
Verifying the accuracy of polynomial
approximations in HOL

John Harrison∗

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, England

Abstract. Many modern algorithms for the transcendental functions
rely on a large table of precomputed values together with a low-order
polynomial to interpolate between them. In verifying such an algorithm,
one is faced with the problem of bounding the error in this polynomial
approximation. The most straightforward methods are based on numer-
ical approximations, and are not prima facie reducible to a formal HOL
proof. We discuss a technique for proving such results formally in HOL,
via the formalization of a number of results in polynomial theory, e.g.
squarefree decomposition and Sturm’s theorem, and the use of a com-
puter algebra system to compute results that are then checked in HOL.
We demonstrate our method by tackling an example from the literature.

1 Introduction

Many algorithms for the transcendental functions such as exp, sin and ln in
floating point arithmetic are based on table lookup. Suppose that a transcen-
dental function f(x) is to be calculated. Values of f(ai) are prestored for some
approximately equally-spaced family of values ai. When f(x) is required, there
are enough ai that x will lie very close to one of them. By the use of some sort
of interpolation formula, whose exact nature depends on f , one can reduce the
problem of calculating f(x) to calculating some similar function g(x′) for a small
argument x′ = x − ak. For example, when calculating ex, we can evaluate ex′

and then multiply it by the prestored constant eak , since ex = eak+x′
= eakex′

.
Because x′ is so small, the appropriate interpolating function g(x′) can be ap-
proximated adequately by a fairly low-order polynomial. As part of a verification
effort for such an algorithm that will be reported elsewhere (Harrison 1997), we
need to prove some mathematical results about the accuracy of such polynomial
approximations.

Suppose we are interested in approximating a function f(x) over a closed
interval [a, b], i.e. {x | a ≤ x ≤ b}, by a polynomial of degree n. The natural
choice is the polynomial p(x) that, out of all polynomials of degree n, has the
best minimax error behaviour, i.e. minimizes the maximum magnitude of the
error:
∗ Work supported by the EPSRC grant ‘Floating Point Verification’

||f(x)− p(x)||∞ = supa≤x≤b|f(x)− p(x)|

A fundamental theorem of Chebyshev states that such a polynomial always
exists and has an interesting ‘equal ripple’ property: the maximum value of
|f(x)−p(x)| is attained at some n+2 points in the interval such that the sign of
f(x)− p(x) alternates between successive points. However the theorem does not
yield an analytical expression for the coefficients, or the maximum error. Cer-
tainly the truncated Taylor expansion is normally not the best approximation in
this sense. The truncated expansion in terms of Chebyshev polynomials is usually
close. In fact there are special cases, typically for rational functions, where the
coefficients in such a series are those for a best approximation, or can be con-
verted into them analytically — see Rivlin (1962) for example. But these are no
good for the functions we are interested in, and the only general methods known
are iterative numerical ones that rely on numerically approximating extrema as
part of the intermediate steps. The standard algorithm is usually attributed to
Remes (1934), and also often referred to as the exchange algorithm.

2 Our approach

In summary, then, it seems difficult to calculate the maximum error in the best
approximation by analytical methods. Besides, any value so found would need
slight but messy modifications when the coefficients are stored as approximate
floating point numbers; typically the required coefficients will not be exactly
representable. Instead, we allow the approximation to be calculated outside the
theorem prover by arbitrary means, with coefficients truncated to the form ac-
tually used. Then we prove a theorem characterizing the maximum error in this
polynomial approximation. Our procedure has the added advantage that we can
take from the literature the polynomial approximations actually considered by
other workers, without worrying about whether they coincide with the best ap-
proximations as we would calculate them.

The function f(x) that we are interested in approximating is typically fairly
well-behaved, and therefore so is the error e(x) = f(x) − p(x) for a polynomial
p(x). In particular, we can normally assume that e(x) is differentiable at least
once throughout the interval. Moreover, it is usually easy to arrive at a (pes-
simistic) bound B for the absolute value of the derivative e′(x). This isn’t the
case for pathological functions such as x sin(1/x) near zero, but for the basic
transcendentals, it is easy over the intervals typically considered. By the mean
value theorem (proved in HOL), this ensures that B is a fixed bound for uniform
continuity, meaning that:

∀x, x′ ∈ [a, b]. |e(x)− e(x′)| ≤ B|x− x′|

Therefore it is easy in principle to approximate the extremal values of e(x) to
an accuracy ε simply by dividing up the interval into a set of values ai at most
ε/B apart and finding the maximum of the e(ai). In fact, this method works

for a weaker notion of uniform continuity, normally assumed in the definition of
‘computable real function’, and for functions of more than one variable (Pour-El
and Richards 1980).

Nevertheless, the above is too expensive in practice, since it involves a large
number of calculations. This is all the more true in HOL, where a single evalua-
tion of a transcendental function to moderate accuracy can take many seconds
(Harrison 1996). A much more refined approach is to use the fact that if a func-
tion is differentiable in an interval, then its maximum and minimum are each
attained either at the endpoints of the interval or at one of the points of zero
derivative. This is easy to prove in HOL using the existing real analysis theory.
So if we can approximate the points of zero derivative to within ε/B, we can
get the maximum and minimum to accuracy ε by evaluating e(x) only at these
points.

However, we are now faced with the problem of locating the points of zero
derivative. It’s generally pretty easy in practice to approximate all the deriva-
tive’s roots xi numerically, e.g. using a Newton iteration. Provided they are sim-
ple roots, we can then find (rational) numbers αi and βi such that αi < xi < βi

and the signs of e′(αi) and e′(βi) differ. Now the intermediate value theorem
(already proved in HOL) assures us that there is a root between αi and βi. If
we also ensure that βi − αi ≤ ε/B this approximation serves for the later cal-
culations. However there are two difficulties. First, if xi is a double root, or in
general a root of even order, we will no longer have different signs for e′(αi)
and e′(βi) and it will be more complicated to prove in HOL that there is a root
between those points. A more serious problem is that we have no HOL proof
that we have located all the roots of e′(x), and without that we have no way of
proving our final result.

We are not aware of any simple general theory that can prove exactly how
many roots an equation involving transcendental functions has. Therefore the
above approach seems very difficult. Instead we modify it as follows.2 We approx-
imate f(x) by a truncated Taylor series t(x), choosing the degree so large that
truncation incurs an error well below the tightness of the bound we are trying
to achieve, say ε/2. (An alternative would be to truncate the Chebyshev expan-
sion, but although that might lead to a lower-degree polynomial, the analytical
details are messier.) Now instead of working with f(x) above we work with t(x),
and we then need only locate all the zeros of a polynomial e′(x). Moreover this
polynomial has rational coefficients, since floating point numbers are rational
and the coefficients in all the typical Taylor series are rational. This problem is
tractable. It is not hard to prove (see later) that a polynomial of degree n can
have at most n roots. If we find exactly n, our task is necessarily complete. This
favourable situation can’t be relied on, but in general we can calculate the exact
number of roots using a classical result due to Sturm. The main difficulties are
that we must prove this theorem in HOL and then apply it. In principle, it would
be possible to use the general quantifier elimination procedure for the reals that
has already been developed by Harrison (1996), but in practice it is far too slow.

2 Thanks to David Wheeler for this suggestion.

3 Polynomials in HOL

The ring R[X] of univariate polynomials over the reals may be characterized
abstractly via a universal property. The most natural concrete definition is that
it is the space of functions c : N → R such that for all sufficiently large n we have
cn = 0.3 We define the degree of c, written ∂(c) or deg(c), to be the least d such
that ∀i > d.ci = 0. The function c is thought of as Σ

deg(c)
i=0 cix

i, and this motivates
the definition of addition and negation componentwise, e.g. (b + c)i = bi + ci,
and multiplication by:

(bc)n = Σn
i=0bicn−i

Rather than define a type of polynomials in this way, we deal directly with
the functions R → R determined by polynomials. For a polynomial c, this is the
function that takes x to Σ

deg(c)
i=0 cix

i. Actually, in the case of the reals, nothing is
lost by this, since every polynomial function determines a unique polynomial, and
vice versa.4 We define a function poly that maps a list of coefficients [c0; . . . ; cn]
into the corresponding polynomial function λx. Σn

i=0cix
i:5

|- (poly [] x = &0) ∧ (poly (CONS h t) x = h + x * poly t x)

Note that poly is not injective, since lists with trailing zeros give the same
function, and so the salient notion of equality for polynomial functions arising
from two lists l1 and l2 is that poly l1 = poly l2, or equivalently ∀x.poly l1 x =
poly l2 x, rather than simply l1 = l2. If desired, we could introduce an equiv-
alence relation between lists corresponding to this notion. We can now define
arithmetic operations on lists by primitive recursion, including addition (++):

|- ([] ++ l2 = l2) ∧
(CONS h t ++ l2 = if (l2 = []) then CONS h t

else CONS (h + (HD l2) (t ++ (TL l2))))

multiplication by a constant (##):

|- (c ## [] = []) ∧
(c ## CONS h t = CONS (c * h) (c ## t))

and multiplication of two polynomials (**):

|- ([] ** l2 = []) ∧
(CONS h t ** l2 =

if t = [] then h ## l2 else h ## l2 ++ CONS (&0) (t ** l2))

3 We write cn rather than c(n), since it is probably more natural.
4 This depends on the fact that the underlying ring is infinite. For example in a 2-

element ring the polynomials x and x2 are distinct even though they both determine
the same function.

5 The symbol & is the injection N → R, and hence appears in real numeral constants.

From these, we can define negation and exponentiation in an obvious way:

|- neg p = --(&1) ## p

|- (p exp 0 = [&1]) ∧
(p exp (SUC n) = p ** p exp n)

We also need to define differentiation of polynomials. This can be expressed
purely as a formal manipulation of the list of coefficients, conveniently done via
an auxiliary function:

|- (diff_aux n [] = []) ∧
(diff_aux n (CONS h t) = CONS (&n * h) (diff_aux (SUC n) t))

|- diff l = if l = [] then [] else diff_aux 1 (TL l)

We then prove that all these operations do indeed work as expected on the
corresponding polynomial functions. These are all straightforward single or dou-
ble structural inductions on lists:

|- ∀p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x

|- ∀p c x. poly (c ## p) x = c * poly p x

|- ∀p x. poly (neg p) x = --(poly p x)

|- ∀x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x

|- ∀p n x. poly (p exp n) x = (poly p x) pow n

|- ∀l x. ((poly l) diffl (poly (diff l) x)) x

The last of these uses a notion from the HOL real analysis theory: it says
that poly l is locally differentiable at x with derivative poly (diff l) x there.
From the above results, it is straightforward to verify all the basic properties that
one would expect of polynomial functions, e.g. that addition and multiplication
are commutative, and that all polynomial functions are infinitely continuously
differentiable, and that the product rule holds for derivatives of polynomial prod-
ucts. Note a subtle point however: not all identities hold at the level of lists. For
example we have:

|- ([] ** [&1; &2] = []) ∧
([&1; &2] ** [] = [&0])

We do however define a function that deletes trailing zeros, and prove that it
does not affect the polynomial function. Proving the opposite, that if l1 and l2
give rise to the same polynomial function then their normalized forms are equal,
is harder, and it’s convenient to wait till we’ve proved the key property that a
nontrivial polynomial only has finitely many roots.

|- (normalize [] = []) ∧
(normalize (CONS h t) = if normalize t = [] then

if h = &0 then [] else [h]

else CONS h (normalize t))

|- ∀p. poly (normalize p) = poly p

If desired, we could redefine the addition operation to use this at the end,
and then all operations would return normalized results for normalized inputs.
However we do not do that, merely using it to define the notion of degree:

|- ∀p. degree p = PRE (LENGTH (normalize p))

Although we don’t really want to rely on representation details, it’s very
convenient to get us started to prove one key result at the level of lists, rather
than polynomial functions. This is that if a polynomial derived from a nonempty
list is divided by a linear polynomial, there is a constant remainder:

|- ∀t h. ∃q r. CONS h t = [r] ++ [-- a; &1] ** q

(Note that [-- a; &1] is thought of as ‘x− a’.) From this, we find that if a
is a root of a nontrivial polynomial, then the polynomial is divisible by (x− a)
at the level of lists:

|- ∀a p. (poly p a = &0) = (p = []) ∨ (∃q. p = [-- a; &1] ** q)

Now since we also have:

|- ∀q. LENGTH ([-- a; &1] ** q) = SUC (LENGTH q)

it is a straightforward induction on the length of a generating list to show that a
nonzero polynomial can only have finitely many roots, bounded, in fact, by the
length of the list, and therefore by the degree of a normalized polynomial:

|- ∀p. ¬(poly p = poly [])

=⇒ (∃i. ∀x. (poly p x = &0)

=⇒ (∃n. n <= (LENGTH p) ∧ (x = i n)))

or more abstractly, using a notion from the HOL set theory:

|- ∀p. ¬(poly p = poly []) =⇒ FINITE {x | poly p x = &0}

Several key results flow immediately from this fact. The polynomial ring has
no zerodivisors, i.e. if the product of two polynomials is trivial, so is one of the
factors. Hence cancellation holds. We can also get a more constructive definition
of what it means for a polynomial to be zero.

|- ∀p q. (poly (p ** q) = poly []) =

(poly p = poly []) ∨ (poly q = poly [])

|- ∀p q r. (poly (p ** q) = poly (p ** r)) =

(poly p = poly []) ∨ (poly q = poly r)

|- ∀p. (poly p = poly []) = FORALL (λc. c = &0) p

where here, and later, we use the logical operations on lists defined by:

|- (FORALL P [] = T) ∧
(FORALL P (CONS h t) = P h ∧ FORALL P t)

|- (EX P [] = F) ∧
(EX P (CONS h t) = P h ∨ EX P t)

After this, there are no real mathematical difficulties left in getting the results
we want; it is merely necessary to accumulate a number of lemmas. Many of these
are concerned with divisibility of polynomials, which we define, no longer at the
list level, by:

|- p1 divides p2 = ∃q. poly p2 = poly (p1 ** q)

There are various obvious properties collected, e.g:

|- ∀p. p divides p

|- ∀p q r. p divides q ∧ q divides r =⇒ p divides r

|- ∀p q m n. p exp n divides q ∧ m <= n =⇒ p exp m divides q

|- ∀p q r. p divides q ∧ p divides r =⇒ p divides q ++ r

|- ∀p q r. p divides q ∧ p divides q ++ r =⇒ p divides r

|- ∀p q. (poly p = poly []) =⇒ q divides p

A slightly less trivial property is that the linear polynomials are prime ele-
ments in the polynomial ring:

|- ∀a p q. [a; &1] divides p ** q =

[a; &1] divides p ∨ [a; &1] divides q

A major result in what follows is that for each nonzero polynomial p and
real number a, we have a welldefined ‘order’ n for a such that p(x) is divisible
by (x− a)n but not by (x− a)n+1. Hence a is a root of p precisely if its order is
nonzero. The definition as a choice term is trivial:

|- order a p =

εn. [-- a; &1] exp n divides p ∧
¬([-- a; &1] exp SUC n divides p)

Some tedious but straightforward proofs are required to show that it has the
required properties for any nontrivial polynomial:

|- ∀p a. ¬(poly p = poly [])

=⇒ ([-- a; &1] exp (order a p)) divides p ∧
¬(([-- a; &1] exp (SUC(order a p))) divides p)

|- ∀p a. (poly p a = &0) = (poly p = poly []) ∨ ¬(order a p = 0)

|- ∀p a n. [-- a; &1] exp n divides p =

(poly p = poly []) ∨ n <= order a p

|- ∀p a. ¬(poly p = poly [])

=⇒ (∃q. (poly p = poly ([-- a; &1] exp (order a p) ** q)) ∧
¬([-- a; &1] divides q))

4 Squarefree decomposition

Given a polynomial p(x), we are interested in locating its roots. As we have
already mentioned, given an isolating interval [α, β] for a root such that p(α)
and p(β) have opposite signs, we can straightforwardly prove in HOL from the
intermediate value theorem and the known continuity of polynomials that there
must be at least one root in the interval. However, this doesn’t work for roots
of even order (in the precise sense of ‘order’ we have defined above), since in
that case the function has the same sign at either side of the root. This is
one reason why we would prefer the polynomial to have no multiple real roots.
Another reason is that Sturm’s theorem is easier to prove for polynomials without
multiple real roots — this is actually the only form we have proved in HOL.

Therefore, it’s convenient to start off by finding the so-called ‘squarefree
decomposition’ of p. To get this, we divide p by gcd(p, p′) where p′ is the deriva-
tive polynomial. It is easy to see that the resulting polynomial has the same
roots but that they are all of order 1. If a is a root of p(x) of order n + 1,
then we have p(x) = (x − a)n+1q(x) for q(a) 6= 0. Differentiating, we have
p′(x) = (n + 1)(x − a)nq(x) + (x − a)n+1q′(x). This is obviously divisible by
(x−a)n but not by (x−a)n+1, for that would, by the primality of linear factors,
imply that (x − a) divides q(x), a contradiction since we assumed q(a) 6= 0.
Hence a has order min(n, n+1) = n in gcd(p, p′), and so order 1 in p/gcd(p, p′).

We start by defining what it means for a polynomial to be ‘squarefree’, i.e.
to have no quadratic factors. Actually, since we only consider real factors, we
prepend the letter ‘r’:

|- ∀p. rsquarefree p =

¬(poly p = poly []) ∧ (∀a. (order a p = 0) ∨ (order a p = 1))

We prove without much trouble that this is equivalent to the fact that p
and p′ have no common factors, and deduce a simple decomposition theorem for
squarefree polynomials:

|- ∀p. rsquarefree p =

(∀a. ¬((poly p a = &0) ∧ (poly (diff p) a = &0)))

|- ∀p a.

rsquarefree p ∧ (poly p a = &0)

=⇒ (∃q. (poly p = poly ([-- a; &1] ** q)) ∧ ¬(poly q a = &0))

Now we need to show that dividing by gcd(p, p′) always converts a polynomial
p into a squarefree one with the same roots. Rather than defining gcd(p, p′)
explicitly in HOL, we will simply assume some d such that the following hold
for some polynomials r and s, q and e:

p = qd

p′ = ed

d = rp + sp′

It is clear that this constrains d to be a gcd of p and p′, since any other common
divisor of p and p′ must divide d. We can calculate the gcd externally together
with the coefficients r and s, using the gcdex function of the Maple computer
algebra system, and get q and e via its division function. These are then plugged
into the following HOL theorem for checking.

|- ∀p q d e r s.

¬(poly (diff p) = poly []) ∧
(poly p = poly (q ** d)) ∧
(poly (diff p) = poly (e ** d)) ∧
(poly d = poly (r ** p ++ s ** diff p))

=⇒ rsquarefree q ∧
(∀a. (poly q a = &0) = (poly p a = &0))

The proof of this is not too difficult, by deriving a couple of additional facts
about how orders of roots interact with operations:

|- ∀a p q.

¬(poly (p ** q) = poly [])

=⇒ (order a (p ** q) = order a p + order a q)

|- ∀p a.

¬(poly (diff p) = poly []) ∧ ¬(order a p = 0)

=⇒ (order a p = SUC(order a (diff p)))

Now fix a and consider the orders of a in the various polynomials we consider
above. We have, assuming p and p′ are nontrivial (the latter obviously implies
the former):

ordera(p) = ordera(q) + ordera(d)
ordera(p′) = ordera(e) + ordera(d)
ordera(d) ≥ min(ordera(p′), ordera(p))

These together imply (over the natural numbers) that ordera(q) = 0 if ordera(p) =
0 and ordera(q) = 1 otherwise. The proof is done automatically by HOL’s linear
natural number arithmetic package, after case-splitting over whether ordera(p)
is zero and throwing in the fact that ordera(p) = ordera(p′) + 1 in the latter
case.

5 Sturm’s theorem

Sturm’s theorem (Benedetti and Risler 1990) gives a precise figure for the number
of (distinct) real roots a polynomial has in an interval. Assuming the polynomial
has rational coefficients and the endpoints of the interval are rational, it requires
only rational arithmetic. The key concept is a Sturm sequence for a polynomial
p. This is a finite sequence of polynomials, with p as the first element that
has certain important properties. Rather than deal abstractly in terms of these
properties, we use the ‘standard’ Sturm sequence directly. This starts with p0 = p
and p1 = p′ and thereafter proceeds by division, with a change of sign, so that
pi = qipi+1 − pi+2 for some quotient qi, and deg(pi+2) < deg(pi+1). Actually
we can relax this slightly by rescaling the polynomials to keep the coefficients
as simple as possible, provided we do not change their signs. We thus define the
property of being a Sturm sequence in HOL as follows.

|- (STURM p p’ [] = p’ divides p) ∧
(STURM p p’ (CONS g gs) = (∃k. &0 < k ∧ p’ divides (p ++ k ## g)) ∧

degree g < degree p’ ∧
STURM p’ g gs)

Note that we separate out the first two elements of the list, to give simpler
manipulation, and do not yet assume that p′ is the derivative of p. We next
define the number of variations in sign of a finite sequence of numbers (or a list
in our formalization), not counting zeros:

|- (varrec prev [] = 0) ∧
(varrec prev (CONS h t) =

if prev * h < &0 then SUC (varrec h t)

else if h = &0 then varrec prev t else varrec h t)

|- variation l = varrec (&0) l

Sturm’s theorem involves calculating the number of variations in sign of the
polynomials in a Sturm sequence, evaluated at a point. It asserts that the number
of roots of p between a and b is the difference in this variation when calculated at
a and b respectively. The proof proceeds by analyzing how this variation changes
across roots of polynomials in the Sturm sequence. We can break the problem
down so that we only need to consider one root at a time. It is easy to prove by
induction on the definition of finiteness that any finite set of reals can be laid
out in an ordered linear sequence i0, . . . , iN−1:

|- ∀s. FINITE s

=⇒ (∃i N.

(∀x. x IN s = (∃k. k < N ∧ (x = i k))) ∧
(∀k. i k < i (SUC k)))

The set of zeros of a list of nontrivial polynomials is finite (optionally in any
interval, since any subset of a finite set is finite), by list induction, so we can
find such an enumeration of the points that are roots of any of the polynomials
in a sequence. Now by considering the mid-points between adjacent ik, we can
split up an interval [a, b] into intervals so that there is at most one root in each
(though it may be a root of more than one of the polynomials at once). This is
actually quite tedious to prove, since we need to take care at the endpoints.

Now we can confine ourselves to intervals containing at most one root, and
such that if the root is one of the endpoints, it is not a root of the starting
polynomial p. (This is ruled out for the two endpoints a and b by hypothesis;
for internal endpoints this holds for the other polynomials too.) We just need to
prove that if such an interval contains no root of p, the variation is the same at
both ends, while if there is a root, it decreases by 1 in passing from left to right.

The first is pretty easy, under fairly weak hypotheses. Consider an interval
[a, b] and suppose that pi(c) 6= 0 but pi+1(c) = 0. Since we have pi = qipi+1 −
kpi+2 for positive k, this means that pi(c) and pi+2(c) have opposite signs. Since
c is the only possible root, neither pi nor pi+2 changes sign throughout the
interval, so they have opposite signs at both ends. Now the signs of pi+1(a) and
pi+1(b) make no difference to the overall variation between pi and pi+2, which
is one in each case. This argument is easily formalized in HOL using induction,
though not pure structural induction. Depending on whether the head element
of a list is zero, we either move to the consideration of a list one element or two
elements shorter, so we need to perform wellfounded induction on the length of
the list. The final result is:

|- ∀l f f’ c.

STURM f f’ l ∧ a <= c ∧ c <= b ∧
(∀x. a <= x ∧ x <= b ∧

EX (λp. poly p x = &0) (CONS f (CONS f’ l))

=⇒ (x = c)) ∧
¬(poly f c = &0)

=⇒ (varrec (poly f a) (MAP (λp. poly p a) (CONS f’ l)) =

varrec (poly f b) (MAP (λp. poly p b) (CONS f’ l)))

We just need to prove that if the starting polynomial does have a root in
the interval, then the variation changes by 1. Now we use an assumption that
the starting polynomial is squarefree. Therefore the derivative has no zero in
the interval, and so by the above lemma we get no change in variation from
the tail of the sequence. We need only consider the change in sign from p(x) to
p′(x). In fact there must be exactly one change of sign, because p crosses the axis
precisely once, the root being simple. This is easily formalized using the mean
value theorem: the derivative does not change sign over the interval, so either the
derivative is positive everywhere and the function goes from negative to positive,
or vice versa. In either case the result follows. Plugging this together with the
lemma for the rest of the sequence, we get the result for a single interval, and
so by summing over the intervals, we get the final result:

|- ∀f a b l.

a <= b ∧ ¬(poly f a = &0) ∧ ¬(poly f b = &0) ∧
rsquarefree f ∧ STURM f (diff f) l

=⇒ {x | a <= x ∧ x <= b ∧ (poly f x = &0)} HAS_SIZE

(variation (MAP (λp. poly p a) (CONS f (CONS (diff f) l))) -

variation (MAP (λp. poly p b) (CONS f (CONS (diff f) l))))

where, because the HOL cardinality function is total and hence does not encode
finiteness, we use:

|- s HAS_SIZE n = FINITE s ∧ (CARD s = n)

The main result also holds without the restriction that the starting polyno-
mial be squarefree, but it is more complicated to prove (using the above square-
free case as a lemma) and we do not need it. However, note that the Sturm
sequence is up to rescaling a Euclidean division sequence for the polynomial and
its derivative. Hence we expect the last term of the Sturm sequence to be a
constant polynomial, and this itself implies that the original polynomial must
have been squarefree without a separate check. Thus we can sharpen the above
slightly, if we rule out a few degenerate cases. The form we actually use, as
proved in HOL, is:

|- ∀f a b l d.

a <= b ∧
¬(poly f a = &0) ∧
¬(poly f b = &0) ∧
¬(poly (diff f) = poly []) ∧
STURM f (diff f) l ∧
¬(l = []) ∧
(LAST l = [d]) ∧
¬(d = &0)

=⇒ {x | a <= x ∧ x <= b ∧ (poly f x = &0)} HAS_SIZE

variation (MAP (λp. poly p a) (CONS f (CONS (diff f) l))) -

variation (MAP (λp. poly p b) (CONS f (CONS (diff f) l)))

6 Applications

We will consider an example taken from a paper by Tang (1989) giving algo-
rithms for the exponential function in single and double IEEE standard arith-
metic. They use polynomials to approximate ex−1 over the range [− ln(2)

64 , ln(2)
64]

for the respective precisions. The paper gives the coefficients as IEEE numbers
in hexadecimal form. Translated into rational numbers, the approximating poly-
nomial for single precision is:

psingle(x) = x +
8388676

224
x2 +

11184876
226

x3

Tang asserts an error of approximately 2−33.2 for the approximation, obtained
by ‘locating numerically all the extreme points of et − 1 − p(t) in the interval
[−0.010831, 0.010831]’. It is this result that we will formalize in HOL. Consider
the error in truncated Taylor expansions. There are several versions of Taylor’s
theorem proved in the HOL real analysis theory, and the most convenient one
for our purposes is the one for infinitely everywhere differentiable functions:

|- ∀f diff.

(diff 0 = f) ∧ (∀m x. (diff m diffl diff (SUC m) x) x)

=⇒ (∀x n.

∃t. abs t <= abs x ∧
(f x =

Sum (0,n) (λm. diff m (&0) / &(FACT m) * x pow m) +

diff n t / &(FACT n) * x pow n))

Note that Sum (0,n) f means Σn−1
i=0 fi, so the above says that for some t

with |t| ≤ |x| we have

f(x) = (Σn−1
i=0

f (i)(0)
i!

xi) +
f (n)(t)

n!
xn

We can sharpen the above to |t| < |x| when x 6= 0 and n 6= 0, but that is
unnecessary here. Instantiating to the exponential function and using the known
derivative, we get:

|- ∀x n. ∃t. abs t <= abs x ∧
(exp x = Sum (0,n) (λm. x pow m / &(FACT m)) +

exp t / &(FACT n) * x pow n)

that is, ex = (Σn−1
i=0 xi/i!)+etxn/n!. We need only consider x with |x| ≤ ln(2)/64.

In this case, et for |t| ≤ |x| is almost 1, so the maximum error from truncating
the series before the nth term is approximately εn = (ln(2)/64)n/n!. We can see
that an additional 3 terms gives an error of about ε7 = 2−58, easily small enough
for our purposes. 6

6 Note that the n = 4 value indicates that the minimax approximation we are con-
cerned with is 5 times as accurate as the truncated Taylor series of the same order,
a difference that suffices to make a significant change to the overall error in the
algorithm.

t(x) = x +
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5 +

1
720

x6

Hence the error polynomial e(x) = t(x)− psingle(x) is:

e(x) = − 17
4194304

x2 − 49
50331648

x3 +
1
24

x4 +
1

120
x5 +

1
720

x6

Differentiating with respect to x yields:

e′(x) = − 17
2097152

x− 49
16777216

x2 +
1
6
x3 +

1
24

x4 +
1

120
x5

This is already squarefree, so the squarefree decomposition is trivial. It has
fewer real roots than its full complement of 5, just 3 of them, all in the interval
of interest. Hence we need to use Sturm’s theorem. The Sturm sequence given by
Maple, after rescaling the original derivative and all the members of the sequence
to make all the coefficients integers, can easily be checked in HOL by expanding
the definitions and doing arithmetic. We can then deduce from Sturm’s theorem
that there are exactly 3 real roots in the interval concerned. First, we want to
isolate them to a reasonable accuracy. For the accuracy of the polynomial bound
to be well above the tightness of the error bound required, we choose ε = 2−48.
It is straightforward to give a crude upper bound on the derivative using the
following theorem:

|- ∀x k p. abs x <= k =⇒ abs (poly p x) <= poly (MAP abs p) k

and we duly find that B = 2−21 suffices. Therefore we want to isolate the roots
to within ε/B = 2−27. Maple offers the following isolating intervals when given
the required accuracy: [0, 0], [936399227 , 936400

227] and [−935680
227 , −935679

227].
We can now prove that an ordered list of these isolating intervals does indeed

include all the roots, using the following general lemma:

|- ∀l a b.

{x | a <= x ∧ x <= b ∧ (poly p x = &0)} HAS_SIZE (LENGTH l) ∧
recordered a l b ∧
FORALL (λ(u,v). poly p(u) * poly p(v) <= &0) l

=⇒ ∀x. a <= x ∧ x <= b ∧ (poly p(x) = &0)

=⇒ EX (λ(u,v). u <= x ∧ x <= v) l

where:

|- (recordered a [] b = a <= b) ∧
(recordered a (CONS h t) b =

a < FST h ∧ FST h <= SND h ∧ recordered (SND h) t b)

As we said, there is already a theorem in HOL asserting that we can maximize
a differentiable function in an interval by considering values only at the endpoints
and points of zero derivative:

|- ∀f f’ a b K.

(∀x. a <= x ∧ x <= b =⇒ (f diffl (f’ x)) x) ∧
abs(f a) <= K ∧ abs(f b) <= K ∧
(∀x. a <= x ∧ x <= b ∧ (f’(x) = &0) =⇒ abs(f x) <= K)

=⇒ (∀x. a <= x ∧ x <= b =⇒ abs(f x) <= K)

This can be modified to take account of our approximate knowledge of the
points of zero derivative:

|- ∀f f’ l a b.

(∀x. a <= x ∧ x <= b =⇒ (f diffl f’(x)) x) ∧
(∀x. a <= x ∧ x <= b =⇒ abs(f’(x)) <= B) ∧
abs(f a) <= K + B * e ∧ abs(f b) <= K + B * e ∧
(∀x. a <= x ∧ x <= b ∧ (f’(x) = &0)

=⇒ EX (λ(u,v). u <= x ∧ x <= v) l) ∧
FORALL (λ(u,v). a <= u ∧ v <= b ∧

abs(u - v) <= e ∧ abs(f(u)) <= K) l

=⇒ ∀x. a <= x ∧ x <= b =⇒ abs(f(x)) <= K + B * e

We now have all the ingredients required by this theorem, so we get the final
result for the error in approximating the higher degree Taylor series. We now
include the error from the Taylor truncation, using the following theorem to give
a crude bound on the error term:

|- ∀x. &0 <= x ∧ x <= inv(&2) =⇒ exp(x) <= &1 + &2 * x

Thus we get the final result:

|- ∀x. --(&10831) / &1000000 <= x ∧ x <= &10831 / &1000000

=⇒ abs((exp(x) - &1) - (x + (&8388676 / &2 pow 24) * x pow 2 +

&11184876 / &2 pow 26 * x pow 3))

<= (&23 / &27) * inv(&2 pow 33)

7 Conclusion and future work

This paper illustrates how we can incorporate an important form of numerical
reasoning into a formal HOL proof. This is appealing since it allows us to conduct
the whole verification in a single system, without relying on the correctness of
external tools or stepping outside the usual logic. At the same time, the proof
is nontrivial, with the development of the material described here taking several
weeks’ work. In addition, the eventual runtimes are large (over an hour on a
fast machine) owing to the extensive need for numerical calculation, which is
rather slow when done by pure inference. The difficulty in both these senses is
all the more striking when one considers that an informal error analysis of this
numerical approximation occupies about two lines of the source paper.

One of the motivations behind ACL2, the successor to NQTHM (Boyer and
Moore 1979), is that calculation is an important part of proof in verifications,
and deserves to be a key consideration in the design of theorem provers. In one
sense, our work suggests that an ordinary theorem prover may be adequate for
the task, but it would obviously be preferable to make the calculations here much
faster. This could certainly be done in ACL2, which can perform rational arith-
metic in proofs at almost the same speed as in the host machine. Nevertheless,
ACL2 would not be particularly convenient for the whole proof, since it does not
support real numbers. It would be impossible to use many of the proofs here in
ACL2, or even to state our final theorem, without artificial paraphrases.

A key objective of future work is to automate this class of proofs. We have
already automated most of the internal manipulations such as multiplying poly-
nomials, and it would not be difficult to package up the polynomial-bounding as
an automatic HOL derived rule. Then we could use it in the future for say ln or
sin with minimal effort. The very final part, using the error in the Taylor series,
could also be automated, but only with more work. There are optimizations that
can be made on a case-by-case basis, which would also be tricky to automate.
For example, since the example derivative above only has 3 real roots in total,
we could evaluate the variation at ±1 and save some rational arithmetic.

The extension to rational functions would be fairly straightforward since the
zeros of these can be located in much the same way. We may consider this if we
ever need to deal with rational functions in our future verifications.

References

Benedetti, R. and Risler, J.-J. (1990) Real algebraic and semi-algebraic sets.
Hermann, Paris.

Boyer, R. S. and Moore, J S. (1979) A Computational Logic. ACM Monograph
Series. Academic Press.

Harrison, J. (1997) Floating point verification in HOL Light: The exponential
function. Unpublished draft, to appear.

Harrison, J. (1996) Theorem proving with the real numbers. Technical Report
408, University of Cambridge Computer Laboratory, New Museums Site, Pem-
broke Street, Cambridge, CB2 3QG, UK. Author’s PhD thesis.

Pour-El, M. B. and Richards, J. I. (1980) Computability in Analysis and Physics.
Perspectives in Mathematical Logic. Springer-Verlag.

Remes, M. E. (1934) Sur le calcul effectif des polynomes d’approximation de
Tchebichef. Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences, 199, 337–340.

Rivlin, T. J. (1962) Polynomials of best uniform approximation to certain ratio-
nal functions. Numerische Mathematik , 4, 345–349.

Tang, P. T. P. (1989) Table-driven implementation of the exponential function
in IEEE floating-point arithmetic. ACM Transactions on Mathematical Soft-
ware, 15, 144–157.

This article was typeset using the LATEX macro package with the LLNCS2E class.

