
A Mizar Mode for HOL

John Harrison

Åbo Akademi University, Department of Computer Science
Lemminkäisenkatu 14a, 20520 Turku, Finland

Abstract. The HOL theorem prover is implemented in the LCF manner. All in-
ference is ultimately reduced to a collection of very simple (forward) primitive
inference rules, but by programming it is possible to build alternative means of
proving theorems on top, while preserving security. Existing HOL proofs styles
are, however, very different from those used in textbooks. Here we describe the
addition of another style, inspired by Mizar. We believe the resulting system com-
bines the secure extensibility and interactivity of HOL with Mizar’s readability
and lack of logical prescriptiveness. Part of our work involves adding new facili-
ties to HOL for first order automation, since this allows HOL to be more flexible,
as Mizar is, over the precise logical connection between steps.

1 HOL

The HOL theorem prover [13] is descended from Edinburgh LCF. While adding fea-
tures of its own like stress on definitional extension as a reliable means of theory de-
velopment, it remains true to the basic idea of the LCF project. This is to reduce all
reasoning to a few simple primitive (usually forward) inference rules, but to allow a full
programming language to automate higher level ‘derived rules’, broken down into these
primitives. For example, HOL includes derived rules for linear arithmetic, tautologies
and inductive definitions. Ordinary users can simply invoke them without understanding
their implementation, but because they do ultimately decompose to simple primitives,
can feel confident in their correctness. Should they need other, perhaps application-
specific, proof procedures in the course of their work, they can write them using the
same methodology.

This combination of reliability and flexibility is the outstanding feature of LCF sys-
tems, and there is usually not a serious loss of efficiency in derived rules [17]. Some of
these derived rules may present the user with a quite different view of theorem proving
from that implemented in the logical core. Even in the original LCF publication [14]
we find the following:

The emphasis of the present project has been on discovering how to exploit the
flexibility of the metalanguage to organise and structure the performance of
proofs. The separation of the logic from its metalanguage is a crucial feature of
this; different methodologies for performing proofs in the logic correspond to
different programming styles in the metalanguage. Since our current research
concerns experiments with proof methodologies – for example, forward proof
versus goal-directed proof – it is essential that the system does not commit us
to any fixed style.



To some extent, this theoretical flexibility is already a practical reality in HOL.
In addition to the basic ‘machine code’ of forward primitive rules, there are several
supported proof styles, all of which fit together smoothly:

– There are numerous more complicated forward proof rules, which can make the
business of theorem proving much more palatable than it would be using the prim-
itives. However, before each inference rule is applied, it’s necessary to muster all
the required hypotheses exactly, and either include their proofs verbatim, or bind
them to names and use those. It’s very hard to do proofs in this way unless the exact
structure of the proof is already planned before starting to type.

– Backward, tactical proof was one of the most influential ideas in the LCF project.
Most large HOL proofs are done in this way, perhaps because the required hypothe-
ses appear naturally and determine the proof structure automatically. It also allows
more convenient use of local assumptions and choosing variables. This flexibility
is further increased if the tactic mechanism allows ‘metavariables’ whose instanti-
ations can be delayed [32, 26].

– Equational reasoning is one of the most widely used parts of the HOL system,
largely thanks to an elegant and flexible implementation [25]. Depth conversions
and rewriting tools allow the convenient iterated instantiation and use of equations.
There are also straightforward means of handling associative and commutative op-
erators.

– Window inference [29] is a methodology for organizing localized proof efforts.
Users may focus on a particular subterm or subformula and transform it, exploiting
contextual information that comes from its position in the whole formula. For ex-
ample, when transforming ψ into an equivalent formula ψ′ in the expression φ∧ψ,
we may assume φ. Grundy [15] both mechanized window inference in HOL and
generalized it to arbitrary preorder relations, such as implication and the refinement
relation on programs.

– Prasetya [27] has written a package to support two features of textbook proofs: the
use of a series of lemmas, and the use of iterated equations (we shall have more to
say about this latter issue later).

– Specialized decision procedures for various particular domains such as linear arith-
metic [6] are also available, as well as a number of derived definitional mechanisms
[23, 24].

Most of these styles suffer from being rather low-level, making explicit too many
details that are normally elided. More precisely, they are too logically prescriptive, de-
manding that even the most obvious steps be mediated by the exactly appropriate logi-
cal rule(s). This isn’t just a problem because doing it is tedious. A beginner might well
simply not be able to drive the system well enough to get it to do the requisite steps.
For example, many HOL users find manipulation of assumptions difficult. Decision
procedures, on the other hand, are perhaps too high-level, compressing into one line
substantial mathematical detail.

Whether too high-level or too low-level, all the proof styles suffer from one common
failing: the proofs are expressed using complicated combinations of arcane higher order
functions in a computer programming language. Though it’s easy to guess what many of



them do, a HOL script looks nothing like a textbook proof. Even HOL experts cannot
really read a typical HOL proof without replaying it in a session. Annotating proofs
with intermediate theorems, as done by Paul Jackson in Nuprl, certainly makes them
more readable. However it also causes them to expand substantially, and gives a rather
artificial separation between the proof instructions to the machine and the parts that are
intended for human consumption.

2 The Mizar Proof Script Language

The Mizar theorem prover,1 developed by a team in the Białystok branch of Warsaw
University under the leadership of Andrzej Trybulec, is quite different from HOL in
almost every respect. It was designed primarily for the formalization of mainstream
mathematical proofs rather than for verification applications; it is based on Tarski-
Grothendieck set theory rather than simple type theory, and the proof checker is built on
entirely different lines. However we believe that its proof script language provides many
interesting ideas and lessons. We do not claim it is ideal for all applications; standard
HOL styles may for example be better in many verification tasks, or where complex
decision procedures are to be used. But for its original purpose of proofs in pure math-
ematics, it has a lot to recommend it — the enormous amount of mathematics that has
been proof checked in the Mizar system stands as a testament to that.

2.1 Presenting natural deduction proofs

Systems of Natural Deduction seem to provide quite a direct rendering of typical math-
ematical reasoning, including common idioms such as reasoning from assumptions,
performing case splits, etc. The actual format of natural deduction proofs as usually
presented is, however, rather different from that of textbook proofs. The Mizar proof
language improves things by associating deduction steps with English constructs that
can be put together into a fairly conventional mathematical proof. For example:

– ‘let x be α; <proof of φ[x] >’ is a proof of ∀x : α. φ[x].
– ‘assume φ; <proof of ψ >’ is a proof of φ⇒ ψ.
– ‘take a; <proof of φ[a] >’ is a proof of ∃x. φ[x].

These and other similar constructs define the ‘proof skeleton’, i.e. the overall logical
structure of the proof.

2.2 Stepping beyond natural deduction

Though natural deduction captures many mathematical idioms, it is not ideal for ev-
ery application. For example, equality reasoning is usually done using certain obvious
techniques like substitution and rewriting, rather than by explicitly stringing together
axioms for the equivalence and congruence properties of equality via natural deduc-
tion rules. And at the formula level, it is sometimes more attractive to reason directly
1 See the Mizar Web page: ‘http://web.cs.ualberta.ca:80/˜piotr/Mizar/’.



with logical equivalence rather than decompose it to two implications [37].2 In fact in
HOL there is already a great emphasis on the use of equivalence: it is just equality on
booleans, so all the powerful equational proof techniques like rewriting are available to
exploit it.

In fact, one often wants to make very simple logical steps that do not correspond
to individual natural deduction rules. Notwithstanding their theoretical interest, natural
deduction rules are not sacrosanct. For example passing from A ∨ B and ¬A to B (an
instance of resolution) is at least as ‘natural’ as natural deduction ∨-elimination, let
alone the sequence of ND steps needed for the above inference. In general we might
be completely uninterested in the exact series of inferences, e.g. we might wish to pass
from a = 0x to a = 0 using the theorem

∀x y. xy = 0 ≡ x = 0 ∨ y = 0

without writing out a full natural deduction derivation. All this suggests beefing up
natural deduction with the ability to make rather simple ‘obvious’ jumps, and this is
precisely what the Mizar system does. The user may write ‘φ byA1, . . . ,An’, meaning
that φ is considered an obvious consequence of the theorems A1, . . . , An (these are
either preproved theorems or labelled steps in the present deduction).

The body of a Mizar proof contains a list of steps justified with ‘by’; these are
usually just formulas, with or without labels, but sometimes skeleton constructs also
use ‘by’ for their justification. For example ‘consider x such that P [x]’ per-
forms an ∃-elimination step; in subsequent steps, P [x] may be assumed. However this
requires justification for ∃x. P [x], and enough theorems must be provided for this to be
deduced. To avoid a proliferation of labels, the previous step may be implicitly assumed
by prefixing a step with ‘then’.3 Finally, certain formulas are prefixed with ‘thus’
or ‘hence’ (the latter equivalent to ‘then thus’); these are ‘conclusions’. The set
of conclusions collected in a list of steps should always be sufficient to justify the cur-
rent objective or thesis. For example, if the thesis is φ ∧ ψ, then one might have two
conclusion steps containing φ and ψ; if the thesis is φ ≡ ψ, the conclusions might be
φ⇒ ψ and ψ ⇒ φ. To achieve a kind of bracketing of sets of conclusions, which could
otherwise be ambiguous, an individual step can be justified not using ‘by’, but rather
by a whole nested proof enclosed between ‘proof’ and ‘end’.

The thesis is tracked automatically by the system as the proof script is processed,
starting from the initial goal. For example, if the current thesis is ∀x : A.P [x], then after
processing a step ‘let x be A’ the thesis becomes P [x]. For one or two constructs,
knowledge of the thesis is necessary; it cannot be constructed from the proof. For ex-
ample ‘take m’ followed by a proof of m ≤ m could be a proof of ∃x. x ≤ m or of
∃x. x ≤ x, among others. Apart from providing the system with additional information
in such cases, the thesis is a useful sanity check, since the skeleton structure should

2 Moreover, when doing exploratory interactive work, it is convenient that all equational steps
are reversible, so one can feel confident that a provable subgoal is not being replaced by an
unprovable one.

3 The Mizar system makes formulas introduced using certain constructs like ‘assume’ available
by default without labelling; our version makes this optional, and always allows labelling.



correspond to the thesis.4 Moreover, it allows one to use the special word ‘thesis’
rather than repeatedly quote the formula; this is convenient since if several case splits
are performed, there will typically be many conclusions ‘thus thesis’. The sys-
tem attempts to modify the thesis intelligently given a conclusion step. For example
if the thesis is φ ≡ ψ and a conclusion step proves φ ⇒ ψ, then the thesis becomes
ψ ⇒ φ. Mizar allows a nested proof within ‘now . . .end’, which unlike the nested
proofs within ‘proof . . .end’, does not make the thesis known at the outset. In our
HOL implementation we disallow this, since it does not fit very tidily with our reduc-
tion to tactics. It could easily be implemented, but would require the entire nested proof
to be processed separately.

A few other mathematical idioms are admitted, in particular the kind of iterated
equality reasoning whose usefulness we have already noted; our HOL version can han-
dle other binary relations like numeric inequalities too, à la Grundy. In the HOL version,
using three dots as the left-hand argument of a binary operator is a shorthand for the pre-
vious left-hand argument that was given explicitly, and there is also an implicit ‘then’
to link the previous step. So for example one may write:

a = b by Th1,Th2;
... = c by Th3;
... = d by Th4,Th5,Th6;

which serves as a proof of a = d. The reader familiar with the typical calculational style
of proof [12] will see that the use of iterated equality in the Mizar language is almost
identical to that, each step in the transitivity chain being justified by a hint, albeit of a
rather uniform kind.

In summary, Mizar scripts admit a division into the ‘proof skeleton’, which uses
the special keywords to set out the basic structure of the proof, and the individual steps
within the proof, mostly using ‘by’ and its relatives. There is thus an attractive com-
bination of a clearly structured natural deduction proof together with flexibility over
the individual inferences. Apart from simply making things easier, this might also ap-
peal to the many mathematicians who are uninterested in, or actively dislike, logic and
foundations.5

2.3 Stepping beyond Mizar

We have found it useful to add a few other features to the language beyond those in-
cluded in Mizar itself (conversely of course, we have left out some features of the Mizar
language such as its special type coercing functions that don’t have a natural HOL coun-
terpart). These new features do not by any means exhaust the possibilities; on the con-
trary a careful study of existing mathematical textbooks and papers, concentrating more
on their form than their content, might reveal many other useful additions.

First, we allow the idiom (when trying to prove X , say): ‘suffices to show
X ′’, usually accompanied by a justification using ‘by’. This construct allows backward
4 This is decidable and in Mizar is checked by a separate pass.
5 Probably its emphasis on practical usability rather than foundational questions is partly re-

sponsible for the amount of real mathematics done in Mizar.



proof. Sometimes the steps are quite trivial, corresponding to typical mathematical steps
like ‘by [induction] we need only prove P [0] and ∀n. P [n] ⇒ P [n+ 1]’, or ‘by [sym-
metry in m and n] we may assume that m ≤ n’; but they could be more substantial.
Mathematics books often contain an admixture of backward proof, and some suggest
that the proportion could profitably be increased.

Second, we allow the use of arbitrary HOL rules in justifications. As well as just
a list of theorems, the ‘by’ command takes an optional identifier for a HOL inference
rule. There is a standard default rule, of which more below, but users may use their own
in special situations. By contrast Mizar has no facilities for extension with abbreviations
for complicated proof idioms (e.g. repeated rewrites), not even a simple macro language
as in PVS. So we can see that the traffic of ideas is not all in one direction: here we use
HOL to address a weakness of Mizar.

3 Mizar Proofs in HOL

Our initial experiments involved taking a complete Mizar-style proof script and translat-
ing it to HOL primitive inferences. However in this way the Mizar proof style becomes
decoupled from the others in HOL, whereas one of the attractions of the existing sys-
tem is that say, forward and backward proof can be intermixed freely. In addition, we
believe that another advantage HOL has over Mizar is that its style of interaction is less
batch-oriented. In Mizar, the typical style of user interaction is an edit-compile cycle
rather like the use of a programming language compiler, possibly processing a fairly
large file each time, whereas with HOL one can try out proof steps, see their effect, and
either press on or back up and try something else.

3.1 Mizar tactics

Therefore we now attempt to integrate Mizar-style proofs with HOL tactic proofs. If
we think of the ‘state’ of a Mizar proof, that is, the current thesis and the list of facts
derived and labelled so far, as the conclusion and hypotheses of a HOL goal, then there
is a close relationship between most Mizar skeleton constructs and certain HOL tactics.
Roughly speaking, the relationship is as follows:6

Mizar construct HOL tactic (Reversed) ND rule
assume DISCH TAC ⇒ intro
let X GEN TAC ∀ intro
take EXISTS TAC ∃ intro
consider X CHOOSE TAC ∃ elim
given DISCH THEN o X CHOOSE TAC ⇒ intro and ∃ elim
suffices to show MATCH MP TAC ⇒ elim
set ABBREV TAC abbreviation

6 ABBREV TAC is not part of the HOL standard tactic collection, but is much used by the
present author; it can be found for example in the code for the reals library.



For our purposes, it is desirable to extend HOL’s tactic mechanism with the ability
to label assumptions using chosen names. In this way we can associate assumptions
in the goal with the appropriate Mizar labels. Such an extension is, we feel, desirable
in any case. Manipulation of assumptions is a perennial problem in HOL, since both
numbering and explicit term quotation can be sensitive to quite small changes in the
proof, necessitating more sophisticated techniques [5]. The change to the HOL sources
took only half an hour, mostly just inserting ‘snd’ or ‘map snd’ in various tactics.
The types of goals and tactics change, but these are normally wrapped in aliases anyway
when used at a higher level, so there seems little danger of proofs being broken by the
change. Given this slight enhancement of the tactic mechanism, we are now quite close
to an interpretation of Mizar steps as tactics. Note that the head of the assumption list
is considered the ‘previous step’ in the Mizar sense, and is selected for ‘then’ linkage.
Unless it is labelled, the next step deletes it from the assumption list, so that just as with
Mizar, the previous result only exists ephemerally.

We actually define special ‘Mizar tactics’ which are very similar to their HOL
analogs in the above table. For example, ‘MIZAR ASSUME TAC’ is just like HOL’s
‘DISCH TAC’ except that it checks that the term being discharged is the same as the
one given as an argument, and attaches any specified label to that new assumption. If we
were attempting to emulate Mizar’s ability to process proofs without an explicit thesis,
then it would be necessary to make these tactics work even in the event of a mismatch
with the thesis; all that matters is that the subsequent proof reconstruction works as
intended.

In order to reduce the load of user type annotation, all the Mizar tactics accept
preterms rather than terms.7 The Mizar tactics then typecheck them in the context of
variable typings in the current goal. However if there are variables in the goal with the
same name but different types, these are excluded, since an arbitrary choice could leave
the user stymied. In that case, some annotation may be needed.

We define special constants that are expanded during Mizar’s preterm to term trans-
lation. These are ‘thesis’ of type ‘:bool’, which is expanded to the current thesis,
and ‘...’, of polymorphic type, which is expanded to the left hand of the previous step.
We provide one that Mizar itself does not: ‘antecedant’ refers to the antecedant of
the current goal. We quite like the idea of adding others, such as the first and second
conjunct of a conjunction, and plan to experiment with this.

3.2 Case splitting constructs

It is necessary to deal with the constructs that can split a goal into several subgoals,
namely nested subproofs and ‘per cases’. Nested proofs are dealt with simply by
using HOL’s standard ‘SUBGOAL THEN’ tactic, which sets up two subgoals: the lemma
itself, and the original goal with the lemma as an extra assumption. However Mizar’s
case-splitting construct requires more care. Like ‘DISJ CASES TAC’, HOL’s case-
splitting tactic, it performs a natural deduction ∨-elimination step. It is used as follows:

7 Readers unfamiliar with HOL preterms can think of them as untyped syntax trees that become
terms only after typechecking.



per cases by <justification>
suppose X1
...
...
hence thesis

...

suppose Xn
...
...
hence thesis

end

The justification is supposed to be able to prove X1∨ . . .∨Xn. Now, as compared
with HOL’s case-splitting construct, the above does not make explicit at the start how
many subgoals will be generated, nor what the eventual disjunctive theorem to justify
is. Therefore a direct translation into HOL’s corresponding constructs would require
processing of the complete construct, and as we’ve already said, we are keen to allow
expansion of every stage of the proof interactively. Accordingly we proceed as follows.8

The ‘per cases’ is translated into a HOL tactic that simply yields the same sub-
goal, but with a justification phase which, on receiving a theorem with an additional
assumption, tries to prove and so discharge it using the stated justification. Then each
‘suppose X’ causes a split into two subgoals, one with assumption ‘X’, one identical
to the original. The assumption is that the second subgoal will in fact produce a theorem
with some additional assumption; the justification stage of this tactic performs a HOL
‘DISJ CASES’ step, i.e. ∨-elimination. Finally, the ‘end’ construct simply proves the
goal under an assumption of falsity; this is trivially disposed of by the eventual disjunc-
tion justification.

The above scheme works rather well, and allows a direct step-by-step exploration
of the Mizar proof using HOL’s subgoal package. Note that because of the way ‘per
cases’ is dealt with, a string of Mizar tactics has itself no structure, and needs to be
applied repeatedly to the head of a current list of goals. Interactively, this is done by
the goal stack anyway. However to compose a sequence of Mizar tactics, one must not
use ‘THEN’, which applies its second argument tactic to all subgoals. Nevertheless it is
easy to define a variant of ‘THEN’ that will package up a sequence of Mizar tactics into
a single tactic.

3.3 Parsing

Writing proofs directly using the Mizar tactics is not a big improvement on the read-
ability of standard HOL tactics, even though the structures into which they are orga-
nized may be more natural. Instead of that we have a special parser for Mizar texts.

8 Note that some of the tactics mentioned below are ‘invalid’ in the LCF sense, i.e. they may not
be able to reconstruct the goal from the subgoals.



Within this, we still use the HOL notation for terms, rather than Mizar’s more readable
but more verbose alternative. This could be changed if desired. There are actually one
or two syntactic ambiguities arising from lumping arbitrary HOL terms together with
Mizar keywords. For example ‘let’ could either introduce a Mizar step, or be the start
of a HOL term; likewise ‘L:A’ could either be a labelled term ‘A’ or a term ‘L’ with
type ‘A’ These could be cleared up without difficulty if they become troublesome.

In fact, we usually install as the default quotation parser a function that parses Mizar
steps and reduces them to a tactic. The only problem with this is that we want to be able
to refer not only to labels in the existing derivation, but also to pre-proved theorems.
These theorems are all bound to ML identifiers, so to use them inside quotations, it is
necessary to use antiquotation, i.e. precede each name by a carat. Since Slind’s system
for antiquotation [31] is polymorphic, this presents no problems in principle. However
since our experiments are being conducted in a version of HOL without antiquotation,9

we have adopted the temporary solution of pushing all required external lemmas onto
the assumption list with appropriate labels. Similarly, we use a global list binding in-
ference rules to names, which allows various inference rules to be used in the same
quotation.

4 Proof support

We have dealt with parsing the proof, but have only discussed the processing of the
skeleton constructs into HOL inferences. It remains to translate the individual ‘obvi-
ous’ proof steps in the same way. Since we allow essentially arbitrary ML code in a
‘by’ statement, any HOL rules can be used. However the existing HOL rules are not re-
ally capable of emulating Mizar’s recognition of logically obvious steps. To maximize
the benefits, something of similar scope is required. Mizar incorporates an automatic
theorem prover for first order logic which, while not very powerful, has evolved over
time to become extremely quick at checking ‘obvious’ inferences. For Mizar, speed is
essential, since as we have already said, the system is normally used in batch mode.
For us, high speed is less important, and is unlikely to be achievable anyway. So we
can afford to err on the side of making the checker more powerful. We don’t attempt to
emulate Mizar’s own prover, but start from scratch using fairly standard techniques for
automated theorem proving. We provide two alternative provers, one based on tableaux,
the other on model elimination. Before giving more details, we will make some general
comments and look at how formulas are normalized for input to the provers.

Only first order logic?

Mizar’s logic is almost first order, but it supports free second order variables, making
axiom schemas much more civilized to deal with. (This logic is often facetiously re-
ferred to as 1.01th-order logic.) The automated theorem prover that ‘by’ invokes is
only for first order reasoning. When one wants to instantiate a second order variable,

9 This version of HOL is implemented in CAML Light. See [19] for the starting point of this
work.



e.g. in induction or set comprehension schemes, a separate command ‘from’ is in-
voked, together with an explicit instantiation for that variable.

In HOL, although higher order features are constantly used, many of the proofs are
‘essentially first order’. We reduce higher order to first order logic in a well-known
mechanical way: introduce a single binary function symbol a to represent ‘application’,
and translate HOL’s f x into a(f, x), etc.10 Then it is often the case that when a theorem
is provable in higher order logic, the corresponding first order assertion is also provable.

Proofs that cannot be done in the first order reduction are those that require the
instantiation of higher order variables, i.e. the invention of lambda-abstractions. For
example, when trying to prove ∀n.n+0 = n by induction, the induction theorem needs
to be specialized to the relation λn.n+0 = n, or equivalently, to the set {n | n+0 = n}.
There are techniques, mostly based on higher order unification [20], for finding higher
order instantiations automatically — for example the TPS system [1] works in this way.
Alternatively, it’s possible to write down the combinator axioms in first order logic,
so that in principle, lambda-abstractions (in combinator form) can be discovered using
standard first-order proof search.11 This was first proposed by Robinson [28], but his
system appears to us unsound: since it does not respect types, the Russell paradox could
apparently be derived quite easily by applying a fixpoint combinator to the negation
operation. Dowek [11] gives a precise treatment, discussing how the type system can
be used too.

We elected to accept the fact that certain higher order proofs cannot be found auto-
matically (after all, other HOL rules can be used in ‘by’ if necessary). Note however
that if the appropriate term is already bound to some function, then just throwing in the
definition is enough; the lambda-term is then expressible in a first order way. Effectively
this function works like the appropriate combinatory expression. For example, given the
theorems:

∀x. x ∈ Ins(s, y) ≡ x ∈ s ∨ x = y

and

∀x. x ∈ Del(s, y) ≡ x ∈ s ∧ x 6= y

as well as the defining property of the empty set, then our first order provers are quite
capable of deducing the right instantiations to prove:

∀s. s = ∅ ∨ ∃x, t. s = Del(t, x) ∧ x 6∈ t
Moreover there is no difficulty with using lambda-abstractions; we transform each

term P [λx. t[x]] into ∀f. (∀x. f(x) = t[x]) ⇒ P [f ] automatically.
10 Constants (necessarily nullary) and variables can translated directly into first order logic con-

stants and variables, and the logical connectives (at least when used in the standard way, using
no higher order tricks) can be directly translated. Actually we optimize the above somewhat
by using function and predicate symbols directly provided they are always used consistently
in a first order way. This is in fact usually the case.

11 This idea also lies behind the popularity in the first order ATP community of the finite NBG
axiomatization of set theory [7] — in exactly the same way a finite set of building blocks
replaces an infinite comprehension schema.



Another flaw in our system is that we do not preserve type information when trans-
lating to first order logic, which may lead to expansion of the search space with type-
incorrect unifications, or could even result in proofs that fail when translated back to
HOL inferences. In practice, however, this works surprisingly well in the domains we
have tried. Much of the reasoning involves one or two types, which are implicitly en-
coded anyway in most formulas (note that we treat different instances of polymorphic
constants, such as equality, as distinct). Providing better higher order and type-correct
automation is an interesting research project. In any case, superior theorem-proving
tools developed later may easily be hooked into our Mizar system.

Rather than work directly on the HOL term representation, our provers first translate
into their own internal representation of first order logic, which is used during proof
search. When a proof is found, it’s then translated back into HOL. Systems like Isabelle
which feature unification of metavariables in the tactic mechanism, can implement these
rules very easily and directly. By contrast our approach looks a bit artificial. However it
keeps the proof search fast, and this is the speed-critical part of the automated provers.
The eventual proof is usually short and can be translated into HOL very quickly. Such
an approach has already been used to implement provers rather similar to ours in HOL
[21]. We elected to start from scratch rather than use their work, to make it easier for
us to experiment with different ideas for proof automation, e.g. the incorporation of
equality.

Preprocessing

When the system needs to prove that φ follows from assumptions ψ1, . . . , ψn, it begins,
as does Mizar and as do most automated theorem provers, by forming the conjunction
¬φ∧ψ1∧ . . .∧ψn and attempting to refute it. The first stage is to convert it to negation
normal form (i.e. a form where negations are applied only to atoms) and Skolemize
it. Skolemization is done by a one-way process, specializing universal variables and
introducing ε-terms for existential variables [4]. For example if the initial formula ψ is
∀x y. ∃z. φ[x, z], then we proceed through ψ ` ∃z. φ[x, z] to ψ ` φ[x, εz. φ[x, z]],
introduce the local assignment f = λx. εz. φ[x, z] (it can easily be eliminated after
refutation), and so get ψ, f = λx. εz. φ[x, z] ` φ[x, f(x)]. The preprocessing phase
attempts to split formulas up into separate units as much as possible — in order to refute
φ∨ψ, the disjuncts can be refuted separately. Conjunction is distributed over disjunction
in an attempt to maximize this splitting (though this is disabled after a limit is reached,
otherwise large tautologies lead to an exponential number of subtasks). Moreover, the
expansion of bi-implications as either

(p ≡ q) → (p ∧ q) ∨ (¬p ∧ ¬q)

¬(p ≡ q) → (p ∧ ¬q) ∨ (¬p ∧ q)

or

(p ≡ q) → (p ∨ ¬q) ∧ (¬p ∨ q)

¬(p ≡ q) → (p ∨ q) ∧ (¬p ∨ ¬q)



is chosen to maximize splittability, and thereafter (i.e. after passing a universal quan-
tifier) is chosen to keep the conjunctive normal form short, since one of our provers
below uses CNF. (We do not use sophisticated ‘definitional’ techniques [9], which can
give refutation equivalent CNF by introducing variables for all subexpressions, conjoin-
ing their definitions and forming the CNF of that.)

Splitting is most useful for proving equivalences: they are decomposed into two im-
plications for the main prover to handle. In some contrived examples the improvement
can be dramatic. For example, ‘Andrews’ Challenge’:

((∃x. ∀y. Px ≡ Py) ≡ ((∃x. Qx) ≡ (∀y. Qy)))
≡ ((∃x. ∀y. Qx ≡ Qy) ≡ ((∃x. Px) ≡ (∀y. Py)))

gets split into 32 independent subgoals, each of which is fairly easy. The problem as a
whole, however, is a real challenge for CNF-based systems like the model elimination
prover we describe below. On the other hand, our tableaux prover does this kind of
splitting as part of the proof process anyway, so the gains from splitting are marginal.

A tableaux prover

Our first automatic prover is a simple tableaux prover, which is essentially a copy of
leanTAP [4]. It is extremely simple, but quite fast for moderately simple tasks. The
idea of tableau provers is simply to perform backward search for a cut-free sequent
proof, discovering variable instantiations by (first order) unification with Prolog-like
backtracking. Beyond the limitations on search space already imposed by the underly-
ing sequent calculus, the formulas are processed in a strictly round-robin manner. This
means that universal assumptions can be instantiated n times, but only after all others
have been tried at least n − 1 times. The Mizar notion of an ‘obvious’ inference [30],
is that universal formulas are only instantiated once. So what we do is quite similar,
but we just have a bias against re-using formulas, rather than a strict prohibition. Just as
with Mizar, one can force multiple use of an assumption by listing it several times in the
‘by’ statement. Though from one point of view an artificial hack, this has some resem-
blance to a mathematical proof where one says for example ‘using transitivity twice we
get. . . ’. Indeed, the equality-free part of Mizar is not unlike a tableau prover: it reduces
the problem to disjunctive normal form (like the splitting of a tableau into separate
branches) and then successively instantiates universal formulas until a refutation can be
reached by unification with the negation of another formula [36].

The main extension over leanTAP is a simple system for equality handling, which
is necessary for many mathematical proofs. (Mizar includes its own equality-handling
techniques.) Simply throwing in equality axioms is too inefficient given such undirected
usage of assumptions. But dealing with equality in tableau provers is a hot research
topic, especially since the key question of simultaneous rigid E-unification has recently
been proved undecidable [10]. We chose a rather ad hoc method which nevertheless
works quite well in practice. When a literal P (s1, . . . , sn) is processed given a com-
plementary literal ¬P (t1, . . . , tn), we do not merely attempt to unify each (si, ti) pair,
but take each inequation si 6= ti and add it to the tableau branch, resulting in n new
branches. And each time an inequation is the currently processed formula and there



are at least some equations on the relevant branch, the equality-handling rules kick in.
These simply search for a proof in equational logic, but cut down on redundancy by
imposing strict canonicality requirements on the proof, e.g. that transitivity is applied
after all congruence rules and is always chained right-associated, and that symmetry is
only applied to axioms or assumptions.

A model elimination prover

As a more heavyweight and powerful alternative to the tableaux prover, we also devel-
oped a model elimination (MESON) prover, based on the Prolog Technology Theorem
Prover [33]. Such systems work by reducing to clausal form and then further to a set
of pseudo-Horn clauses that can be used for Prolog-style backward search. The default
search mode is one of our own invention — see [18] for more details and a comparison
with other techniques. The MESON prover is slower than tableaux for simple problems,
because of the greater overhead of preprocessing into clauses. But on bigger examples,
it usually outperforms tableaux. In particular it has a measure of goal-direction, which
makes it practical in problems where large numbers of assumptions (even hundreds)
are involved. These would almost certainly fail using tableaux, at least based on such
a simple-minded round robin instantiation strategy. In this prover we deal with equal-
ity simply by throwing in all the equality axioms; though not dazzlingly efficient, it
turns out to be satisfactory in most cases because of MESON’s goal-direction. It is not
necessary to include congruence axioms for Skolem functions [22].12

Because it is more powerful, we usually use MESON, together with the equality ax-
ioms, as the default prover. It seems quite a good choice for filling in obvious steps, the
criticism being if anything that it is too powerful. (Actually, Tarver [35] also discusses
using MESON in a supporting capacity within an interactive prover.) To avoid long de-
lays where a theorem isn’t actually provable (e.g. because the user has not supplied all
the required assumptions), we place quite a strict limit on the number of inferences per-
formed internally during search. However this isn’t nearly as quick as the Mizar prover
at detecting impossible goals.

5 Examples

We will now give a couple of examples of proofs in our Mizar format. Both of these
just take a few seconds to process. The first is a rather cute predicate calculus fact due
to Łoś. In fact, MESON is capable of proving this completely automatically, so a 1-
step Mizar proof ‘thus thesis’ is sufficient. However the proof search takes rather
a long time, and in any case it’s more illuminating to see the reasoning involved. The
thesis to be established is:

12 Thanks to Geoff Sutcliffe for pointing out this piece of ATP folklore.



(∀x y z. P (x, y) ∧ P (y, z) ⇒ P (x, z))∧
(∀x y z. Q(x, y) ∧Q(y, z) ⇒ Q(x, z))∧
(∀x y. Q(x, y) ⇒ Q(y, x))∧
(∀x y. P (x, y) ∨Q(x, y))
⇒ (∀x y. P (x, y)) ∨ (∀x y. Q(x, y))

And the Mizar proof, verbatim, is as follows. Note that no type annotations are
needed, as they are all derivable from the initial thesis (which gives all the first order
variables type ‘A’). The default quotation parser ‘X’ is set to generate Mizar tactics
from the script; hence to set up the goal we locally reassert its usual definition. To
emphasize the high level of interactivity, and the complete integration with the tactic
mechanism, we show how the proofs can actually be entered in a HOL session, single-
stepped through using the standard tactic expansion function ‘e’.

let X = parse_term in
g ‘(!x y z. P x y /\ P y z ==> P x z) /\

(!x y z. Q x y /\ Q y z ==> Q x z) /\
(!x y. Q x y ==> Q y x) /\
(!(x:A) y. P x y \/ Q x y)
==> (!x y. P x y) \/ (!x y. Q x y)‘;;

e ‘assume L: antecedant‘;;
e ‘Ptrans: !x y z. P x y /\ P y z ==> P x z by L‘;;
e ‘Qtrans: !x y z. Q x y /\ Q y z ==> Q x z by L‘;;
e ‘Qsym: !x y. Q x y ==> Q y x by L‘;;
e ‘PorQ: !x y. P x y \/ Q x y by L‘;;
e ‘per cases‘;;
e ‘ suppose !x y. P x y‘;;
e ‘ hence thesis‘;;

e ‘ suppose ?x y. ˜P x y‘;;
e ‘ then consider a,b such that L1: ˜P a b‘;;
e ‘ then L2: Q a b by PorQ‘;;
e ‘ per cases‘;;
e ‘ suppose !x. Q a x‘;;
e ‘ hence thesis by Qtrans,Qsym‘;;

e ‘ suppose ?x. ˜Q a x‘;;
e ‘ then consider c such that L3: ˜Q a c‘;;
e ‘ then L4: P a c by PorQ‘;;
e ‘ per cases by PorQ‘;;
e ‘ suppose P c b‘;;
e ‘ then P a b by Ptrans,L4‘;;
e ‘ hence thesis by L1‘;;

e ‘ suppose Q c b‘;;
e ‘ then Q a c by Qtrans,Qsym,L2‘;;
e ‘ hence thesis by L3‘;;



e ‘ end‘;;
e ‘ end‘;;
e ‘end‘;;

Our second example is the fact that a group where the group operation is idempotent
must in fact be Abelian.

(∀x. xx = 1)∧
(∀x y z. x(yz) = (xy)z)∧
(∀x. 1x = x)∧
(∀x. x1 = x)
⇒ ∀a b. ab = ba

In the HOL version we use the symbol ‘#’ for the group operation, after declaring
it infix. This time we show the steps all folded together in a single quotation.

let X = parse_term in
g ‘(!x:A. x # x = i) /\

(!x y z. x # (y # z) = (x # y) # z) /\
(!x. i # x = x) /\
(!x. x # i = x)
==> !a b. a # b = b # a‘;;

e ‘assume L: antecedant;
Idemp: !x. x # x = i by L;
Assoc: !x y z. x # (y # z) = (x # y) # z by L;
Ident: !x. i # x = x by L;
Ident’: !x. x # i = x by L;
let a,b be A;
(a # b) # (b # a) = a # (b # b) # a by Assoc;

... = a # i # a by Idemp;

... = a # a by Ident;

... = i by Idemp;
then (a # b) = (a # b) # (a # b) # (b # a) by Ident’;

... = ((a # b) # (a # b)) # (b # a) by Assoc;

... = i # (b # a) by Idemp;
hence thesis by Ident‘;;

Conclusions

We have shown how another proof style can be added to the HOL system. The resulting
system can be argued to combine the best features of HOL’s and Mizar’s theorem-
proving technology. As the examples show, one can produce quite readable proof scripts
and have HOL manage the internal decomposition to primitive inferences automatically.
In fact, our work fully bears out the remark that ‘transforming proofs that are capable
of being validated with MIZAR’s basic checker into formal natural deduction proofs
would be straightforward’ [36]. This is another indication of the flexibility and potential
of the LCF approach.



We address two weaknesses of HOL: the unreadability of its tactic scripts, and its
logical prescriptiveness. At the same time we provide a version of Mizar’s proof lan-
guage which is more interactive and allows secure extensibility. For one computer the-
orem prover to take ideas from others is in the spirit of the QED project [2], though we
do not link actual systems as that project envisages. Experimentation with various proof
styles, and experience with other systems generally, would be valuable. Probably there
is no unique best style for all application areas, which makes it all the more attractive
to allow the intermixing of different styles as we do here.

As well as the initial ease of construction and readability, an important considera-
tion for formal proofs is their maintainability and modifiability [8]. It is interesting to
enquire whether Mizar proofs are likely to be better in this respect. Since they are more
readable and less sensitive to the precise choreographing of logical steps, they seem
better; on the other hand they involve more extensive quotation of terms, and so could
break more easily if these terms change. However by being explicit rather than implicit,
they may be easier to change simply by a semi-automatic editing process.

Future work should probably focus on more powerful automation, integrating the
type system and higher order instantiations in a more elegant way. For example, we
could implement some of Andrews’s techniques as HOL derived rules. It would also be
worth experimenting with additions to the proof language. Another interesting idea is
automatic proof presentation. For example, some readers might find the ‘obvious’ steps
to be unobvious, but it would be possible to record the proof that the machine finds, and
incorporate it into the proof script. Perhaps the processed script could be organized into
a hypertext format to allow different readers to browse it at different levels of detail [16].
This could be integrated with more general work on producing a readable summary of
machine proofs.

Finally, the theorems that get shipped to the automated prover might provide an
interesting set of test cases for automated theorem proving. They have the merit of being
realistic problems that arise in real proofs, whereas, for example, Andrews’s challenge
and its ilk are specifically developed with a view to providing problems for current
technology. If they are too easy, then one could arrange for intermediate steps in the
Mizar proof to be automatically excised until the proofs reach some given level of
difficulty.

Acknowledgements

This work was inspired by the Mizar system; I’m very grateful to Andrzej Trybulec
and others in Białystok who helped me to understand the system. I owe a great deal
indirectly to Bob Boyer, whose energy and enthusiasm for the QED project has helped
to bring users of different proof systems together. Comments on an earlier presentation
from Ralph Back, Philipp Heuberger and Jockum von Wright were extremely help-
ful. I have also profited from discussions with Donald Syme. The automated theorem
proving part of the work was inspired by Larry Paulson’s implementation of MESON
for Isabelle [26]. My work was very generously funded by the European Commission
under the Human Capital and Mobility Programme.



References

1. P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A theorem
proving system for classical type theory. Research report 94-166, Department of Mathemat-
ics, Carnegie-Mellon University, 1994.

2. Anonymous. The QED Manifesto. In A. Bundy, editor, 12th International Conference on
Automated Deduction, volume 814 of Lecture Notes in Computer Science, pages 238–251,
Nancy, France, 1994. Springer-Verlag.

3. M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors. Proceedings of the 1991
International Workshop on the HOL theorem proving system and its Applications, University
of California at Davis, Davis CA, USA, 1991. IEEE Computer Society Press.

4. B. Beckert and J. Posegga. leanTAP : Lean, tableau-based deduction. Jour-
nal of Automated Reasoning, 15:339–358, 1995. Available on the Web from
ftp://sonja.ira.uka.de/pub/posegga/LeanTaP.ps.Z.

5. P. E. Black and P. J. Windley. Automatically synthesized term denotation predicates: A proof
aid. In P. J. Windley, T. Schubert, and J. Alves-Foss, editors, Higher Order Logic Theorem
Proving and Its Applications: Proceedings of the 8th International Workshop, volume 971
of Lecture Notes in Computer Science, pages 46–57, Aspen Grove, Utah, 1995. Springer-
Verlag.

6. R. J. Boulton. Efficiency in a fully-expansive theorem prover. Technical Report 337, Univer-
sity of Cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge,
CB2 3QG, UK, 1993. Author’s PhD thesis.

7. R. S. Boyer, E. Lusk, W. McCune, R. Overbeek, M. Stickel, and L. Wos. Set theory in
first order logic: Clauses for Goedel’s axioms. Journal of Automated Reasoning, 2:287–327,
1986.

8. P. Curzon. Tracking design changes with formal machine-checked proof. The Computer
Journal, 38:91–100, 1995.

9. T. B. de la Tour. Minimizing the number of clauses by renaming. In Stickel [34], pages
558–572.

10. A. Degtyarev and A. Voronkov. Simultaneous rigid E-unification is undecid-
able. Technical report 105, Computing Science Department, Uppsala University,
Box 311, S-751 05 Uppsala, Sweden, 1995. Also available on the Web as
ftp://ftp.csd.uu.se/pub/papers/reports/0105.ps.gz.

11. G. Dowek. Collections, sets and types. Technical report 2708, INRIA Roquencourt, 1995.
12. A. J. M. van Gasteren. On the shape of mathematical arguments, volume 445 of Lecture

Notes in Computer Science. Springer-Verlag, 1990. Foreword by E. W. Dijkstra.
13. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving environment for

higher order logic. Cambridge University Press, 1993.
14. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of

Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.
15. J. Grundy. Window inference in the HOL system. In Archer et al. [3], pages 177–189.
16. J. Grundy. A browsable format for proof presentation. In C. Gefwert, P. Orponen, and

J. Seppänen, editors, Proceedings of the Finnish Artificial Intelligence Society Symposium:
Logic, Mathematics and the Computer, volume 14 of Suomen Tekoälyseuran julkaisuja,
pages 171–178. Finnish Artificial Intelligence Society, 1996.

17. J. Harrison. Metatheory and reflection in theorem proving: A survey and critique. Technical
Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995. Available on the
Web as http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz.

18. J. Harrison. Optimizing proof search in model elimination. To appear in the proceedings of
the 13th International Conference on Automated Deduction (CADE 13), Springer Lecture
Notes in Computer Science, 1996.



19. J. Harrison and K. Slind. A reference version of HOL. Presented in poster session of 1994
HOL Users Meeting and only published in participants’ supplementary proceedings. Avail-
able on the Web from http://www.dcs.glasgow.ac.uk/˜hug94/sproc.html,
1994.

20. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1:27–
57, 1975.

21. R. Kumar, T. Kropf, and K. Schneider. Integrating a first-order automatic prover in the HOL
environment. In Archer et al. [3], pages 170–176.

22. W. McCune. Equality in automated deduction. In T. Dietterich and W. Swartout, editors, Pro-
ceedings of the 8th National Conference on Artificial Intelligence, pages 246–252, Boston,
MA, 1990. MIT Press.

23. T. F. Melham. Automating recursive type definitions in higher order logic. In G. Birtwistle
and P. A. Subrahmanyam, editors, Current Trends in Hardware Verification and Automated
Theorem Proving, pages 341–386. Springer-Verlag, 1989.

24. T. F. Melham. A package for inductive relation definitions in HOL. In Archer et al. [3],
pages 350–357.

25. L. C. Paulson. A higher-order implementation of rewriting. Science of Computer Program-
ming, 3:119–149, 1983.

26. L. C. Paulson. Isabelle: a generic theorem prover, volume 828 of Lecture Notes in Computer
Science. Springer-Verlag, 1994. With contributions by Tobias Nipkow.

27. I. S. W. B. Prasetya. On the style of mechanical proving. In J. J. Joyce and C. Seger, editors,
Proceedings of the 1993 International Workshop on the HOL theorem proving system and
its applications, volume 780 of Lecture Notes in Computer Science, pages 475–488, UBC,
Vancouver, Canada, 1993. Springer-Verlag.

28. J. A. Robinson. A note on mechanizing higher order logic. In B. Meltzer and D. Michie,
editors, Machine Intelligence 5, pages 123–133. Edinburgh University Press, 1969.

29. P. J. Robinson and J. Staples. Formalizing a hierarchical structure of practical mathematical
reasoning. Journal of Logic and Computation, 3:47–61, 1993.

30. P. Rudnicki. Obvious inferences. Journal of Automated Reasoning, 3:383–393, 1987.
31. K. Slind. Object language embedding in standard ml of new jersey. Technical Report 91-

454-38, University of Calgary Computer Science Department, 2500 University Drive N. W.,
Calgary, Alberta, Canada, TN2 1N4, 1991. Also appeared in Proceedings of 2nd ML Work-
shop.

32. S. Sokolowski. A note on tactics in LCF. Technical Report CSR-140-83, University of
Edinburgh, Department of Computer Science, 1983.

33. M. E. Stickel. A Prolog Technology Theorem Prover: Implementation by an extended Prolog
compiler. Journal of Automated Reasoning, 4:353–380, 1988.

34. M. E. Stickel, editor. 10th International Conference on Automated Deduction, volume 449
of Lecture Notes in Computer Science, Kaiserslautern, Federal Republic of Germany, 1990.
Springer-Verlag.

35. M. Tarver. An examination of the Prolog Technology Theorem-Prover. In Stickel [34], pages
322–335.

36. A. Trybulec and H. A. Blair. Computer aided reasoning. In R. Parikh, editor, Logics of
Programs, volume 193 of Lecture Notes in Computer Science, pages 406–412, Brooklyn,
1985. Springer-Verlag.

37. J. G. Wiltink. A deficiency of natural deduction. Information Processing Letters, 25:233–
234, 1987.


