to the set (or, with obvious change, class) R. This means restricting all the
quantifiers in φ as follows: ∀x. ψ[x] becomes ∀x. x ∈ R ⇒ ψ[x] and ∃x. ψ[x]
becomes ∃x. x ∈ R∧ψ[x]. Now the reflection schema states that for any formula φ
with free variables x1 . . . xn:

∀α. ∃β. β > α ∧ ∀x1 . . . xn ∈ Vβ . φ ≡ φVβ

17This now ubiquitous picture was only arrived at by Zermelo 20 years after his original
axiomatization.

31

For a proof, see for example Kunen (1980) or Krivine (1971). In the special
case where φ is a sentence then we see that there exist arbitrarily large ordinals β
such that φ is interdeducible with its relativization to Vβ . Among the most simple
consequences we see that ZF cannot be finitely axiomatizable in first order logic.
Indeed if a finite set of axioms S sufficed to axiomatize ZF, then we could form
their conjunction φ. But now the reflection schema yields a model (more precisely,
proves in ZF the existence of a model) for φ, and hence S, inside ZF. This amounts
to proving ZF’s consistency inside ZF, which we know to be impossible by Gödel’s
second theorem. (A more direct proof not relying on Gödel’s theorem is also possible
from the reflection principle.)

Sharpening these observations demonstrates the interesting connection with log-
ical reflection principles18. If PrN (pφq) means ‘φ is provable from the first N axioms
of ZF’, then it is not hard to see that the following partial reflection schema:

`ZF PrN (pφq)⇒ φ

Indeed, we know that `ZF φ ∨ ¬φ, and so `ZF φ ∨ (ZF1 ∧ . . . ∧ ZFN ∧ ¬φ),
where the ZFi are the first N axioms of ZF. Abbreviating the second disjunct
by ψ, we know by the reflection theorem that `ZF ψ ≡ ψVα for some ordinal α.
However, replicating the routine proof of first order logic’s soundness inside ZF,
`ZF PrN (pφq)⇒ ¬ψVα , and consequently `ZF PrN (pφq)⇒ φ.

Another noteworthy consequence of the reflection principle, noted by Kreisel
(1965), is that the introduction of universes, popular with category theorists inter-
ested in providing a set-theoretic foundation for their work, is probably unnecessary.
Such axioms amount to asserting the reflection principle for all axioms of ZF to-
gether. However only finitely many of those axioms will be used in any given proof,
and by the reflection theorem these already hold in some set Vα.

Apart from such applications, the deductive strength of this and related princi-
ples has been studied by Lévy and others. In the presence of the other ZF axioms,
the first order reflection schema given above turns out to be equivalent to the ax-
ioms of Infinity and Replacement taken together. This raises the possibility that
one might axiomatize set theory using reflection principles.

Extended reflection principles, for example the higher order versions introduced
by Bernays (1966), turn out to be equivalent to rather recherché additions to the
ZF axioms, such as inaccessible cardinals, regular fixed points for normal functions,
and Mahlo cardinals. Hence they provide, for some, a persuasive way of motivating
such additions. One can even eschew any kind of formalization and simply regard
reflection principles as quasi-philosophical assertions about the endless, indefinitely
extensible nature of the ZF hierarchy.

The proposal of Kreisel (1967) that the notions of semantic validity for second
order logic when interpreted in a formal, cumulative set theory like ZF and in
‘informal set theory’ (permitting for example proper classes), might be coextensive,
has similar consequences. Some formalizations of Kreisel’s principle turn out to be
equivalent to higher order reflection principles. See for example Shapiro (1991).

Procedural reflection

Computer programs are ultimately run as machine code which exists ephemerally
in the memory of the machine. However for many purposes it is useful to be able
to step back from this simple picture, contemplating (and perhaps changing) the
relationship between the running program and the original source. Some obvious
examples, starting with the routine and ending in the exotic, are:

18This connection goes right back to Montague’s work; nevertheless the term ‘reflection’ seems
to be based on different idioms in the two cases.

32

• Debugging — here it is desirable to relate the execution of the program to its
original (source code) syntax, for the benefit of the user, and allow the user
to step through the program, inspecting and altering the state of the machine
at various points.

• Profiling — here we want to associate runtimes with function bodies in the
original source (which may have no simple relationship with portions of the
eventual machine code), in order to identify ‘hot spots’ in the code.

• Self-modification — it is commonplace in Artificial Intelligence to have pro-
grams modify themselves in the light of the interaction with their environ-
ment. For example, a chess program may alter its play on the basis of past
experience.

Implementing such facilities in an ad hoc way is sometimes quite involved, and
it is not easy for ordinary users to add their own related facilities. It was argued by
Smith (1984) that a general reflective programming language offers a uniform and
flexible way of doing such things. He compares reflection with recursion. At first
it seems a complicated, arcane and inefficient way of programming, in danger of
infinite regress. But with experience it may come to be seen as natural, and hence
tend to be implemented more efficiently. It promises to provide a highly flexible
facility which may then be used to implement otherwise inexpressible programming
constructs (such as adding exception-handling to the language). A more developed
treatment can be found in des Rivières and Smith (1984).

Smith’s approach is to start with a dialect of LISP, called 2-LISP, which is LISP
shorn of the use-mention confusions which Smith detects in the mainstream version.
Smith argues that LISP ‘crosses semantic levels’, confusing the notionally separate
processes of passing from syntax to denotation and evaluating the denotation. For
example, (+ 1 ’2) is acceptable in all LISP and SCHEME implementations.

Programs are run via an interpreter whose code and data is made concrete
in explicit datastructures. This results in 3-LISP, which has the ability to run
code at different levels of interpretation. Instead of running a program ‘at level
n’ the concrete representation can be run by an interpreter ‘at level n + 1’. This
interpreter may itself be run by another interpreter ‘at level n + 2’ and so on ad
infinitum. The crucial points are that first, all properties of the program and its
interpreter are made concrete, and secondly, that those concrete versions may be
modified, affecting the program’s behaviour.

In LISP implementations, this already happens to a limited extent when pro-
cedure calls and EVAL are supported uniformly for compiled code and interpreted
S-expressions. Even running a BASIC interpreter on a microcoded CPU exhibits a
multiplicity of levels. The reflective approach is distinguished by its unlimited scope
and the homogeneity of the successive levels. It actually gives rise to a potential
infinity of levels, the so-called ‘reflective tower’. Smith’s idea was that a program
should find the lowest level available (since layers of interpretation are inefficient),
only rising to higher levels when necessary. As far as practical implementations
go, experience has been limited, but it may be that a less comprehensive form of
reflection than that proposed by Smith, where the concrete representations are sep-
arate from the code executed and perhaps only partial (this is sometimes called
‘declarative reflection’), is acceptably efficient.

Smith did not give a rigorous discussion of the intended semantics of the reflec-
tive tower. This was later undertaken by Wand and Friedman (1986), who gave a
denotational description, using an additional ‘metacontinuation’ parameter to store
the state of the interpreters above the one currently being considered. They also
use a slightly refined terminology: ‘reification’ is the process by which an interpreter

33

makes its state available, and ‘reflection’ is when the program changes that state
and hence installs new data.

Since it was originally proposed, procedural reflection has attracted consider-
able attention in the object oriented programming community, initiated explicitly
by Maes (1987). The approach fits nicely with the object philosophy, where the
programmer’s whole ‘world’ is supposed to be open to redefinition, yet some facil-
ities, e.g. communication between processes in sophisticated ways, may be hard
to implement in existing systems. A survey is given by Maes and Nardi (1988).
Nevertheless it is not clear that reflection’s practical utility has yet been convinc-
ingly demonstrated. For work on procedural reflection in a high-level functional
programming language, see the paper by Zhu (1994).

References

Aagaard, M. and Leeser, M. (1994) Verifying a logic synthesis tool in Nuprl: A
case study in software verification. In v. Bochmann, G. and Probst, D. K. (eds.),
Computer Aided Verification: Proceedings of the Fourth International Workshop,
CAV’92, Number 663 in Lecture Notes in Computer Science, Montreal, Canada,
pp. 69–81. Springer Verlag.

Aiello, L., Cecchi, C., and Sartini, D. (1986) Representation and use of metaknowl-
edge. Proceedings of the IEEE , 74, 1304–1321.

Aiello, L. and Weyhrauch, R. W. (1980) Using meta-theoretic reasoning to do al-
gebra. In Bibel, W. and Kowalski, R. (eds.), 5th Conference on Automated De-
duction, Volume 87 of Lecture Notes in Computer Science, Les Arcs, France, pp.
1–13. Springer-Verlag.

Allen, S., Constable, R., Howe, D., and Aitken, W. (1990) The semantics of reflected
proof. In Proceedings of the Fifth Annual Symposium on Logic in Computer
Science, Los Alamitos, CA, USA, pp. 95–107. IEEE Computer Society Press.

Ankeny, N. C. (1952) The least quadratic non-residue. Annals of Mathematics (2),
55, 65–72.

Archer, M., Joyce, J. J., Levitt, K. N., and Windley, P. J. (eds.) (1991) Proceedings
of the 1991 International Workshop on the HOL theorem proving system and its
Applications, University of California at Davis, Davis CA, USA. IEEE Computer
Society Press.

Armando, A., Cimatti, A., and Viganò, L. (1993) Building and executing proof
strategies in a formal metatheory. In Torasso, P. (ed.), Advances in Artifical
Intelligence: Proceedings of the Third Congress of the Italian Association for Ar-
tificial Intelligence, IA*AI’93, Volume 728 of Lecture Notes in Computer Science,
Torino, Italy, pp. 11–22. Springer-Verlag.

Arthan, R. D. (1994) Issues in implementing a high integrity proof tool. See Basin,
Giunchiglia, and Kaufmann (1994), pp. 34–36.

Bach, E. (1990) Explicit bounds for primality testing and related problems. Math-
ematics of Computation, 55, 355–380.

Baker, A. (1975) Transcendental Number Theory. Cambridge University Press.

Bar-Hillel, Y., Poznanski, E. I. J., Rabin, M. O., and Robinson, A. (eds.) (1966)
Essays on the Foundations of Mathematics: dedicated to A. A. Fraenkel on his
seventieth anniversary. The Magnes Press, the Hebrew University, Jerusalem.
First edition (1966) published by the Jerusalem Academic Press Ltd.

34

Barwise, J. and Keisler, H. (eds.) (1991) Handbook of mathematical logic, Volume 90
of Studies in Logic and the Foundations of Mathematics. North-Holland.

Basin, D., Giunchiglia, F., and Kaufmann, M. (eds.) (1994) 12th International Con-
ference on Automated Deduction, Workshop 1A: Correctness and metatheoretic
extensibility of automated reasoning systems, INRIA Lorraine.

Basin, D., Giunchiglia, F., and Traverso, P. (1991) Automating meta-theory cre-
ation and system extension. In Trends in Artificial Intelligence: Proceedings of
the 2nd Congress of the Italian Association for Artificial Intelligence, IA*AI,
Number 549 in Lecture Notes in Computer Science, pp. 48–57. Springer-Verlag.

Basin, D. A. (1994) Constructive metatheoretic extensibility. See Basin, Giunchiglia,
and Kaufmann (1994), pp. 23–24.

Basin, D. A. and Constable, R. (1991) Metalogical frameworks. See Huet, Plotkin,
and Jones (1991), pp. 47–72. Reprinted in Huet and Plotkin (1993), pp. 1–29.

Bernays, P. (1966) Zur Frage der Unendlichkeitsschemata in der axiomatischen
Mengenlehre. See Bar-Hillel, Poznanski, Rabin, and Robinson (1966), pp. 3–49.
English translation ‘On the Problem of Schemata of Infinity in Axiomatic Set
Theory’ in Müller (1976), pp. 121–172.

Bjørner, D., Ershov, A. P., and Jones, N. D. (eds.) (1988) Partial Evaluation and
Mixed Computation: Proceedings of the IFIP TC2 Workshop on Partial Evalua-
tion and Mixed Computation, Gammel Avernæs, Denmark. North-Holland.

Boulton, R. J. (1993) Efficiency in a fully-expansive theorem prover. Technical
Report 337, University of Cambridge Computer Laboratory, New Museums Site,
Pembroke Street, Cambridge, CB2 3QG, UK. Author’s PhD thesis.

Bowen, K. A. and Kowalski, R. A. (1982) Amalgamating language and metalan-
guage in logic programming. In Clark, K. L. and Tärnlund, S. A. (eds.), Logic
Programming, Number 16 in APIC Studies in Data Processing, pp. 153–172.
Academic Press.

Boyer, R. S. and Moore, J S. (1979) A Computational Logic. ACM Monograph
Series. Academic Press.

Boyer, R. S. and Moore, J S. (1981) Metafunctions: proving them correct and using
them efficiently as new proof procedures. In Boyer, R. S. and Moore, J S. (eds.),
The Correctness Problem in Computer Science, pp. 103–184. Academic Press.

Boyer, R. S. and Yu, Y. (1992) Automating correctness proofs of machine code
programs for a commercial microprocessor. See Kapur (1992), pp. 416–430.

de Bruijn, N. G. (1980) A survey of the project AUTOMATH. In Seldin, J. P. and
Hindley, J. R. (eds.), To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus, and Formalism, pp. 589–606. Academic Press.

Bryant, R. E. (1992) Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24, 293–318.

Bundy, A., van Harmeleu, F., Hesketh, J., and Smaill, A. (1991) Experiments with
proof plans for induction. Journal of Automated Reasoning , 7, 303–323.

Buss, S. R. (1994) On Gödel’s theorems on lengths of proofs I: Number of lines and
speedup for arithmetics. Journal of Symbolic Logic, 59, 737–756.

35

Carnap, R. (1937) The Logical Syntax of Language. International library of psychol-
ogy, philosophy and scientific method. Routledge & Kegan Paul. Translated from
‘Logische Syntax der Sprache’ by Amethe Smeaton (Countess von Zeppelin), with
some new sections not in the German original.

Cherlin, G. L. (1976) Model theoretic algebra. Journal of Symbolic Logic, 41, 537–
545.

Chou, S.-C. (1988) An introduction to Wu’s method for mechanical theorem proving
in geometry. Journal of Automated Reasoning , 4, 237–267.

Claesen, L. J. M. and Gordon, M. J. C. (eds.) (1992) Proceedings of the IFIP
TC10/WG10.2 International Workshop on Higher Order Logic Theorem Proving
and its Applications, Volume A-20 of IFIP Transactions A: Computer Science
and Technology, IMEC, Leuven, Belgium. North-Holland.

Clote, P. and Kraj́ıc̆ek, J. (eds.) (1993) Arithmetic, proof theory, and computational
complexity. Clarendon Press.

Constable, R. (1986) Implementing Mathematics with The Nuprl Proof Development
System. Prentice-Hall.

Constable, R. L. and Murthy, C. (1990) Extracting computational content from
classical proofs. In Huet, G. and Plotkin, G. (eds.), Proceedings of the First
Workshop on Logical Frameworks, pp. 141–156. Reprinted in Huet and Plotkin
(1991), pp. 341–362.

Danvy, O. (1988) Across the bridge between reflection and partial evaluation. See
Bjørner, Ershov, and Jones (1988), pp. 83–116.

Davis, M. (ed.) (1965) The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Raven Press, NY.

Davis, M. and Schwartz, J. T. (1979) Metatheoretic extensibility for theorem veri-
fiers and proof-checkers. Computers and Mathematics with Applications, 5, 217–
230.

Dudley, R. M. (1988) Real analysis and probability. The Wadsworth & Brooks/Cole
mathematics series. Wadsworth & Brooks/Cole.

Edwards, H. M. (1989) Kronecker’s views on the foundations of mathematics. In
Rowe, D. E. and McCleary, J. (eds.), The History of Modern Mathematics; Vol-
ume 1: Ideas and Their Reception, pp. 67–77. Academic Press.

Eklof, P. (1973) Lefschetz’ principle and local functors. Proceedings of the AMS ,
37, 333–339.

Feferman, S. (1960) Arithmetization of metamathematics in a general setting. Fun-
damenta Mathematicae, 49, 35–92.

Feferman, S. (1962) Transfinite recursive progressions of axiomatic theories. Journal
of Symbolic Logic, 27, 259–316.

Feferman, S. (1989) Finitary inductively presented logics. In Ferro, R. et al. (eds.),
Logic Colloquium 88, Studies in Logic and the Foundations of Mathematics,
Padova, Italy, pp. 191–220. North-Holland.

Feferman, S. (1991) Reflecting on incompleteness. Journal of Symbolic Logic, 56,
1–49.

36

Felty, A. and Miller, D. (1988) Specifying theorem provers in a higher-order logic
programming language. See Lusk and Overbeek (1988), pp. 61–80.

Gentzen, G. (1935) Über das logische Schliessen. Mathematische Zeitschrift , 39,
176–210. This was Gentzen’s Inaugural Dissertation at Göttingen. English trans-
lation, ‘Investigations into Logical Deduction’, in Szabo (1969), p. 68–131.

Giunchiglia, F., Armando, A., Cimatti, A., and Traverso, P. (1994) First steps
towards provably correct system synthesis of system code. See Basin, Giunchiglia,
and Kaufmann (1994), pp. 28–30.

Giunchiglia, F. and Smaill, A. (1989) Reflection in constructive and non-
constructive automated reasoning. In Abramson, H. and Rogers, M. H. (eds.),
Meta-Programming in Logic Programming, pp. 123–140. MIT Press.

Gödel, K. (1931) Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme, I. Monatshefte für Mathematik und Physik , 38, 173–
198. English translation, ‘On Formally Undecidable Propositions of Principia
Mathematica and Related Systems, I’, in van Heijenoort (1967), pp. 592–618 or
Davis (1965), pp. 4–38.

Gödel, K. (1936) Über die Länge von Beweisen. Ergebnisse eines mathematischen
Kolloquiums, 7, 23–24. English translation, ‘On The Length of Proofs’, in Davis
(1965), pp. 82–83.

Goodstein, R. L. (1957) Recursive Number Theory. Studies in Logic and the Foun-
dations of Mathematics. North-Holland.

Gordon, M. J. C. (1982) Representing a logic in the LCF metalanguage. In Neel,
D. (ed.), Tools and notions for program construction: an advanced course, pp.
163–185. Cambridge University Press.

Gordon, M. J. C., Hale, R., Herbert, J., von Wright, J., and Wong, W. (1994) Proof
checking for the HOL system. See Basin, Giunchiglia, and Kaufmann (1994), pp.
49–50.

Gordon, M. J. C. and Melham, T. F. (1993) Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press.

Gordon, M. J. C., Milner, R., and Wadsworth, C. P. (1979) Edinburgh LCF: A
Mechanized Logic of Computation, Volume 78 of Lecture Notes in Computer Sci-
ence. Springer-Verlag.

Harper, R., Honsell, F., and Plotkin, G. (1987) A framework for defining logics.
In Proceedings of the Second Annual Symposium on Logic in Computer Science,
Ithaca, NY, pp. 194–204. IEEE Computer Society Press.

Harrison, J. (1993) A HOL decision procedure for elementary real algebra. See
Joyce and Seger (1993a), pp. 426–436.

Harrison, J. (1995) Binary decision diagrams as a HOL derived rule. The Computer
Journal , 38. To appear.

Harrison, J. and Théry, L. (1993) Extending the HOL theorem prover with a com-
puter algebra system to reason about the reals. See Joyce and Seger (1993a), pp.
174–184.

van Heijenoort, J. (ed.) (1967) From Frege to Gödel: A Source Book in Mathematical
Logic 1879–1931. Harvard University Press.

37

Hoffmann, C. M. and O’Donnell, M. J. (1982) Pattern matching in trees. Journal
of the ACM , 29, 68–95.

Hoover, D. N. and McCullough, D. (1992) Verifying launch interceptor routines
with the asymptotic method. ORA internal report.

Howe, D. J. (1988) Computational metatheory in Nuprl. See Lusk and Overbeek
(1988), pp. 238–257.

Howe, D. J. (1992) Reflecting the semantics of reflected proof. In Aczel, P., Sim-
mons, H., and Wainer, S. (eds.), Proof Theory, pp. 229–250. Cambridge University
Press.

Huet, G. (1975) A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1, 27–57.

Huet, G. and Plotkin, G. (eds.) (1991) Logical Frameworks. Cambridge University
Press.

Huet, G. and Plotkin, G. (eds.) (1993) Logical Environments. Cambridge University
Press.

Huet, G., Plotkin, G., and Jones, C. (eds.) (1991) Proceedings of the Second
Workshop on Logical Frameworks. Available by FTP from ftp.dcs.ed.ac.uk

as export/bra/proc91.dvi.Z.

Joyce, J. J. and Seger, C. (eds.) (1993a) Proceedings of the 1993 International
Workshop on the HOL theorem proving system and its applications, Volume 780 of
Lecture Notes in Computer Science, UBC, Vancouver, Canada. Springer-Verlag.

Joyce, J. J. and Seger, C. (1993b) The HOL-Voss system: Model-checking inside a
general-purpose theorem-prover. See Joyce and Seger (1993a), pp. 185–198.

Jutting, L. S. van Bentham (1977) Checking Landau’s “Grundlagen” in the AU-
TOMATH System. Ph. D. thesis, Eindhoven University of Technology.

Kapur, D. (ed.) (1992) 11th International Conference on Automated Deduction, Vol-
ume 607 of Lecture Notes in Computer Science, Saratoga, NY. Springer-Verlag.

Knoblock, T. and Constable, R. (1986) Formalized metareasoning in type theory.
In Proceedings of the First Annual Symposium on Logic in Computer Science,
Cambridge, MA, USA, pp. 237–248. IEEE Computer Society Press.

Knuth, D. E. (1973) The Art of Computer Programming; Volume 3: Sorting and
Searching. Addison-Wesley Series in Computer Science and Information process-
ing. Addison-Wesley.

Kreisel, G. (1952) On the interpretation of non-finitist proofs — part II; interpreta-
tion of number theory; applications. The Journal of Symbolic Logic, 17, 43–58.

Kreisel, G. (1956) Some uses of metamathematics. British Journal for the Philoso-
phy of Science, 7, 161–173.

Kreisel, G. (1965) Mathematical logic. In Saaty, T. L. (ed.), Lectures on Modern
Mathematics, vol. III, pp. 95–195. Wiley.

Kreisel, G. (1967) Informal rigour and completeness proofs. In Lakatos, I. (ed.),
Problems in the Philosophy of Mathematics: Proceedings of the International
Colloquium in the Philosophy of Science, Bedford College, Regent’s Park, London,
pp. 138–171. North-Holland. See also the following discussion, pp. 172–186.

38

Kreisel, G. and Krivine, J.-L. (1971) Elements of mathematical logic: model theory
(Revised second ed.). Studies in Logic and the Foundations of Mathematics.
North-Holland. First edition 1967. Translation of the French ‘Eléments de logique
mathématique, théorie des modeles’.

Kreisel, G. and Lévy, A. (1968) Reflection principles and their use for establishing
the complexity of axiomatic systems. Zeitschrift für mathematische Logik und
Grundlagen der Mathematik , 14, 97–142.

Krivine, J.-L. (1971) Introduction to Axiomatic Set Theory. Synthese Library. D.
Reidel Publishing Company. Translation of the French ‘Théorie Axiomatique des
Ensembles’, first published by Presses Universitaires de France, Paris. Translated
by David Miller.

Kromodimoeljo, S. and Pase, W. (1994) Proof logging and proof checking in
NEVER. See Basin, Giunchiglia, and Kaufmann (1994), pp. 41.

Kumar, R., Kropf, T., and Schneider, K. (1991) Integrating a first-order automatic
prover in the HOL environment. See Archer, Joyce, Levitt, and Windley (1991),
pp. 170–176.

Kunen, K. (1980) Set Theory: An Introduction to Independence Proofs, Volume 102
of Studies in Logic and the Foundations of Mathematics. North-Holland.

Landau, E. (1966) Foundations of analysis: the arithmetic of whole, rational, irra-
tional, and complex numbers. A supplement to textbooks on the differential and
integral calculus (Third ed.). Chelsea Publishing Company. Translated from
German ‘Grundlagen der Analysis’ by F. Steinhardt.

Leśniewski, S. (1929) Grunzüge eines neuen Systems der Grundlagen der Mathe-
matik. Fundamenta Mathematicae, 14, 1–81. English translation, ‘Fundamentals
of a new system of the foundations of mathematics’ in Surma, Srzednicki, Barnett,
and Rickey (1992), vol. II, pp. 410–605.

Lévy, A. (1960) Principles of reflection in axiomatic set theory. Fundamenta Math-
ematicae, 49, 1–10.

Löb, M. H. (1955) Solution of a problem of Leon Henkin. Journal of Symbolic Logic,
20, 115–118.

Lusk, E. and Overbeek, R. (eds.) (1988) 9th International Conference on Automated
Deduction, Volume 310 of Lecture Notes in Computer Science, Argonne, Illinois,
USA. Springer-Verlag.

Maes, P. (1987) Concepts and experiments in computational reflection. In Mey-
rowitz, N. (ed.), Object-Oriented Programming Systems, Languages and Applica-
tions: Proceedings of OOPSLA’87, Orlando, Florida, pp. 147–155. Association
for Computing Machinery. Special issue of SIGPLAN Notices, vol. 22, number
12.

Maes, P. and Nardi, D. (eds.) (1988) Meta-Level Architectures and Reflection.
North-Holland.

Maharaj, S. and Gunter, E. (1994) Studying the ML module system in HOL. See
Melham and Camilleri (1994), pp. 346–361.

Martin-Löf, P. (1985) Constructive mathematics and computer programming. In
Hoare, C. A. R. and Shepherdson, J. C. (eds.), Mathematical Logic and Pro-
gramming Languages, Prentice-Hall International Series in Computer Science,
pp. 167–184. Prentice-Hall.

39

Mason, I. A. and Talcott, C. L. (1992) References, local variables and operational
reasoning. In Proceedings of the Seventh Annual IEEE Symposium on Logic in
Computer Science, Santa Cruz, CA, USA, pp. 186–197. IEEE Computer Society
Press.

Matthews, S. (1994) A theory and its metatheory in FS0. Publication unknown.

Matthews, S., Smaill, A., and Basin, D. (1991) Experience with FS0 as a framework
theory. See Huet, Plotkin, and Jones (1991), pp. 231–252. Reprinted in Huet and
Plotkin (1993), pp. 61–82.

Melham, T. F. (1989) Automating recursive type definitions in higher order logic.
In Birtwistle, G. and Subrahmanyam, P. A. (eds.), Current Trends in Hardware
Verification and Automated Theorem Proving, pp. 341–386. Springer-Verlag.

Melham, T. F. (1993) Higher Order Logic and Hardware Verification, Volume 31 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
A revision of the author’s PhD thesis.

Melham, T. F. and Camilleri, J. (eds.) (1994) Higher Order Logic Theorem Proving
and Its Applications: Proceedings of the 7th International Workshop, Volume 859
of Lecture Notes in Computer Science, Valletta, Malta. Springer-Verlag.

Milner, R. (1972) Implementation and applications of Scott’s logic for computable
functions. ACM SIGPLAN Notices, 7(1), 1–6.

Milner, R. and Tofte, M. (1991) Commentary on Standard ML. The MIT Press.

Milner, R., Tofte, M., and Harper, R. (1990) The Definition of Standard ML. The
MIT Press.

MOD, U. K. (1991) The procurement of safety critical software in defence equip-
ment. Interim Defence Standard 00-55, UK Ministry of Defence, Directorate of
Standardization, Kentigern House, 65 Brown Street, GLASGOW G2 8EX, UK.

Montague, R. (1966) Fraenkel’s addition to the axioms of Zermelo. See Bar-Hillel,
Poznanski, Rabin, and Robinson (1966), pp. 91–114. First edition (1966) pub-
lished by the Jerusalem Academic Press Ltd.

Moore, J (1994) Introduction to the OBDD algorithm for the ATP community.
Journal of Automated Reasoning , 12, 33–45.

Müller, G. H. (ed.) (1976) Sets and Classes: on the work by Paul Bernays, Num-
ber 84 in Studies in Logic and the Foundations of Mathematics. North-Holland.

Owre, S., Rushby, J. M., and Shankar, N. (1992) PVS: A prototype verification
system. See Kapur (1992), pp. 748–752.

Paris, J. and Harrington, L. (1991) A mathematical incompleteness in Peano Arith-
metic. See Barwise and Keisler (1991), pp. 1133–1142.

Paulson, L. C. (1987) Logic and computation: interactive proof with Cambridge
LCF. Number 2 in Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press.

Paulson, L. C. (1994) Isabelle: a generic theorem prover, Volume 828 of Lecture
Notes in Computer Science. Springer-Verlag. With contributions by Tobias Nip-
kow.

40

Perlis, D. (1985) Languages with self-reference I: Foundations. Artificial Intelli-
gence, 25, 301–322.

Perlis, D. (1988) Languages with self-reference II: Knowledge, belief, and modality.
Artificial Intelligence, 34, 179–212.

Pottinger, G. (1992) Completeness for the HOL logic: Preliminary report. Posted
to info-hol mailing list on 28th Jan 1992. Available in the info-hol archive by
anonymous FTP from ftp.cl.cam.ac.uk in directory hvg/info-hol-archive.

Ramsey, F. P. (1926) The foundations of mathematics. Proceedings of the London
Mathematical Society (2), 25, 338–384.

Reif, W. and Schönegge, A. (1994) A reflection mechanism in KIV using structured
specifications. See Basin, Giunchiglia, and Kaufmann (1994), pp. 19–21.

Resnik, M. D. (1974) On the philosophical significance of consistency proofs. Journal
of Philosophical Logic, 3, 133–147. Reprinted in Shanker (1988), pp. 115–130.

des Rivières, J. and Smith, B. C. (1984) The implementation of procedurally reflec-
tive languages. In Conference Record of the 1984 ACM Symposium on LISP and
Functional Programming, pp. 331–347. Association for Computing Machinery.

Robinson, A. (1963) Introduction to model theory and to the metamathematics of
algebra. Studies in Logic and the Foundations of Mathematics. North-Holland.

Rosser, J. B. (1936) Extensions of some theorems of Gödel and Church. Journal of
Symbolic Logic, 1, 87–91.

Rudnicki, P. (1992) An overview of the MIZAR project. Unpub-
lished; available by anonymous FTP from menaik.cs.ualberta.ca as
pub/Mizar/Mizar Over.tar.Z.

Rushby, J. (1991) Design choices in specification languages and verification systems.
See Archer, Joyce, Levitt, and Windley (1991), pp. 194–204.

Schneider, K., Kumar, R., and Kropf, T. (1992) Efficient representation and com-
putation of tableaux proofs. See Claesen and Gordon (1992), pp. 39–57.

Seidenberg, A. (1954) A new decision method for elementary algebra. Annals of
Mathematics, 60, 365–374.

Shankar, N. (1994) Metamathematics, Machines and Gödel’s Proof, Volume 38 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.

Shanker, S. G. (ed.) (1988) Gödel’s Theorem in Focus, Philosophers in Focus series.
Croom Helm.

Shapiro, S. (1991) Foundations without Foundationalism: a case for second-order
logic. Number 17 in Oxford Logic Guides. Clarendon Press.

Slind, K. (1991) An implementation of higher order logic. Technical Report 91-419-
03, University of Calgary Computer Science Department, 2500 University Drive
N. W., Calgary, Alberta, Canada, TN2 1N4. Author’s Masters thesis.

Slind, K. (1992) Adding new rules to an LCF-style logic implementation. See Clae-
sen and Gordon (1992), pp. 549–559.

Smith, B. C. (1984) Reflection and semantics in LISP. In Conference Record of
the 14th ACM Symposium on Principles of Programming Languages, pp. 23–35.
Association for Computing Machinery.

41

Smoryński, C. (1977) ω-consistency and reflection. In Colloque International de
Logique, Volume 249 of Colloques Internationaux, Clermont-Ferrand, pp. 167–
181. Éditions du Centre National de la Recherche Scientifique.

Smoryński, C. (1985) Self-Reference and Modal Logic. Springer-Verlag.

Smoryński, C. (1991) The incompleteness theorems. See Barwise and Keisler (1991),
pp. 821–865.

Surma, S. J., Srzednicki, J. T., Barnett, D. I., and Rickey, V. F. (eds.) (1992)
Stanis law Leśniewski: Collected Works. Kluwer Academic Publishers.

Syme, D. (1993) Reasoning with the formal definition of Standard ML in HOL. See
Joyce and Seger (1993a), pp. 43–60.

Szabo, M. E. (ed.) (1969) The collected papers of Gerhard Gentzen, Studies in Logic
and the Foundations of Mathematics. North-Holland.

Takeuti, G. (1978) Two applications of logic to mathematics. Number 13 in Publi-
cations of the Mathematical Society of Japan. Iwanami Shoten, Tokyo. Number
3 in Kano memorial lectures.

Talcott, C. and Weyhrauch, R. (1988) Partial evaluation, higher-order abstractions,
and reflection principles as system building tools. See Bjørner, Ershov, and Jones
(1988), pp. 507–529.

Tarski, A. (1936) Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philo-
sophica, 1, 261–405. English translation, ‘The Concept of Truth in Formalized
Languages’, in Tarski (1956), pp. 152–278.

Tarski, A. (ed.) (1956) Logic, Semantics and Metamathematics. Clarendon Press.

Taylor, P. (1988) Using Constructions as a metalanguage. LFCS Report Series
ECS-LFCS-88-70, Laboratory for Foundations of Computer Science, Department
of Computer Science, University of Edinburgh, The King’s Buildings, Edinburgh
EH9 3JZ, UK.

Troelstra, A. S. (1973) Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Number 344 in Lecture Notes in Mathematics. Springer-Verlag.
Second, corrected edition available, as ILCC Prepublication Series number X-93-
05, from the University of Amsterdam.

Turing, A. M. (1939) Systems of logic based on ordinals. Proceedings of the London
Mathematical Society (2), 45, 161–228. Reprinted in Davis (1965), pp. 154–222.

VanInwegen, M. and Gunter, E. (1993) HOL-ML. See Joyce and Seger (1993a), pp.
61–74.

Wand, M. and Friedman, D. P. (1986) The mystery of the tower revealed: A non-
reflective description of the reflective tower. In Conference Record of the 1986
ACM Symposium on LISP and Functional Programming, pp. 298–307. Associa-
tion for Computing Machinery.

Weil, A. (1946) Foundations of algebraic geometry, Volume 29 of AMS Colloquium
Publications. American Mathematical Society. Revised edition 1962.

Welinder, M. (1994) Towards efficient conversions by the use of partial evalua-
tion. Presented in poster session of 1994 HOL Users Meeting and only pub-
lished in participants’ supplementary proceedings. Available on the Web from
http://www.dcs.glasgow.ac.uk/~hug94/sproc.html.

42

Weyhrauch, R. W. (1980) Prolegomena to a theory of mechanized formal reasoning.
Artificial Intelligence, 13, 133–170.

Weyhrauch, R. W. (1982) An example of FOL using metatheory. In Loveland, D. W.
(ed.), Proceedings of the 6th Conference on Automated Deduction, Number 138
in Lecture Notes in Computer Science, New York, pp. 151–158. Springer Verlag.

Weyhrauch, R. W. and Talcott, C. (1994) The logic of FOL systems: Formulated
in set theory. In Jones, N. D., Hagiya, M., and Sato, M. (eds.), Logic, Language
and Computation: Festschrift in Honor of Satoru Takasu, Number 792 in Lecture
Notes in Computer Science, pp. 119–132. Springer Verlag.

Wong, W. (1993) Recording HOL proofs. Technical Report 306, University of Cam-
bridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge,
CB2 3QG, UK.

von Wright, J. (1994) Representing higher-order logic proofs in HOL. See Melham
and Camilleri (1994), pp. 456–470.

Wu Wen-tsün (1978) On the decision problem and the mechanization of theorem
proving in elementary geometry. Scientia Sinica, 21, 157–179.

Zhu, M.-Y. (1994) Computational reflection in PowerEpsilon. ACM SIGPLAN
Notices, 29(1), 13–19.

43

