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1 INTRODUCTION

By interactive theorem proving, we mean some arrangement where the machine
and a human user work together interactively to produce a formal proof. There is
a wide spectrum of possibilities. At one extreme, the computer may act merely
as a checker on a detailed formal proof produced by a human; at the other the
prover may be highly automated and powerful, while nevertheless being subject
to some degree of human guidance. In view of the practical limitations of pure
automation, it seems today that, whether one likes it or not, interactive proof is
likely to be the only way to formalize most non-trivial theorems in mathematics
or computer system correctness.

Almost all the earliest work on computer-assisted proof in the 1950s [Davis,
1957; Gilmore, 1960; Davis and Putnam, 1960; Wang, 1960; Prawitz et al., 1960]

and 1960s [Robinson, 1965; Maslov, 1964; Loveland, 1968] was devoted to truly
automated theorem proving, in the sense that the machine was supposed to prove
assertions fully automatically. It is true that there was still a considerable diver-
sity of methods, with some researchers pursuing AI-style approaches [Newell and
Simon, 1956; Gelerntner, 1959; Bledsoe, 1984] rather than the dominant theme of
automated proof search, and that the proof search programs were often highly tun-
able by setting a complicated array of parameters. As described by Dick [2011],
the designers of automated systems would often study the details of runs and
tune the systems accordingly, leading to a continuous process of improvement and
understanding that could in a very general sense be considered interactive. Nev-
ertheless, this is not quite what we understand by interactive theorem proving
today.

Serious interest in a more interactive arrangement where the human actively
guides the proof started somewhat later. On the face of it, this is surprising, as full
automation seems a much more difficult problem than supporting human-guided
proof. But in an age when excitement about the potential of artificial intelligence
was widespread, mere proof-checking might have seemed dull. In any case it’s not
so clear that it is really so much easier as a research agenda, especially in the



2 John Harrison, Josef Urban and Freek Wiedijk

context of the technology of the time. In order to guide a machine proof, there
needs to be a language for the user to communicate that proof to the machine, and
designing an effective and convenient language is non-trivial, still a topic of active
research to this day. Moreover, early computers were typically batch-oriented,
often with very limited facilities for interaction. In the worst case one might
submit a job to be executed overnight on a mainframe, only to find the next day
that it failed because of a trivial syntactic error.

The increasing availability of interactive time-sharing computer operating sys-
tems in the 1960s, and later the rise of minicomputers and personal workstations
was surely a valuable enabler for the development of interactive theorem prov-
ing. However, we use the phrase interactive theorem proving to distinguish it
from purely automated theorem proving, without supposing any particular style of
human-computer interaction. Indeed the influential proof-checking system Mizar,
described later, maintains to this day a batch-oriented style where proof scripts
are checked in their entirety per run. In any case, perhaps the most powerful
driver of interactive theorem proving was not so much technology, but simply the
recognition that after a flurry of activity in automated proving, with waves of
new ideas like unification that greatly increased their power, the capabilities of
purely automated systems were beginning to plateau. Indeed, at least one pio-
neer clearly had automated proving in mind only as a way of filling in the details
of a human-provided proof outline, not as a way of proving substantial theorems
unaided [Wang, 1960]:

The original aim of the writer was to take mathematical textbooks
such as Landau on the number system, Hardy-Wright on number the-
ory, Hardy on the calculus, Veblen-Young on projective geometry, the
volumes by Bourbaki, as outlines and make the machine formalize all
the proofs (fill in the gaps).

and the idea of proof checking was also emphasized by McCarthy [1961]:

Checking mathematical proofs is potentially one of the most interesting
and useful applications of automatic computers. Computers can check
not only the proofs of new mathematical theorems but also proofs that
complex engineering systems and computer programs meet their spec-
ifications. Proofs to be checked by computer may be briefer and easier
to write than the informal proofs acceptable to mathematicians. This
is because the computer can be asked to do much more work to check
each step than a human is willing to do, and this permits longer and
fewer steps. [. . . ] The combination of proof-checking techniques with
proof-finding heuristics will permit mathematicians to try out ideas
for proofs that are still quite vague and may speed up mathematical
research.

McCarthy’s emphasis on the potential importance of applications to program
verification may well have helped to shift the emphasis away from purely auto-
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Figure 1: Proof-checking project for Morse’s ‘Set Theory’

matic theorem proving programs to interactive arrangements that could be of
more immediate help in such work. A pioneering implementation of an interactive
theorem prover in the modern sense was the Proofchecker program developed
by Paul Abrahams [1963]. While Abrahams hardly succeeded in the ambitious
goal of ‘verification of textbook proofs, i.e. proofs resembling those that normally
appear in mathematical textbooks and journals’, he was able to prove a number
of theorems from Principia Mathematica [Whitehead and Russell, 1910]. He also
introduced in embryonic form many ideas that became significant later: a kind
of macro facility for derived inference rules, and the integration of calculational
derivations as well as natural deduction rules. Another interesting early proof
checking effort [Bledsoe and Gilbert, 1967] was inspired by Bledsoe’s interest in
formalizing the already unusually formal proofs in his PhD adviser A.P. Morse’s
‘Set Theory’ [Morse, 1965]; a flyer for a conference devoted to this research agenda
is shown in Figure 1. We shall have more to say about Bledsoe’s influence on our
field later.

Perhaps the earliest sustained research program in interactive theorem prov-
ing was the development of the SAM (Semi-Automated Mathematics) family of
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provers. This evolved over several years starting with SAM I, a relatively simple
prover for natural deduction proofs in propositional logic. Subsequent members
of the family supported more general logical formulas, had increasingly powerful
reasoning systems and made the input-output process ever more convenient and
accessible, with SAM V first making use of the then-modern CRT (cathode ray
tube) displays. The provers were applied in a number of fields, and SAM V was
used in 1966 to construct a proof of a hitherto unproven conjecture in lattice theory
[Bumcrot, 1965], now called ‘SAM’s Lemma’. The description of SAM explicitly
describes interactive theorem proving in the modern sense [Guard et al., 1969]:

Semi-automated mathematics is an approach to theorem-proving which
seeks to combine automatic logic routines with ordinary proof proce-
dures in such a manner that the resulting procedure is both efficient
and subject to human intervention in the form of control and guid-
ance. Because it makes the mathematician an essential factor in the
quest to establish theorems, this approach is a departure from the
usual theorem-proving attempts in which the computer unaided seeks
to establish proofs.

Since the pioneering SAM work, there has been an explosion of activity in the
area of interactive theorem proving, with the development of innumerable different
systems; a few of the more significant contemporary ones are surveyed by Wiedijk
[2006]. Despite this, it is difficult to find a general overview of the field, and one of
the goals of this chapter is to present clearly some of the most influential threads
of work that have led to the systems of today. It should be said at the outset
that we focus on the systems we consider to have been seminal in the introduction
or first systematic exploitation of certain key ideas, regardless of those systems’
present-day status. The relative space allocated to particular provers should not
be taken as indicative of any opinions about their present value as systems. After
our survey of these different provers, we then present a more thematic discussion
of some of the key ideas that were developed, and the topics that animate research
in the field today.

Needless to say, the development of automated theorem provers has continued
apace in parallel. The traditional ideas of first-order proof search and equational
reasoning [Knuth and Bendix, 1970] have been developed and refined into pow-
erful tools that have achieved notable successes in some areas [McCune, 1997;
McCune and Padmanabhan, 1996]. The formerly neglected area of propositional
tautology and satisfiability checking (SAT) underwent a dramatic revival, with
systems in the established Davis-Putnam tradition making great strides in effi-
ciency [Moskewicz et al., 2001; Goldberg and Novikov, 2002; Eén and Sörensson,
2003], other algorithms being developed [Bryant, 1986; St̊almarck and Säflund,
1990], and applications to new and sometimes surprising areas appearing. For
verification applications in particular, a quantifier-free combination of first-order
theories [Nelson and Oppen, 1979; Shostak, 1984] has proven to be especially valu-
able and has led to the current SMT (satisfiability modulo theories) solvers. Some
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more domain-specific automated algorithms have proven to be highly effective in
areas like geometry and ideal theory [Wu, 1978; Chou, 1988; Buchberger, 1965],
hypergeometric summation [Petkovšek et al., 1996] and the analysis of finite-state
systems [Clarke and Emerson, 1981; Queille and Sifakis, 1982; Burch et al., 1992;
Seger and Bryant, 1995], the last-mentioned (model checking) being of great value
in many system verification applications. Indeed, some researchers reacted to the
limitations of automation not by redirecting their energy away from the area,
but by attempting to combine different techniques into more powerful AI-inspired
frameworks like MKRP [Eisinger and Ohlbach, 1986] and Ωmega [Huang et al.,
1994].

Opinions on the relative values of automation and interaction differ greatly. To
those familiar with highly efficient automated approaches, the painstaking use of
interactive provers can seem lamentably clumsy and impractical by comparison.
On the other hand, attacking problems that are barely within reach of automated
methods (typically for reasons of time and space complexity) often requires prodi-
gious runtime and/or heroic efforts of tuning and optimization, time and effort
that might more productively be spent by simple problem reduction using an in-
teractive prover. Despite important exceptions, the clear intellectual center of
gravity of automated theorem proving has been the USA while for interactive the-
orem proving it has been Europe. It is therefore tempting to fit such preferences
into stereotypical national characteristics, in particular the relative importance at-
tached to efficiently automatable industrial processes versus the painstaking labor
of the artisan. Such speculations aside, in recent years, we have seen something of
a rapprochement: automated tools have been equipped with more sophisticated
control languages [de Moura and Passmore, 2013], while interactive provers are in-
corporating many of the ideas behind automated systems or even using the tools
themselves as components — we will later describe some of the methodological
issues that arise from such combinations. Even today, we are still striving towards
the optimal combination of human and machine that the pioneers anticipated 50
years ago.

2 AUTOMATH AND SUCCESSORS

Automath might be the earliest interactive theorem prover that started a tradition
of systems which continues until today. It was the first program that used the
Curry-Howard isomorphism for the encoding of proofs. There are actually two
variants of the Curry-Howard approach [Geuvers and Barendsen, 1999], one in
which a formula is represented by a type, and one in which the formulas are
not types, but where with each formula a type of proof objects of that formula
is associated. (The popular slogan ‘formulas as types’ only applies to the first
variant, while the better slogan ‘proofs as objects’ applies to both.) The first
approach is used by modern systems like Coq, Agda and NuPRL. The second
approach is used in the LF framework [Harper et al., 1987], and was also the one
used in the Automath systems. The idea of the Curry-Howard isomorphism in
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either style is that the type of ‘proof objects’ associated with a formula is non
empty exactly in the case that that formula is true.

As an example, here is an Automath text that introduces implication and the
two natural deduction rules for this connective (this text appears almost verbatim
on pp. 23–24 of [de Bruijn, 1968b]). The other connectives of first order logic are
handled analogously.

* bool := PN : TYPE

* b := --- : bool

b * TRUE := PN : TYPE

b * c := --- : bool

c * impl := PN : bool

c * asp1 := --- : TRUE(b)

asp1 * asp2 := --- : TRUE(impl)

asp2 * modpon := PN : TRUE(c)

c * asp4 := --- : [x,TRUE(b)]TRUE(c)

asp4 * axiom := PN : TRUE(impl)

This code first introduces (axiomatically: PN abbreviates ‘Primitive Notion’) a
type for the formulas of the logic called bool1, and for every such formula b a
type of the ‘proof objects’ of that formula TRUE(b). The --- notation extends a
context with a variable, where contexts are named by the last variable, and are
indicated before the * in each line. Next, it introduces a function impl(b,c) that
represents the implication b⇒ c. Furthermore, it encodes the Modus Ponens rule

b b⇒ c

c

using the function modpon. If asp1 is a ‘proof object’ of type TRUE(b) and asp2 is a
‘proof object’ of type TRUE(impl(b,c)), then the ‘proof term’ modpon(b,c,asp1,
asp2) denotes a ‘proof object’ of type TRUE(c). This term represents the syntax
of the proof in first order logic using higher order abstract syntax. Finally, the rule

b
...
c

b⇒ c

is encoded by the function axiom. If asp4 is a ‘function’ that maps ‘proof objects’
of type TRUE(b) to those of type TRUE(c), then axiom(b,c,asp4) is a ‘proof
object’ of type TRUE(impl(b,c)).

1For a modern type theorist bool will be a strange choice for this name. However, in HOL
the same name is used for the type of formulas (which shows that HOL is a classical system).
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This Automath code corresponds directly to the modern typing judgments:

bool : ∗
TRUE : bool→ ∗
impl : bool→ bool→ bool

modpon : Πb : bool.Πc : bool. TRUE b→ TRUE (impl b c)→ TRUE c

axiom : Πb : bool.Πc : bool. (TRUE b→ TRUE c)→ TRUE (impl b c)

The way one codes logic in LF style today is still exactly the same as it was in the
sixties when Automath was first designed.

Note that in this example, the proof of p⇒ p is encoded by the term

axiom p p (λH : TRUE(p). H)

which has type TRUE (impl p p). In the ‘direct’ Curry-Howard style of Coq, Agda
and NuPRL, p is itself a type, and the term encoding the proof of p⇒ p becomes
simply

λH : p. p

which has type p → p. Another difference between Automath and the modern
type theoretical systems is that in Automath the logic and basic axioms have to
be introduced axiomatically (as PN lines), while in Coq, Agda and NuPRL these
are given by an ‘inductive types’ definitional package, and as such are defined using
the type theory of the system.

The earliest publication about Automath is technical report number 68-WSK-
05 from the Technical University in Eindhoven, dated November 1968 [de Bruijn,
1968a]. At that time de Bruijn already was a very successful mathematician, had
been full professor of mathematics for sixteen years (first in Amsterdam and then
in Eindhoven), and was fifty years old. The report states that Automath had been
developed in the years 1967–1968. Two other people already were involved at that
time: Jutting as a first ‘user’, and both Jutting and van Bree as programmers that
helped with the first implementations of the language. These implementations
were written in a variant of the Algol programming language (probably Algol 60,
although Algol W was used at some point for Automath implementations too, and
already existed by that time).

Automath was presented in December 1968 at the Symposium on Automatic
Demonstration, held at INRIA Rocquencourt in Paris. The paper presented there
was later published in 1970 in the proceedings of that conference [de Bruijn, 1968c].

The Automath system that is described in those two publications is very similar
to the Twelf system that implements the LF logical framework. A formalization
in this system essentially consists of a long list of definitions, in which a sequence
of constants are defined as abbreviations of typed lambda terms. Through the
Curry-Howard isomorphism this allows one to encode arbitrary logical reasoning.
It appears that de Bruijn was not aware of the work by Curry and Howard at
the time. Both publications mentioned contain no references to the literature,
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and the notations used are very unlike what one would expect from someone who
knew about lambda calculus. For example, function application is written with
the argument in front of the function that is applied to it (which is indeed a more
natural order), i.e., instead of MN one writes 〈N〉M , and lambda abstraction is
not written as λx:A.M but as [x:A]M (this notation was later inherited by the Coq
system, although in modern Coq it has been changed.) Also, the type theory of
Automath is quite different from the current type theories. In modern type theory,
if we have the typings M : B and B : s, then we have (λx:A.M) : (Πx:A.B) and
(Πx:A.B) : s. However, in Automath one would have ([x:A]M) : ([x:A]B) and
([x:A]B) : ([x:A]s). In other words, in Automath there was no difference between
λ and Π, and while in modern type theory binders ‘evaporate’ after two steps when
calculating types of types, in Automath they never will. This means that the typed
terms in Automath do not have a natural set theoretic interpretation (probably
the reason that this variant of type theory has been largely forgotten). However,
this does not mean that this is not perfectly usable as a logical framework.

Apparently de Bruijn rediscovered the Curry-Howard isomorphism mostly in-
dependently (although he had heard from Heyting about the intuitionistic inter-
pretation of the logical connectives). One of the inspirations for the Automath
language was a manual check by de Bruijn of a very involved proof, where he
wrote all the reasoning steps on a large sheet of paper [de Bruijn, 1990]. The
scoping of the variables and assumptions were indicated by drawing lines in the
proof with the variables and assumptions. written in a ‘flag’ at the top of this line.
This is very similar to Jaśkowski-Fitch style natural deduction, but in Automath
(just like in LF) this is not tied to a specific logic.

There essentially have been four groups of Automath languages, of which only
the first two have ever been properly implemented:

AUT-68 This was the first variant of Automath, a simple and clean system,
which was explained in the early papers through various weaker and less
practical systems, with names like PAL, LONGPAL, LONGAL, SEMIPAL
and SEMIPAL 2, where ‘PAL’ abbreviates ‘Primitive Automath Language’
[de Bruijn, 1969; de Bruijn, 1970]. Recently there has been a revival of
interest in these systems from people investigating weak logical frameworks
[Luo, 2003].

AUT-QE This was the second version of the Automath language. ‘QE’ stands for
‘Quasi-Expressions’. With this Automath evolved towards the current type
theories (although it still was quite different), one now both had ([x:A]B) :
([x:A]s) as well as ([x:A]B) : s. This was called type inclusion. AUT-QE is
the dialect of Automath in which the biggest formalization, Jutting’s trans-
lation of Landau’s Grundlagen, was written [van Benthem Jutting, 1979].
It has much later been re-implemented in C by one of the authors of this
chapter [Wiedijk, 2002].

Later AUT languages These are later variants of Automath, like AUT-QE-NTI
(a subset of AUT-QE in which subtyping was removed, the ‘NTI’ standing
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for ‘no type inclusion’), and the AUT-Π and AUT-SYNTH extensions of
AUT-QE. These languages were modifications of the AUT-QE framework,
but although implementations were worked on, it seems none of them was
really finished.

AUT-SL This was a very elegant version of Automath developed by de Bruijn
(with variants of the same idea also developed by others). In this language
the distinction between definitions and redexes is removed, and the formal-
ization, including the definitions, becomes a single very large lambda term.
The ‘SL’ stands for ‘single line’ (Section B.2 of [Nederpelt et al., 1994]). The
system also was called ∆Λ, and sometimes Λ∆ (Section B.7 of [Nederpelt et
al., 1994]). A more recent variant of this system was De Groote’s λλ type
theory [de Groote, 1993]. The system AUT-QE-NTI can be seen as a step
towards the AUT-SL language.

There were later languages, by de Bruijn and by others, that were more loosely
related to the Automath languages. One of these was WOT, the abbreviation of
‘wiskundige omgangstaal’, Dutch for mathematical vernacular [de Bruijn, 1979].
Unlike Trybulec with Mizar, de Bruijn only felt the need to have this ‘vernacular’
be structurally similar to actual mathematical prose, and never tried to make it
natural language-like.

In 1975, the Dutch science foundation ZWO (nowadays called NWO) gave a
large five year grant for the project Wiskundige Taal AUTOMATH to further
develop the Automath ideas. From this grant five researchers, two programmers
and a secretary were financed [de Bruijn, 1978]. During the duration of this project
many students of the Technical University Eindhoven did formalization projects.
Examples of the subjects that were formalized were:

• two treatments of set theory

• a basic development of group theory

• an axiomatic development of linear algebra

• the König-Hall theorem in graph theory

• automatic generation of Automath texts that prove arithmetic identities

• the sine and cosine functions

• irrationality of π

• real numbers as infinite sequences of the symbols 0 and 1

We do not know how complete these formalizations were, nor whether they were
written using an Automath dialect that actually was implemented.

In 1984 De Bruijn retired (although he stayed scientifically active), and the
Automath project was effectively discontinued. In 1994 a volume containing the
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most important Automath papers was published [Nederpelt et al., 1994], and in
2003 most other relevant documents were scanned, resulting in the Automath
Archive, which is freely available on the web [Scheffer, 2003].

Automath has been one of the precursors of a development of type systems
called type theory :

• On the predicative side of things there were the type theories by Martin-
Löf, developed from 1971 on (after discovery of the Girard paradox, in 1972
replaced by an apparently consistent system), which among other things
introduced the notion of inductive types [Nordström et al., 1990].

• On the impredicative side there were the polymorphic lambda calculi by
Girard (1972) and Reynolds (1974). This was combined with the depen-
dent types from Martin-Löf’s type theory in Coquand’s CC (the Calculus
of Constructions), described in his PhD thesis [Coquand and Huet, 1988].
CC was structured by Barendregt into the eight systems of the lambda cube
[Barendregt, 1992], which was then generalised into the framework of pure
type systems (PTSs) by Berardi (1988) and Terlouw (1989).

Both the Martin-Löf theories and the Calculus of Constructions were further de-
veloped and merged in various systems, like in ECC (Extended Calculus of Con-
structions) [Luo, 1989] and UTT (Universal Type Theory) [Luo, 1992], and by
Paulin in CIC (the Calculus of Inductive Constructions) [Coquand and Paulin,
1990], later further developed into pCIC (the predicative version of CIC, which
also was extended with coinductive types), the current type theory behind the
Coq system [Coq development team, 2012].

All these type theories are similar and different (and have grown away from
the Automath type theory). Two of the axes on which one might compare them
are predicativity (‘objects are not allowed to be defined using quantification over
the domain to which the object belongs’) and intensionality (‘equality between
functions is not just determined by whether the values of the functions coincide’).
For example, the type theory of Coq is not yet predicative but it is intensional,
the type theory of NuPRL is predicative but it is not intensional, and the type
theory of Agda is both predicative and intensional.

Recently, there has been another development in type theory with the introduc-
tion of univalent type theory or homotopy type theory (HoTT) by Voevodsky in
2009 [Univalent Foundations Program, 2013]. Here type theory is extended with
an interpretation of equality as homotopy, which gives rise to the axiom of uni-
valence. This means that representation independence now is hardwired into the
type theory. For this reason, some people consider HoTT to be a new foundation
for mathematics. Also, in this system the inductive types machinery is extended to
higher inductive types (inductive types where equalities can be added inductively
as well). Together, this compensates for several problems when using Coq’s type
theory for mathematics: one gets functional extensionality and can have proper
definitions of subtypes and quotient types. This field is still young and in very
active development.
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We now list some important current systems that are based on type theory
and the Curry-Howard isomorphism, and as such can be considered successors to
Automath. We leave out the history of important historical systems like LEGO
[Pollack, 1994], and focus on systems that still have an active user community.
For each we give a brief overview of their development.

NuPRL

In 1979 Martin-Löf introduced an extensional version of his type theory. In the
same year Bates and Constable, after earlier work on the PL/CV verification
framework [Constable and O’Donnell, 1978] had founded the PRL research group
at Cornell University to develop a program development system where programs
are created in a mathematical fashion by interactive refinement (PRL at that time
stood for Program Refinement Logic). In this group various systems were devel-
oped: the AVID system (Aid Verification through the techniques of Interactive
program Development) [Krafft, 1981], the Micro-PRL system, also in 1981, and
the λPRL system [Constable and Bates, 1983].

In 1984 the PRL group implemented a variant of Martin-Löf’s extensional type
theory in a system called NuPRL (also written as νPRL, to be read as ‘new
PRL’; PRL now was taken to stand for Proof Refinement Logic). This system
[Constable, 1986] has had five versions, where NuPRL 5, the latest version, is
also called NuPRL LPE (Logical Programming Environment). In 2003, a new
architecture for NuPRL was implemented called MetaPRL (after first having been
called NuPRL-Light) [Hickey et al., 2003]. The NuPRL type theory always had
a very large number of typing rules, and in the MetaPRL system this is handled
through a logical framework. In that sense this system resembles Isabelle.

Part of the NuPRL/MetaPRL project is the development of a library of formal
results called the FDL (Formal Digital Library).

Coq

In 1984 Huet and Coquand at INRIA started implementing the Calculus of Con-
structions in the CAML dialect of ML. Originally this was just a type checker for
this type theory, but with version 4.10 in 1989 the system was extended in the style
of the LCF system, with tactics that operate on goals. Subsequently many people
have worked on the system. Many parts have been redesigned and re-implemented
several times, including the syntax of the proof language and the kernel of the sys-
tem. The Coq manual [Coq development team, 2012] gives an extensive history of
the development of the system, which involved dozens of researchers. Of these a
majority made contributions to the system that have all turned out to be essential
for its efficient use. Examples of features that were added are: coercions, canonical
structures, type classes, coinductive types, universe polymorphism, various deci-
sion procedures (e.g., for equalities in rings and fields, and for linear arithmetic),
various tactics (e.g., for induction and inversion, and for rewriting with a congru-
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ence, in type theory called ‘setoid equality’), mechanisms for customizing term
syntax, the coqdoc documentation system, the Ltac scripting language and the
Program command (which defines yet another functional programming language
within the Coq system). The system nowadays is a very feature rich environment,
which makes it the currently most popular interactive theorem prover based on
type theory.

The latest released version of Coq is 8.4. This system can be seen as a theorem
prover, but also as an implementation of a functional programming language with
an execution speed comparable to functional languages like OCaml. A byte code
machine similar to the one of OCaml was implemented by Grégoire and Leroy, but
there now also is native code compilation, implemented by Denes and Grégoire.
Also, computations on small integers can be done on the machine level, due to
Spiwack.

Another feature of Coq is that Coq programs can be exported in the syntax of
other functional programming languages, like OCaml and Haskell.

Coq has more than one user interface, of which Proof General [Aspinall, 2000]

and CoqIDE [Bertot and Théry, 1998] are currently the most popular.

There are two important extensions of Coq. First there is the SSReflect proof
language and associated mathematical components library by Gonthier and others
[Gonthier et al., 2008; Gonthier and Mahboubi, 2010], which was developed for the
formalization of the proofs of the 4-color theorem (2005) and the Feit-Thompson
theorem (2012). This is a compact and powerful proof language, which has not
been merged in the mainstream version of Coq. Second there are implementations
of Coq adapted for homotopy type theory.

Finally there is the Matita system from Bologna by Asperti and others [Asperti
et al., 2006]. This started out in 2004 as an independent implementation of a
type checker of the Coq type theory. It was developed in the HELM project
(Hypertextual Electronic Library of Mathematics), which was about presenting
Coq libraries on the web [Asperti et al., 2003], and therefore at the time was
quite similar to Coq, but has in the meantime diverged significantly, with many
improvements of its own.

Twelf

In 1987, Harper, Honsell and Plotkin introduced the Edinburgh Logical Frame-
work, generally abbreviated as Edinburgh LF, or just LF [Harper et al., 1987].
This is a quite simple predicative type theory, inspired by and similar to Au-
tomath, in which one can define logical systems in order to reason about them.
An important property of an encoded logic, which has to be proved on the meta
level, is adequacy, the property that the beta-eta long normal forms of the terms
that encode proofs in the system are in one-to-one correspondence with the proofs
of the logic themselves.

A first implementation of LF was EFS (Environment for Formal Systems) [Grif-
fin, 1988]. Soon after, in 1989, Pfenning implemented the Elf system, which added
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a meta-programming layer [Pfenning, 1994]. In 1999 a new version of this sys-
tem was implemented by Pfenning and Schürmann, called Twelf [Pfenning and
Schürmann, 1999]. In the meta layer of Twelf, one can execute Twelf specifica-
tions as logic programs, and it also contains a theorem prover that can establish
properties of the Twelf encoding automatically, given the right definitions and
annotations.

Agda

In 1990 a first implementation of a type checker for Martin-Löf’s type theory was
created by Coquand and Nordström. In 1992 this turned into the ALF (Another
Logical Framework) system, implemented by Magnusson in SML [Magnusson and
Nordström, 1993]. Subsequently a Haskell implementation of the same system was
worked on by Coquand and Synek, called Half (Haskell Alf). A C version of this
system called CHalf, also by Synek, was used for a significant formalization by
Cederquist of the Hahn-Banach theorem in 1997 [Cederquist et al., 1998]. Synek
developed for this system an innovative Emacs interface that allows one to work in
a procedural style on a proof that essentially is declarative [Coquand et al., 2005].

A new version of this system called Agda was written by Catarina Coquand in
1996, for which a graphical user interface was developed around 2000 by Hallgren.
Finally Norell implemented a new version of this system in 2007 under the name
of Agda2 [Bove et al., 2009]. For a while there were two different versions of this
system, a stable version and a more experimental version, but by now there is just
one version left.

3 LCF AND SUCCESSORS

The LCF approach to interactive theorem proving has its origins in the work of
Robin Milner, who from early in his career in David Cooper’s research group in
Swansea was interested specifically in interactive proof:

I wrote an automatic theorem prover in Swansea for myself and be-
came shattered with the difficulty of doing anything interesting in that
direction and I still am. I greatly admired Robinson’s resolution prin-
ciple, a wonderful breakthrough; but in fact the amount of stuff you
can prove with fully automatic theorem proving is still very small. So
I was always more interested in amplifying human intelligence than I
am in artificial intelligence.2

Milner subsequently moved to Stanford where he worked in 1971–2 in John Mc-
Carthy’s AI lab. There he, together with Whitfield Diffie, Richard Weyhrauch and
Malcolm Newey, designed an interactive proof assistant for what Milner called the
Logic of Computable Functions (LCF). This formalism, devised by Dana Scott in

2http://www.sussex.ac.uk/Users/mfb21/interviews/milner/
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1969, though only published much later [Scott, 1993], was intended for reasoning
about recursively defined functions on complete partial orders (CPOs), such as
typically occur in the Scott-Strachey approach to denotational semantics. The
proof assistant, known as Stanford LCF [Milner, 1972], was intended more for
applications in computer science rather than mainstream pure mathematics. Al-
though it was a proof checker rather than an automated theorem prover, it did
provide a powerful automatic simplification mechanism and convenient support
for backward, goal-directed proof.

There were at least two major problems with Stanford LCF. First, the stor-
age of proofs tended to fill up memory very quickly. Second, the repertoire of
proof commands was fixed and could not be customized. When he moved to
Edinburgh, Milner set about fixing these defects. With the aid of his research
assistants, Lockwood Morris, Malcolm Newey, Chris Wadsworth and Mike Gor-
don, he designed a new system called Edinburgh LCF [Gordon et al., 1979]. To
allow full customizability, Edinburgh LCF was embedded in a general program-
ming language, ML.3 ML was a higher-order functional programming language,
featuring a novel polymorphic type system [Milner, 1978] and a simple but use-
ful exception mechanism as well as imperative features. Although the ML lan-
guage was invented as part of the LCF project specifically for the purpose of
writing proof procedures, it has in itself been seminal: many contemporary func-
tional languages such as CAML Light and OCaml [Cousineau and Mauny, 1998;
Weis and Leroy, 1993] are directly descended from it or at least heavily influenced
by it, and their applications go far beyond just theorem proving.

In LCF, recursive (tree-structured) types are defined in the ML metalanguage to
represent the (object) logical entities such as types, terms, formulas and theorems.
For illustration, we will use thm for the ML type of theorems, though the exact
name is not important. Logical inference rules are then realized concretely as
functions that return an object of type thm. For example, a classic logical inference
rule is Modus Ponens or⇒-elimination, which might conventionally be represented
in a logic textbook or paper as a rule asserting that if p⇒ q and p are both provable
(from respective assumptions Γ and ∆) then q is also provable (from the combined
assumptions):4

Γ ` p⇒ q ∆ ` p
Γ ∪∆ ` q

The LCF approach puts a concrete and computational twist on this by turning
each such rule into a function in the metalanguage. In this case the function, say
MP, takes two theorems as input, Γ ` p ⇒ q and ∆ ` p, and returns the theorem
Γ ∪ ∆ ` q; it therefore has a function type thm->thm->thm in ML (assuming

3ML for metalanguage; following Tarski [1936] and Carnap [1937], it has become usual in
logic and linguistics to to distinguish carefully the object logic and the metalogic (which is used
to reason about the object logic).

4We show it in a sequent context where we also take the union of assumption lists. In a
Hilbert-style proof system these assumptions would be absent; in other presentations we might
assume that the set of hypotheses are the same in both cases and have a separate weakening
rule. Such fine details of the logical system are orthogonal to the ideas we are explaining here.
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curried functions). When logical systems are presented, it’s common to make
some terminological distinctions among the components of the foundation, and all
these get reflected in the types in the metalanguage when implemented in LCF
style:

• An axiom is simply an element of type thm

• An axiom schema (for example a first-order induction principle with an in-
stance for each formula) becomes a function that takes some argument(s)
like a term indicating which instance is required, and returns something of
type thm.

• A true inference rule becomes an ML object like the MP example above that
takes objects, at least one of which is of type thm, as arguments and returns
something of type thm.

The traditional idea of logical systems is to use them as a foundation, by choos-
ing once and for all some relatively small and simple set of rules, axioms and axiom
schemas, which we will call the primitive inference rules, and thereafter perform
all proof using just those primitives. In an LCF prover one can, if one wishes, cre-
ate arbitrary proofs using these logical inference rules, simply by composing the
ML functions appropriately. Although a proof is always performed, the proof itself
exists only ephemerally as part of ML’s (strict) evaluation process, and therefore
no longer fills up memory. Gordon [2000] makes a nice analogy with writing out
a proof on a blackboard, and rubbing out early steps to make room for more. In
order to retain a guarantee that objects of type thm really were created by ap-
plication of the primitive rules, Milner had the ingenious idea of making thm an
abstract type, with the primitive rules as its only constructors. After this, one
simply needs to have confidence in the fairly small amount of code underlying
the primitive inference rules to be quite sure that all theorems must have been
properly deduced simply because of their type.

But even for the somewhat general meta-arguments in logic textbooks, and cer-
tainly for concretely performing proofs by computer, the idea of proving something
non-trivial by decomposing it to primitive inference rules is usually daunting in
the extreme. In practice one needs some other derived rules embodying convenient
inference patterns that are not part of the axiomatic basis but can be derived from
them. A derived inference rule too has a concrete realization in LCF systems as a
function whose definition composes other inference rules, and using parametriza-
tion by the function arguments can work in a general and schematic way just like
the metatheorems of logic textbooks. For example, if we also have a primitive
axiom schema called ASSUME returning a theorem of the form p ` p:

{p} ` p
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then we can implement the following derived inference rule, which we will call
UNDISCH:

Γ ` p⇒ q

Γ ∪ {p} ` q
as a simple function in the metalanguage. For example, the code might look some-
thing like the following. It starts by breaking apart the implication of the input
theorem to determine the appropriate p and q. (Although objects of type thm

can only be constructed by the primitive rules, they can be examined and decon-
structed freely.) Based on this, the appropriate instance of the ASSUME schema is
used and the two inference rules plugged together.

let UNDISCH th =

let Imp(p,q) = concl th in

MP th (ASSUME p);;

This is just a very simple example, but because a full programming language
is available, one can implement much more complex derived rules that perform
sophisticated reasoning and automated proof search but still ultimately reduce
to the primitive rules. Indeed, although LCF and most of its successors use a
traditional forward presentation of logic, it is easy to use a layer of programming
to support goal-directed proof in the style of Stanford LCF, via so-called tactics.

This flexibility gives LCF an appealing combination of reliability and exten-
sibility. In most theorem proving systems, in order to install new facilities it is
necessary to modify the basic code of the prover. But in LCF an ordinary user
can write an arbitrary ML program to automate a useful inference pattern, while
all the time being assured that even if the program has bugs, no false theorems
will arise (though the program may fail in this case, or produce a valid theorem
other than the one that was hoped for). As Slind [1991] puts it ‘the user controls
the means of (theorem) production’.

LCF was employed in several applications at Edinburgh, and this motivated
certain developments in the system. By now, the system had attracted attention
elsewhere. Edinburgh LCF was ported to LeLisp and MacLisp by Gérard Huet,
and this formed the basis for a rationalization and redevelopment of the system by
Paulson [1987] at Cambridge, resulting in Cambridge LCF. First, Huet and Paul-
son modified the ML system to generate Lisp code that could be compiled rather
than interpreted, which greatly improved performance. Among many other im-
provements Paulson [1983] replaced Edinburgh LCF’s complicated and monolithic
simplifier with an elegant scheme based on on conversions.

A conversion is a particular kind of derived rule (of ML type :term->thm) that
given a term t returns a theorem of the form Γ ` t = t′ for some other term t′.
(For example, a conversion for addition of numbers might map the term 2 + 3
to the theorem ` 2 + 3 = 5.) This gives a uniform framework for converting
ad hoc simplification routines into those that are justified by inference: instead
of simply taking t and asserting its equality to t′, we actually carry theorems
asserting such equivalences through the procedure. Via convenient higher-order
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functions, conversions can be combined in various ways, applied recursively in a
depth-first fashion etc., with all the appropriate inference to plug the steps together
(transitivity and congruences and so on) happening automatically.

3.1 HOL

As emphasized by Gordon [1982], despite the name ‘LCF’, nothing in the Edin-
burgh LCF methodology is tied to the Logic of Computable Functions. In the early
1980s Gordon, now in Cambridge, as well as supervising Paulson’s development
of LCF, was interested in the formal verification of hardware. For this purpose,
classical higher order logic seemed a natural vehicle, since it allows a rather direct
rendering of notions like signals as functions from time to values. The case was
first put by Hanna and Daeche [1986] and, after a brief experiment with an ad hoc
formalism ‘LSM’ based on Milner’s Calculus of Communicating Systems, Gordon
[1985] also became a strong advocate.

Gordon modified Cambridge LCF to support classical higher order logic, and so
HOL (for Higher Order Logic) was born. Following Church [1940], the system is
based on simply typed λ-calculus, so all terms are either variables, constants, ap-
plications or abstractions; there is no distinguished class of formulas, merely terms
of boolean type. The main difference from Church’s system is that polymorphism
is an object-level, rather than a meta-level, notion; essentially the same Hindley-
Milner automated typechecking algorithm used in ML [Milner, 1978] is used in
the interface so that most general types for terms can be deduced automatically.
Using defined constants and a layer of parser and pretty-printer support, many
standard syntactic conventions are broken down to λ-calculus. For example, the
universal quantifier, following Church, is simply a higher order function, but the
conventional notation ∀x.P [x] is supported, mapping down to ∀(λx.P [x]). Sim-
ilarly there is a constant LET, which is semantically the identity and is used
only as a tag for the pretty-printer, and following Landin [1966], the construct
‘let x = t in s’ is broken down to ‘LET (λx.s) t’.5 The advantage of keeping the
internal representation simple is that the underlying proof procedures, e.g. those
that do term traversal during simplification, need only consider a few cases.

The exact axiomatization of the logic was partly influenced by Church, partly
by the way things were done in LCF, and partly through consultation with the
logicians Mike Fourman, Martin Hyland and Andy Pitts in Cambridge. HOL orig-
inally included a simple constant definitional mechanism, allowing new equational
axioms of the form ` c = t to be added, where t is a closed term and c a new con-
stant symbol. A mechanism for defining new types, due to Mike Fourman, was also
included. Roughly speaking one may introduce a new type in bijection with any
nonempty subset of an existing type (identified by its characteristic predicate). An
important feature of these definitional mechanisms bears emphasizing: they are
not metalogical translations, but means of extending the signature of the object

5Landin, by the way, is credited with inventing the term ‘syntactic sugar’, as well as this
notable example of it.
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logic, while guaranteeing that such extension preserves consistency. In fact, the
definitional principles are conservative, meaning roughly that no new statements
not involving the defined concept become provable as a result of the extension.

HOL emphasized the systematic development of theories by these principles of
conservative extension to the point where it became the norm, purely axiomatic
extensions becoming frowned on. Such an approach is obviously a very natural fit
with the LCF philosophy, since it entails pushing back the burden of consistency
proofs or whatever to the beginning, once and for all, such that all extensions,
whether of the theory hierarchy or proof mechanisms, are correct by construction.
(Or at least consistent by construction. Of course, it is perfectly possible to intro-
duce definitions that do not correspond to the intuitive notion being formalized,
but no computable process can resolve such difficulties.) This contrasts with LCF,
where there was no distinction between definitions and axioms, and new types
were often simply characterized by axioms without any formal consistency proof.
Though there was usually a feeling that such a proof would be routine, it is easy
to make mistakes in such a situation. It can be much harder to produce useful
structures by definitional extension than simply to assert suitable axioms — the
advantages were likened by Russell [1919] to those of theft over honest toil.

For example, Melham’s derived definitional principle [Melham, 1989] for recur-
sive data types was perhaps at the time the most sophisticated LCF-style derived
rule ever written, and introduced important techniques for maintaining efficiency
in complex rules that are still used today — we discuss the issues around efficient
implementations of decision procedures later. This was the first of a wave of de-
rived definitional principles in LCF-like systems for defining inductive or coinduc-
tive sets or relations [Andersen and Petersen, 1991; Camilleri and Melham, 1992;
Roxas, 1993; Paulson, 1994a], general recursive functions [Ploegaerts et al., 1991;
van der Voort, 1992; Slind, 1996; Krauss, 2010], quotient types with automated
lifting of definitions and theorems [Harrison, 1998; Homeier, 2005], more general
forms of recursive datatypes with infinite branching, nested and mutual recursion
or dual codatatypes [Gunter, 1993; Harrison, 1995a; Berghofer and Wenzel, 1999;
Blanchette et al., 2014] as well as special nominal datatypes to formalize variable
binding in a natural way [Urban, 2008]. Supporting such complex definitions as a
primitive aspect of the logic, done to some extent in systems as different as ACL2
and Coq, is a complex, intricate and error-prone activity, and there is a lot said for
how the derived approach maintains foundational simplicity and security. In fact
general wellfounded recursive functions in Coq are also supported using derived
definitional principles [Balaa and Bertot, 2000], while quotients in the current
foundations of Coq are problematic for deeper foundational reasons too.

The HOL system was consolidated and rationalized in a major release in late
1988, which was called, accordingly, HOL88. It became fairly popular, acquired
good documentation, and attracted many users around the world. Nevertheless,
despite its growing polish and popularity, HOL88 was open to criticism. In par-
ticular, though the higher-level parts were coded directly in ML, most of the term
operations below were ancient and obscure Lisp code (much of it probably written
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Figure 2: The HOL family tree

by Milner in the 1970s). Moreover, ML had since been standardized, and the new
Standard ML seemed a more promising vehicle for the future than Lisp, especially
with several new compilers appearing at the time. These considerations motivated
two new versions of HOL in Standard ML. One was developed by Roger Jones,
Rob Arthan and others at ICL Secure Systems and called ProofPower. This was
intended as a commercial product and has been mainly used for high-assurance
applications, though the current version is freely available and has also been used
in other areas like the formalization of mathematics.6 The other, called hol90, was
written by Konrad Slind [1991], under the supervision of Graham Birtwistle at the
University of Calgary. The entire system was coded in Standard ML, which made
all the pre-logic operations such as substitution accessible. Subsequently several
other versions of HOL were written, including HOL Light, a version with a sim-
plified axiomatization and rationalized structure written in CAML Light by one
of the present authors and subsequently ported to OCaml [Harrison, 2006a], and
Isabelle/HOL, described in more detail in the next section. The ‘family DAG’ in
Figure 2 gives an approximate idea of some of the influences. While HOL88, hol90
and hol98 are little used today (though HOL88 is available as a Debian package),
all the other provers in this picture are under active development and/or have
significant user communities.

6See http://www.lemma-one.com/ProofPower/index/.
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3.2 Isabelle

We will discuss one more LCF-style system in a little more depth because it has
some distinguishing features compared to others in the family, and is also perhaps
currently the most widely used member of the LCF family. This is the Isabelle
system, originally developed by Paulson [1990]. The initial vision of Isabelle was as
an LCF-style logical framework in which to embed other logics. Indeed, the subtitle
‘The Next 700 Theorem Provers’ in Paulson’s paper (with its nod to Landin’s ‘The
Next 700 Programming Languages’) calls attention to the proliferation of different
theorem proving systems already existing at the time. Many researchers, especially
in computer science, were (and still are) interested in proof support for particular
logics (classical, constructive, many-valued, temporal etc.) While these all have
their distinctive features, they also have many common characteristics, making
the appeal of a re-usable generic framework obvious.

Isabelle effectively introduces yet another layer into the meta-object distinc-
tion, with the logic directly implemented in the LCF style itself being considered
a meta-logic for the embedding of other logics. The Isabelle metalogic is a simple
form of higher-order logic. It is intentionally weak (for example, having no induc-
tion principles) so that it does not in itself introduce foundational assumptions
that some might find questionable or cause incompatibilities with the way object
logics are embedded. But it serves its purpose well as a framework for embedding
object logics and providing a common infrastructure across them. The inference
rules in the object logic are then given in a declarative fashion as meta-implications
(implications in the meta-logic). For example, our earlier example of Modus Po-
nens can be represented as the following (meta) theorem. The variables starting
with ‘?’ are metavariables, i.e. variables in the metalogic; → denotes object-level
implication while ⇒ denotes meta-level implication.

[?P →?Q; ?P ]⇒?Q

By representing object-level inference rules in this fashion, the actual implemen-
tations often just need to perform forward or backward chaining with matching
and/or unification. Isabelle supports the effective automation of this process with
a powerful higher-order unification algorithm [Huet, 1975] giving a kind of higher-
order resolution principle.

Many design decisions in Isabelle were based on Paulson’s experience with
Cambridge LCF and introduced a number of improvements. In particular, back-
ward proof (‘tactics’) in LCF actually worked by iteratively creating function clo-
sures to eventually reverse the refinement process into a sequence of the prim-
itive forward rules. This non-declarative formulation meant, for example, that
it was a non-trivial change to add support in LCF for logic variables allow-
ing the instantiation of existential goals to be deferred [Soko lowski, 1983]. Is-
abelle simply represented goals as theorems, with tactics effectively working for-
wards on their assumptions, making the whole framework much cleaner and giv-
ing metavariables with no extra effort. This variant of tactics was also adopted
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in the ProofPower and LAMBDA systems (see next section). Isabelle’s tac-
tic mechanism also allowed backtracking search over lazy lists of possible out-
comes in its tactic mechanism. Together with unification, this framework could
be used to give very simple direct implementations of some classic first-order

proof search algorithms like tableaux à la leanTAP [Beckert and Posegga, 1995]

(fast_tac in Isabelle) and the Loveland-Stickel presentation [Loveland, 1978;
Stickel, 1988] of model elimination (meson_tac). While nowadays largely super-
seded by much more powerful automation of the kind that we consider later, these
simple tactics were at the time very convenient in making typical proofs less low-
level.

It’s customary to use appellations like ‘Isabelle/X’ to describe the particular in-
stantiation of Isabelle with object logic X. Among the many object logics embedded
in Isabelle are constructive type theory, classical higher order logic (Isabelle/HOL)
and first-order Zermelo-Fraenkel set theory (Isabelle/ZF) [Paulson, 1994b]. De-
spite this diversity, only a few have been extensively used. Some axiom of choice
equivalences have been formalized in Isabelle/ZF [Paulson and Gra̧bczewski, 1996],
as has Gödel’s hierarchy L of constructible sets leading to a proof of the relative
consistency of the Axiom of Choice [Paulson, 2003]. But by far the largest user
community has developed around the Isabelle/HOL instantiation [Nipkow et al.,
2002]. This was originally developed by Tobias Nipkow as an instantiation of Is-
abelle with something very close to the logic of the various HOL systems described
above, but with the addition (at the level of the metalogic) of a system of axiomatic
type classes similar to those of Haskell. In this instantiation, the ties between the
Isabelle object and metalogic are particularly intimate.

Since its inception, Isabelle/HOL has become another full-fledged HOL imple-
mentation. In fact, from the point of view of the typical user the existence of a
separate metalogic can largely be ignored, so the effective common ground between
Isabelle/HOL and other HOL implementations is closer than might be expected.
However, one more recent departure (not limited to the HOL instantiation of Is-
abelle) takes it further from its LCF roots and other HOL implementations. This is
the adoption of a structured proof language called Isar, inspired by Mizar [Wenzel,
1999]. For most users, this is the primary interaction language, so they no longer
use the ML read-eval-print loop as the interface. The underlying LCF mechanisms
still exist and can be accessed, but many facilities are mediated by Isar and use
a sophisticated system of contexts. We describe some of the design decisions in
proof languages later in this chapter.

3.3 Other LCF systems

There have been quite a few other theorem provers either directly implemented in
the LCF style or at least heavily influenced by it. Some of them, such as NuPRL
and Coq, we have discussed above because of their links to constructive type the-
ory, and so we will not discuss them again here, but their LCF implementation
pedigree is also worth noting. For example, Bates and Constable [1985] describe
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the LCF approach in detail and discuss how NuPRL developed from an earlier
system PL/CV. Another notable example is the LAMBDA (Logic And Mathe-
matics Behind Design Automation) system, which was developed in a team led by
Mike Fourman for use in hardware verification. Among other distinctive features,
it uses a logic of partial functions, as did the original LCF system and as does the
non-LCF system IMPS [Farmer et al., 1990].

4 MIZAR

The history of Mizar [Matuszewski and Rudnicki, 2005] is a history of a team of
Polish mathematicians, linguists and computer scientists analyzing mathematical
texts and looking for a satisfactory human-oriented formal counterpart. One of
the mottos of this effort has been Kreisel’s ‘ENOD: Experience, Not Only Doc-
trine’ [Rudnicki and Trybulec, 1999], which in the Mizar context was loosely un-
derstood as today’s ideas on rapid/agile software development. There were Mizar
prototypes with semantics that was only partially clear, and with only partial
verification procedures. A lot of focus was for a long time on designing a suit-
able language and on testing it by translating real mathematical papers into the
language. The emphasis has not been just on capturing common patterns of rea-
soning and theory development, but also on capturing common syntactic patterns
of the language of mathematics. A Mizar text is not only supposed to be written
by humans and then read by machines, but it is also supposed to be directly easily
readable by humans, avoid too many parentheses, quotation marks, etc.

The idea of such a language and system was proposed in 1973 by Andrzej Try-
bulec, who was at that time finishing his PhD thesis in topology under Karol
Borsuk, and also teaching at the P lock Branch of the Warsaw University of Tech-
nology. Trybulec had then already many interests: since 1967 he had been pub-
lishing on topics in topology and linguistics, and in P lock he was also running the
Informatics Club. The name Mizar (after a star in Big Dipper)7 was proposed by
Trybulec’s wife Zinaida, originally for a different project. The writing of his PhD
thesis and incorporating of Borsuk’s feedback prompted Trybulec to think about
languages and computer systems that would help mathematicians with such tasks.
He presented these ideas for the first time at a seminar at the Warsaw University
on November 14, 1973, and was soon joined by a growing team of collaborators
that were attracted by his vision8 and personality, in many cases for their whole
lives: Piotr Rudnicki, Czes law Byliński, Grzegorz Bancerek, Roman Matuszewski,
Artur Kornilowicz, Adam Grabowski and Adam Naumowicz, to name just a few.

7Some backronyms related to Mathematics and Informatics have been proposed later.
8It was easy to get excited, for several reasons. Andrzej Trybulec and most of the Mizar

team have been a showcase of the popularity of science fiction in Poland and its academia. A
great selection of world sci-fi books has been shared by the Mizar team, by no means limited to
famous Polish sci-fi authors such as Stanis law Lem. Another surprising and inspiring analogy
appeared after the project moved in 1976 to Bia lystok: the city where Ludwik Zamenhof grew
up and started to create Esperanto in 1873 [Zalewska, 2010] – 100 years before the development
of Mizar started.
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The total count of Mizar authors in May 2014 grew to 246. In his first note
(June 1975 [Trybulec, 1977]) about Mizar, Trybulec called such languages Logic-
Information Languages (LIL) and defined them as facto-graphic languages that
enable recording of both facts from a given domain as well as logical relationships
among them. He proposed several applications for such languages, such as:

• Input to information retrieval systems which use logical dependencies.

• Intermediate languages for machine translation (especially of science).

• Automation of the editorial process of scientific papers, where the input
language is based on LIL and the output language is natural (translated into
many languages).

• Developing verification procedures for such languages, not only in mathe-
matics, but also in law and medicine, where such procedures would typically
interact with a database of relevant facts depending on the domain.

• Education, especially remote learning.

• Artificial intelligence research.

For the concrete instantiation to mathematics, the 1975 note already specified the
main features of what is today’s Mizar, noting that although such a vision borders
on science fiction, it is a proper research direction:

• The paper should be directly written in a LIL.

• The paper is checked automatically for syntactic and some semantic errors.

• There are procedures for checking the correctness of the reasoning, giving
reports about the reasoning steps that could not be automatically justified.

• A large database of mathematics is built on top of the system and used to
check if the established results are new, providing references, etc.

• When the paper is verified, its results are included in such database.

• The paper is automatically translated into natural languages, given to other
information retrieval systems such as citation indexes, and printed.

The proposal further suggested the use of classical first-order logic with a rich set
of reasoning rules, and to include support for arithmetics and set theory. The
language should be rich and closely resemble natural languages, but on the other
hand it should not be too complicated to learn, and at the lexical and syntactic
level it should resemble programming languages. In particular, the Algol 60 and
later the Pascal language and compiler, which appeared in 1970, became sources of
inspiration for Mizar and its implementation languages. Various experiments with
Pascal program verification were done later with Mizar [Rudnicki and Drabent,
1985].
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Figure 3: The Mizar timeline

It is likely that in the beginning Trybulec did not know about Automath,
LCF, SAM, and other Western efforts, and despite his good contacts with Rus-
sian mathematicians and linguists, probably neither about the work of Glushkov
and his team in Kiev [Letichevsky et al., 2013] on the Evidence Algorithm and
the SAD system. However, the team learned about these projects quite quickly,
and apart from citing them, the 1978 paper on Mizar-QC/6000 [Trybulec, 1978]

also makes interesting references to Kaluzhnin’s 1962 paper on ‘information lan-
guage for mathematics’ [Kaluzhnin, 1962], and even earlier (1959, 1961) related
papers by Paducheva and others on such languages for geometry. As in some
other scientific fields, the wealth of early research done by these Soviet groups has
been largely unknown in the western world, see [Lyaletski and Verchinine, 2010;
Verchinine et al., 2008] for more details about them.

4.1 Development of Mizar

The construction of the Mizar language was started by looking at the paper by H.
Patkowska9 A homotopy extension theorem for fundamental sequences [Patkowska,
1969], and trying to express it in the designed language. During the course of the
following forty years, a number of versions of Mizar have been developed (see
the timeline in Figure 3), starting with bare propositional calculus and rule-based
proof checking in Mizar-PC, and ending with today’s version of Mizar (Mizar 8 as
of 2014) in which a library of 1200 interconnected formal articles is written and
verified.

Mizar-PC 1975-1976

While a sufficiently expressive mathematical language was a clear target of the
Mizar language from the very beginning, the first implementation [Trybulec, 1977]

9Another PhD student of Karol Borsuk.
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of Mizar (written in Algol 1204) was limited to propositional calculus (Mizar-PC).
A number of features particular to Mizar were however introduced already in this
first version, especially the Mizar vocabulary and grammar motivated by Algol
60, and the Mizar suppositional proof style which was later found10 to correspond
to Jaśkowski-Fitch natural deduction [Jaśkowski, 1934]. An example proof taken
from the June 1975 description of Mizar-PC is as follows:

begin

((p ⊇ q) ∧ (q ⊇ r)) ⊇ (p ⊇ r)

proof

let A: (p ⊇ q) ∧ (q ⊇ r) ;

then B: p ⊇ q ;

C: q ⊇ r by A ;

let p ;

then q by B ;

hence r by C

end

end

The thesis (contents, meaning) of the proof in Mizar-PC is constructed from
assumptions introduced by the keyword let (later changed to assume) by placing
an implication after them, and from conclusions introduced by keywords thus and
hence by placing a conjunction after them (with the exception of the last one).
The by keyword denotes inference steps where the formula on the left is justified
by the conjunction of formulas whose labels are on the right. The immediately
preceding formula can be used for justification without referring to its label by
using the linkage mechanism invoked by keywords then for normal inference steps
and hence for conclusions. The proof checker verifies that the formula to be proved
is the same as the thesis constructed from the proof, and that all inference steps
are instances of about five hundred inference rules available in the database of im-
plemented schematic proof-checking rules. This rule-based approach was changed
in later Mizar versions to an approach based on model checking (in a general sense,
not in connection with temporal logic model checking). Mizar-PC already allowed
the construction of a so-called compound statement (later renamed to diffuse state-
ment), i.e., a statement that is constructed implicitly from its suppositional proof
given inside the begin ... end brackets (later changed to now ... end) and can be
given a label and referred to in the same way as normal statements. An actual
use of Mizar-PC was for teaching propositional logic in P lock and Warsaw.

Mizar-QC 1977-1978

Mizar-QC added quantifiers to the language and proof rules for them. An example
proof (taken from [Matuszewski and Rudnicki, 2005]) is:

10Indeed, the Mizar team found only later that they re-invented Jaśkowski-Fitch proof style.
Andrzej Trybulec was never completely sure if he had not heard about it earlier, for example at
Roman Suszko’s seminars.
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BEGIN

((EX X ST (FOR Y HOLDS P2[X,Y])) > (FOR X HOLDS (EX Y ST P2[Y,X])))

PROOF

ASSUME THAT A: (EX X ST (FOR Y HOLDS P2[X,Y]));

LET X BE ANYTHING;

CONSIDER Z SUCH THAT C: (FOR Y HOLDS P2[Z,Y]) BY A;

SET Y = Z;

THUS D: P2[Y,X] BY C;

END

END

The FOR and EX keywords started to be used as quantifiers in formulas, and the LET

statement started to be used for introducing a local constant in the proof corre-
sponding to the universal quantifier of the thesis. The keyword ASSUME replaced the
use of LET for introducing assumptions. The CONSIDER statement also introduces
a local constant with a proposition justified by an existential statement. The SET

statement (replaced by TAKE later) chooses an object that will correspond to an
existential quantifier in the current thesis. While the LET X BE ANYTHING statement
suggests that a sort/type system was already in place, in the QC version the only
allowed sort was just ANYTHING.

The BY justification proceeds by transforming the set of formulas into a standard
form that uses only conjunction, negation and universal quantification and then
applying a set of rewrite rules restricted by a bound on a sum of complexity
coefficients assigned to the rules. The verifier was implemented in Pascal/6000
for the CDC CYBER-70, and run in a similar way to the Pascal compiler itself,
i.e., producing a list of error messages for the lines of the Mizar text. The error
messages are inspected by the author, who modifies the text and runs the verifier
again. This batch/compilation style of processing of the whole text is also similar
to TEX, which was born at the same time. It has become one of the distinctive
features of Mizar when compared to interpreter-like ITPs implemented in Lisp and
ML.

Mizar Development in 1978-1988

The development of Mizar-QC was followed by a decade of additions leading to the
first version of PC-Mizar11 in 1989. In 1989 the building of the Mizar Mathematical
Library (MML) started, using PC-Mizar.

Mizar MS (Multi Sorted) (1978) added predicate definitions and syntax
for schemes (such as the Induction and Replacement schemes), i.e., patterns of
theorems parameterized by arbitrary predicates and functors. Type declarations
were added, the logic became many-sorted, and equality was built in.

Mizar FC (1978-1979) added function (usually called functor in Mizar) def-
initions. The syntax allowed both equational definitions and definitions by condi-
tions that guarantee existence and uniqueness of the function. The BY justification

11PC stands here for Personal Computer.
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procedure based on rewrite rules was replaced by a procedure based on ‘model
checking’: the formula to be proved is negated, conjoined with all its premises, and
the procedure tries to refute every possible model of this conjunction. This proce-
dure [Wiedijk, 2000] has been subject to a number of additions and experiments
throughout the history of Mizar development, focusing on the balance between
speed, strength, and obviousness to the human reader [Davis, 1981; Rudnicki,
1987a]. They were mainly concerned with various restricted versions of matching
and unification, algorithms such as congruence closure for handling equality effi-
ciently, handling of the type system and various built-in constructs [Naumowicz
and Bylinski, 2002; Naumowicz and Bylinski, 2004].

Mizar-2 (1981) introduced the environment part of an article, at that time
containing statements that are checked only syntactically, i.e., without requiring
their justification. Later this part evolved into its current form used for importing
theorems, definitions and other items from other articles. Type definitions were
introduced: types were no longer disjoint sorts, but non empty sets or classes
defined by a predicate. This marked the beginning of another large Mizar research
topic: its soft type system added on top of the underlying first-order logic. Types
in Mizar are neither foundational nor disjoint as in the HOL and Automath families
[Wiedijk, 2007]. The best way in which to think of the Mizar types is as a hierarchy
of predicates (not just monadic: n-ary predicates result in dependent types), where
traversing of this hierarchy – the subtyping, intersection, disjointness relations, etc.
– is to a large extent automated and user-programmable, allowing the automation
of large parts of the mundane mathematical reasoning.12 Where such automation
fails, the RECONSIDER statement can be used, allowing one to change a type of an
object explicitly after a justification.

Mizar-3 and Mizar-4 (1982-1988) divided the processing into multiple
cheaper passes with file-based communication, such as scanning, parsing, type
and natural-deduction analysis, and justification checking. The use of special vo-
cabulary files for symbols together with allowing infix, prefix, postfix notation and
their combinations resulted in greater closeness to mathematical texts. Reserva-
tions were introduced, for predeclaring variables and their default types. Other
changes and extensions included unified syntax for definitions of functors, predi-
cates, attributes and types, keywords for various correctness conditions related to
definitions such as uniqueness and existence, etc. In 1986, Mizar-4 was ported to
the IBM PC platform running MS-DOS and renamed to PC-Mizar in 1988.

12This soft typing system bears some similarities to the sort system implemented in ACL2,
and also to the type system used by the early Ontic system. Also the more recent soft (non-
foundational) typing mechanisms such as type classes in Isabelle and Coq, and canonical struc-
tures in Coq, can be to a large extent seen as driven by the same purpose as types have in Mizar:
non-foundational mechanisms for automating the work with hierarchies of defined concepts that
can overlap in various ways.
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PC-Mizar and the Mizar Mathematical Library (1988-)

In 1987-1991 a relatively large quantity of national funding was given to the Mizar
team to develop the system and to use it for substantial formalization. The main
modification to Mizar to allow that were mechanisms for importing parts of other
articles. The official start of building of the Mizar Mathematical Library (MML)
dates to January 1, 1989, when three basic articles defining the language and
axioms of set theory and arithmetic were submitted. Since then the development
of Mizar has been largely driven by the growth of the MML. Apart from the further
development of the language and proof-checking mechanisms, a number of tools
for proof and library refactoring have been developed. The Library Committee
has been established, and gradually more and more work of the core Mizar team
shifted to refactoring the library so that duplication is avoided and theories are
developed in general and useful form [Rudnicki and Trybulec, 2003]. Perhaps the
largest project done in Mizar so far has been the formalization of about 60% of
the Compendium of Continuous Lattices [Bancerek and Rudnicki, 2002], which
followed the last QED workshop organized by the Mizar team in Warsaw.13 This
effort resulted in about 60 MML articles. One of the main lessons learned (see
also the Kreisel’s motto above) by the Mizar team from such large projects has
been expressed in [Rudnicki and Trybulec, 1999] as follows:

The MIZAR experience indicates that computerized support for math-
ematics aiming at the QED goals cannot be designed once and then
simply implemented. A system of mechanized support for mathematics
is likely to succeed if it has an evolutionary nature. The main compo-
nents of such a system – the authoring language, the checking software,
and the organization of the data base - must evolve as more experi-
ence is collected. At this moment it seems difficult to extrapolate the
experience with MIZAR to the fully fledged goals of the QED Project.
However, the people involved in MIZAR are optimistic.

5 SYSTEMS BASED ON POWERFUL AUTOMATION

The LCF approach and the systems based on type theory all tend to emphasize
a highly foundational approach to proof, with a (relatively) small proof kernel
and a simple axiomatic basis for the mathematics used. While Mizar’s software
architecture doesn’t ostensibly have the same foundational style, in practice its
automation is rather simple, arguably an important characteristic since it also
enables batch proof script checking to be efficient. Thus, all these systems em-
phasize simple and secure foundations and try to build up from there. Nowadays
LCF-style systems in particular offer quite powerful automated support, but this
represents the culmination of decades of sometimes arduous research and devel-
opment work in foundational implementations of automation. In the first decade

13http://mizar.org/qed/
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of their life, many systems like Coq and Isabelle/HOL that nowadays seem quite
powerful only offered rather simple and limited automation, making some of the
applications of the time seem even more impressive.

A contrasting approach is to begin with state-of-the-art automation, regardless
of its foundational characteristics. Systems with this philosophy were usually in-
tended to be applied immediately to interesting examples, particularly in software
verification, and in many cases were intimately connected with custom program
verification frameworks. (For example, the GYPSY verification framework [Good
et al., 1979] tried to achieve just the kind of effective blend of interaction and
automation we are considering, and had a significant impact on the development
of proof assistants.) Indeed, in many cases these proof assistants became vehi-
cles for exploring approaches to automation, and thus pioneered many techniques
that were later re-implemented in a foundational context by the other systems.
Although there are numerous systems worthy of mention — we note in passing
EVES/Never [Craigen et al., 1991], KIV [Reif, 1995] and SDVS [Marcus et al.,
1985] — we will focus on two major lines of research that we consider to have
been the most influential. Interestingly, their overall architectures have relatively
little common ground — one emphasizes automation of inductive proofs with it-
erated waves of simplification by conditional rewriting, the other integration of
quantifier-free decision procedures via congruence closure. In their different ways,
both have profoundly influenced the field. One might of course characterize them
as automated provers rather than interactive ones, and some of this work has cer-
tainly been influential in the field of pure automation. Nevertheless, we consider
that they belong primarily to the interactive world, because they are systems that
are normally used to attack challenging problems via a human process of inter-
action and lemma generation, even though the automation in the background is
unusually powerful. For example, the authors of NQTHM say the following [Boyer
and Moore, 1988]:

In a shallow sense, the theorem prover is fully automatic: the system
requires no advice or directives from the user once a proof attempt has
started. The only way the user can alter the behavior of the system
during a proof attempt is to abort the proof attempt. However, in a
deeper sense, the theorem prover is interactive: the data base – and
hence the user’s past actions – influences the behavior of the theorem
prover.

5.1 NQTHM and ACL2

The story of NQTHM and ACL2 really starts with the fertile collaboration between
Robert Boyer and J Strother Moore, both Texans who nevertheless began their
work together in 1971 when they were both at the University of Edinburgh. How-
ever, we can detect the germ of some of the ideas further back in the work of Boyer’s
PhD advisor, Woody Bledsoe. Bledsoe was at the time interested in more human-
oriented approaches to proof, swimming against the tide of the then-dominant
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interest in resolution-like proof search. For example, Bledsoe and Bruell [1974]
implemented a theorem prover that was used to explore semi-automated proof,
particularly in general topology. In a sense this belongs in our list of pioneering
interactive systems because it did provide a rudimentary interactive language for
the human to guide the proof, e.g. PUT to explicitly instantiate a quantified vari-
able. The program placed particular emphasis on the systematic use of rewriting,
using equations to simplify other formulas. Although this also appeared in other
contexts under the name of demodulation [Wos et al., 1967] or as a special case
of superposition in completion [Knuth and Bendix, 1970], and has subsequently
developed into a major research area in itself [Baader and Nipkow, 1998], Bled-
soe’s emphasis was instrumental in establishing rewriting and simplification as a
key component of many interactive systems.

Although Boyer and Moore briefly worked together on the popular theme of
resolution proving, they soon established their own research agenda: formalizing
proofs by induction. In a fairly short time they developed their ‘Pure LISP theo-
rem prover’, which as the name suggests was designed to reason about recursive
functions in a subset of pure (functional) Lisp.14 The prover used some relatively
simple but remarkably effective techniques. Most of the interesting functions were
defined by primitive recursion of one sort or another, for example over N by defin-
ing f(n + 1) in terms of f(n) or over lists by defining f(CONS h t), where CONS is
the Lisp list constructor, h the head element and t the tail of remaining elements,
in terms of f(t). (In fact, only the list form was primitive in the prover, with
natural numbers being represented via lists in zero-successor form.) The pattern
of recursive definitions was used to guide the application of induction principles
and so produce explicit induction hypotheses. Moreover, the prover was also able
to generalize the statement to be proved in order better to apply induction — it
is a well-known phenomenon that this can make inductive proofs easier because
one strengthens the inductive hypothesis that is available. These two distinctive
features were at the heart of the prover, but it also benefited from a number of
additional techniques like the systematic use of rewriting. Indeed, it was empha-
sized that proofs should first be attempted using more simple and controllable
techniques like rewriting, with induction and generalization only applied if that
was not sufficient.

The overall organization of the prover was a prototypical form of what has
become known as the ‘Boyer-Moore waterfall model’. One imagines conjectures
as analogous to water flowing down a waterfall down to a ‘pool’ below. On their
path to the pool below conjectures may be modified (for example by rewriting),
they may be proven (in which case they evaporate), they may be refuted (in
which case the overall process fails) or they may get split into others. When all
the ‘easy’ methods have been applied, generalization and induction take place,
and the new induction hypotheses generated give rise to another waterfall. This
process is graphically shown in the traditional picture in Figure 4, although not

14Note that the prover was not then implemented in Lisp, but rather in POP-2, a language
developed at Edinburgh by Robin Popplestone and Rod Burstall.



History of Interactive Theorem Proving 31

Formula

Induction Elimination

of irrelevance

Generalization

Cross−fertilization

POOL

Simplification

Destructor elimination

Figure 4: The Boyer-Moore ‘Waterfall’ model

all the initial steps were present from the beginning.

The next stage in development was a theorem prover concisely known as THM,
which then evolved via QTHM (‘quantified THM’) into NQTHM (‘new quantified THM’).
This system was presented in book form [Boyer and Moore, 1979] and brought
Boyer and Moore’s ideas to a much wider audience as well as encouraging actual
use of the system. Note that Boyer and Moore did not at that time use the term
NQTHM in their own publications, and although it was widely known simply as ‘the
Boyer-Moore theorem prover’, they were too modest to use that term themselves.

NQTHM had a number of developments over its predecessors. As the name implies,
it supported formulas with (bounded) quantification. It made more extensive and
systematic use of simplification, using previously proved lemmas as conditional,
contextual rewrite rules. A so-called shell principle allowed users to define new
data types instead of reducing everything explicitly to lists. The system was able to
handle not only primitive recursive definitions and structural inductions [Burstall,
1969] over these types, but also definitions by wellfounded recursion and proofs
by wellfounded induction, using an explicit representation of countable ordinals
internally. A decision procedure was also added for rational linear arithmetic. All
these enhancements made the system much more practical and it was subsequently
used for many non-trivial applications, including Hunt’s pioneering verification of
a microprocessor [Hunt, 1985], Shankar’s checking of Gödel’s First Incompleteness
Theorem [Shankar, 1994], as well as others we will discuss briefly later on. In
a significant departure from the entirely automatic Pure Lisp Theorem Prover,
NQTHM also supported the provision of hints for guidance and a proof checker
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allowing each step of the proof to be specified interactively.

The next step in the evolution of this family, mainly the work of Moore and
Matt Kaufmann, was a new system called ACL2, ‘A Computational Logic for
Applicative Common Lisp’ [Kaufmann et al., 2000b]. (Boyer himself helped to es-
tablish the project and continued as an important inspiration and source of ideas,
but at some point stopped being involved with the actual coding.) Although
many aspects of NQTHM including its general style were retained, this system all
but eliminated the distinction between its logic and its implementation language
— both are a specific pure subset of Common Lisp. One advantage of such an
identification is efficiency. In many of the industrial-scale applications of NQTHM
mentioned above, a key requirement is efficient execution of functions inside the
logic. Instead of the custom symbolic execution framework in NQTHM, ACL2 sim-
ply uses direct Lisp execution, generally much faster. This identification of the
implementation language and logic also makes possible a more principled way of
extending the system with new verified decision procedures, a topic we discuss
later. ACL2 has further accelerated and consolidated the use of the family of
provers in many applications of practical interest [Kaufmann et al., 2000a].

Besides such concrete applications of their tools, Boyer and Moore’s ideas on
induction in particular have spawned a large amount of research in automated
theorem proving. A more detailed overview of the development we have described
from the perspective of the automation of inductive proof is given by Moore and
Wirth [2013]. Among the research topics directly inspired by Boyer and Moore’s
work on induction are Bundy’s development of proof planning [Bundy et al., 1991]

and the associated techniques like rippling. Since this is somewhat outside our
purview we will not say more about this topic.

5.2 EHDM and PVS

There was intense interest in the 1970s and 1980s in the development of frameworks
that could perform computer system verification. This was most pronounced, ac-
companied by substantial funding in the US, for verification of security properties
such as isolation in time-sharing operating systems (these were then quite new and
this property was a source of some concern), which was quite a stimulus to the
development of formal verification and theorem proving in general [MacKenzie,
2001]. Among the other systems developed were AFFIRM, GYPSY [Good et al.,
1979], Ina Jo and the Stanford Pascal Verifier. Closely associated with this was
the development of combined decision procedures by Nelson and Oppen [1980] and
by Shostak [1984]. One other influential framework was HDM, the ‘hierarchical
development methodology’. The ‘hierarchical’ aspect meant that it could be used
to describe systems at different levels of abstraction where a ‘black box’ at one
level could be broken down into other components at a lower level.

HDM top-level specifications were written in SPECIAL, a ‘Specification and
Assertion Language’. A security flow analyzer generated verification conditions
that were primarily handled using the Boyer-Moore prover discussed previously.
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Unfortunately, the SPECIAL language and the Boyer-Moore prover were not de-
signed together, and turned out not to be very smoothly compatible. This meant
that a layer of translation needed to be applied, which often rendered the back-end
formulas difficult to understand in terms of the original specification. Together
with the limited interaction model of the prover, this effectively made it clumsy
for users to provide any useful interactive guidance.

Based on the experiences with HDM, a new version EHDM (‘Enhanced HDM’)
was developed starting in 1983, with most of the system designed by Michael
Melliar-Smith, John Rushby and Richard Schwarz, while Shostak’s decision proce-
dure suite STP was further developed and used as a key component [Melliar-Smith
and Rushby, 1985]. Technically this was somewhat successful, introducing many
influential ideas such as a system of modules giving parametrization at the theory
level (though not fine-grained polymorphism in the HOL sense). It was also used
in a number of interesting case studies such as the formalization [Rushby and von
Henke, 1991] of an article by Lamport and Melliar-Smith [1985] containing a proof
of correctness for a fault-tolerant clock synchronization algorithm, which identified
several issues with the informal proof.

Working with Sam Owre and Natarajan Shankar, John Rushby led the project
to develop PVS (originally at least standing for ‘Prototype Verification System’)
[Owre et al., 1992] as a new prover for EHDM. Over time it took on a life of
its own while EHDM for a variety of technical, pragmatic and social reasons fell
into disuse. Among other things, Shostak and Schwarz left to start the database
company Paradox, and US Government restrictions made it inordinately difficult
for many prospective users to get access to EHDM. Indeed, it was common to
hear PVS expanded as ‘People’s Verification System’ to emphasize the more liberal
terms on which it could be used.

The goal of PVS was to retain the advantages of EHDM, such as the richly typed
logic and the parametrized theories, while addressing some of its weaknesses, mak-
ing automated proof more powerful (combining Shostak-style decision procedures
and effective use of rewriting) and supporting top-down interactive proof via a
programmable proof language. At the time there was a widespread belief that one
had to make an exclusive choice between a rich logic with weak automation (Au-
tomath) or a weak logic with strong automation (NQTHM). One of the notable
successes of PVS was in demonstrating convincingly that it was quite feasible to
have both.

The PVS logic (or ‘specification language’) is a strongly typed higher-order
logic. It does not have the sophisticated dependent type constructors found in some
constructive type theories, but unlike HOL it allows some limited use of dependent
types, where types are parametrized by terms. In particular, given any type α and
a subset of (or predicate over) the type α, there is always a type corresponding to
that subset. In other words, PVS supports predicate subtypes. In HOL, the simple
type system has the appealing property that one can infer the most general types
of terms fully automatically. The price paid for the predicate subtypes in PVS
is that in general typechecking (that is, deciding whether a term has a specific
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type) may involve arbitrarily difficult theorem proving, and the processes of type
checking and theorem proving are therefore intimately intertwined. On the other
hand, because of the powerful automation, many of the type correctness conditions
(TCCs) can still be decided without user interaction.

The PVS proof checker presents the user with a goal-directed view of the prov-
ing process, representing goals using multiple-conclusion sequents. Many basic
commands for decomposing and simplifying goals are as in many other interactive
systems like Coq or HOL. But PVS also features powerful and tightly integrated
decision procedures that are able to handle many routine goals automatically in
response to a simple invocation of the simplify command. Although PVS does
not make the full implementation language available for programming proof proce-
dures, there is a special Lisp-like language that can be used to link proof commands
together into custom strategies.

6 RESEARCH TOPICS IN INTERACTIVE THEOREM PROVING

Having seen some of the main systems and the ideas they introduced in founda-
tions, software architecture, proof language etc., let us step back and reflect on
some of the interesting sources of diversity and examine some of the research topics
that naturally preoccupy researchers in the field.

6.1 Foundations

For those with only a vague interest in foundations who somehow had the idea
that ZF set theory was the standard foundation for mathematics, the diversity, not
to say Balkanization, of theorem provers according to foundational system may
come as a surprise. We have seen at least the following as foundations even in the
relatively few systems we’ve surveyed here:

• Quantifier-free logic with induction (NQTHM, ACL2)

• Classical higher-order logic (HOLs, PVS)

• Constructive type theory (Coq, NuPRL)

• First-order set theory (Mizar, EVES, Isabelle/ZF)

• Logics of partial terms (LCF, IMPS, Isabelle/HOLCF)

Some of this diversity arises because of specific philosophical positions among
the systems’ developers regarding the foundations of mathematics. For example,
modern mathematicians (for the most part) use nonconstructive existence proofs
without a second thought, and this style fits very naturally into the framework
of classical first-order set theory. Yet ever since Brouwer’s passionate advocacy
[van Dalen, 1981] there has been a distinct school of intuitionistic or constructive
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mathematics [Beeson, 1984; Bishop and Bridges, 1985]. While Brouwer had an al-
most visceral distaste for formal logic, Heyting introduced an intuitionistic version
of logic, and although there are workable intuitionistic versions of formal set the-
ory, the type-theoretic frameworks exploiting the Curry-Howard correspondence
between propositions and types, such as Martin-Löf’s type theory [Martin-Löf,
1984], are arguably the most elegant intuitionistic formal systems, and it is these
that have inspired Coq, NuPRL and many other provers.

Other motivations for particular foundational schemes are pragmatic. For ex-
ample, HOL’s simple type theory pushes a lot of basic domain reasoning into
automatic typechecking, simplifying the task of producing a reasonable level of
mechanical support, while the very close similarity with the type system of the
ML programming language makes it feel natural to a lot of computer scientists.
The quantifier-free logic of NQTHM may seem impoverished, but the very restric-
tiveness makes it easier to provide powerful automation, especially of inductive
proof, and forces definitions to be suitable for actual execution.

Indeed, a little reflection shows that the distinction between philosophical and
pragmatic motivations is not clear-cut. While one will not find any philosophical
claims about constructivism associated with NQTHM and ACL2, it is a fact that
the logic is even more clearly constructive than intuitionistic type theories.15 De-
spite the Lisp-like syntax, it is conceptually close to primitive recursive arithmetic
(PRA) [Goodstein, 1957]. And many people find intuitionistic logic appealing not
so much because of philosophical positions on the foundations of mathematics but
because at least in principle, the Curry-Howard correspondence has a more prag-
matic side: one can consider a proof in a constructive system actually to be a
program [Bates and Constable, 1985].

The language we use can often significantly influence our thoughts, whether it
be natural language, mathematical notation or a programming language [Iverson,
1980]. Similarly, the chosen foundations can influence mathematical formalization
either for good or ill, unifying and simplifying it or twisting it out of shape. Indeed,
it can even influence the kinds of proofs we may even try to formalize. For example,
ACL2’s lack of traditional quantifiers makes it unappealing to formalize traditional
epsilon-delta proofs in real analysis, yet it seems ideally suited to the reasoning
in nonstandard analysis, an idea that has been extensively developed by Gamboa
[1999]; for another development of this topic in Isabelle/HOL see [Fleuriot, 2001].

In particular, the value of types is somewhat controversial. Both types [White-
head and Russell, 1910; Ramsey, 1926; Church, 1940] and the axiomatic approach
to set theory culminating in modern systems like ZF, NBG etc., originated in
attempts to resolve the paradoxes of naive set theory, and may be seen as two
competing approaches. Set theory has long been regarded as the standard foun-
dation, but it seems that at least when working in concrete domains, most math-
ematicians do respect natural type distinctions (points versus lines, real numbers
versus sets of real numbers). Even simpler type systems like that of HOL make

15At least in its typical use — we neglect here the built-in interpreter axiomatized in NQTHM,
which could be used to prove nonconstructive results [Kunen, 1998].
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a lot of formalizations very convenient, keeping track of domain conditions and
compatibility automatically and catching blunders at an early stage.

However, for some formalizations the type system ceases to help and becomes an
obstacle. This seems to occur particularly in traditional abstract algebra where
constructions are sometimes presented in a very type-free way. For example, a
typical “construction” of the algebraic closure of a field proceeds by showing that
one can extend a given field F with a root a of a polynomial p ∈ F [x], and then
roughly speaking, iterating that construction transfinitely (this is more typically
done via Zorn’s Lemma or some such maximal principle, but one can consider it
as a transfinite recursion). Yet the usual way of adding a single root takes one
from the field F to a equivalence class of polynomials over F (its quotient by
the ideal generated by p). When implemented straightforwardly this might lie
two levels above F itself: if we think of elements of F as belonging to a type α
then polynomials over F might be functions N → F (albeit with finite support)
and then equivalence classes represented as Boolean functions over that type, so
we have moved to (N → F ) → 2. And that whole process needs to be iterated
transfinitely. Of course one can use cardinality arguments to choose some suffi-
ciently large type once and for all and map everything back into that type at each
stage. One may even argue that this gives a more refined theorem with informa-
tion about the cardinality of the algebraic closure, but the value of being forced
to do so by the foundation is at best questionable. Another limitation of the
simple HOL type system is that there is no explicit quantifier over polymorphic
type variables, which can make many standard results like completeness theo-
rems and universal properties awkward to express, though there are extensions
with varying degrees of generality that fix this issue [Melham, 1992; Voelker, 2007;
Homeier, 2009]. Inflexibilities of these kinds certainly arise in simple type theories,
and it is not even clear that more flexible dependent type theories (where types
can be parametrized by terms) are immune. For example, in one of the most im-
pressive formalization efforts to date [Gonthier et al., 2013] the entire group theory
framework is developed in terms of subsets of a single universe group, apparently
to avoid the complications from groups with general and possibly heterogeneous
types.

Even if one considers types a profoundly useful concept, it does not follow of
course that they need to be hardwired into the logic. Starting from a type-free
foundation, it is perfectly possible to build soft types as a derived concept on top,
and this is effectively what Mizar does, arguably giving a good combination of
flexibility, convenience and simplicity [Wiedijk, 2007]. In this sense, types can be
considered just as sets or something very similar (in general they can be proper
classes in Mizar). On the other hand, some recent developments in foundations
known as homotopy type theory or univalent foundations give a distinctive role to
types, treating equality on types according to a homotopic interpretation that may
help to formalize some everyday intuitions about identifying isomorphic objects.

Another interesting difference between the various systems (or at least the way
mathematics is usually formalized in them) is the treatment of undefined terms
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like 0−1 that arise from the application of functions outside their domain. In
informal mathematics we often filter out such questions subconsciously, but the
exact interpretation of such undefinedness can be critical to the assertion being
made. We can identify three main approaches taken in interactive provers:

• Totalization (usual in HOL) — functions are treated as total, either giv-
ing them an arbitrary value outside their domain or choosing one that is
particularly convenient for making handy theorems work in the degenerate
cases too. For example, setting 0−1 = 0 [Harrison, 1998] looks bizarre at
first sight, but it lets us employ natural rewrite principles like (x−1)−1 = x,
−x−1 = (−x)−1, (xy)−1 = x−1y−1 and x−1 ≥ 0 ⇔ x ≥ 0 without any
special treatment of the zero case. (There is actually an algebraic theory
of meadows, effectively fields with this totalization [Bergstra et al., 2007].)
While simple, it has the disadvantage that equations like f(x) = y do not
carry with them the information that f is actually defined at point x, ar-
guably a contrast with informal usage, so one must add additional conditions
or use relational reformulations.

• Type restrictions (usual in PVS) — the domain restrictions in the partial
functions are implemented via the type system, for example giving the inverse
operation a type : R′ → R where R′ corresponds to R−{0}. This seems quite
natural in some ways, but it can mean that types become very intricate for
complicated theorems. It can also mean that the precise meaning of formulas
like ∀x ∈ R. tan(x) = 0 ⇒ ∃n ∈ Z.x = nπ, or even whether such a formula
is acceptable or meaningful, can depend on quite small details of how the
typechecking and basic logic interact.

• Logics of partial terms (as supported by IMPS [Farmer et al., 1990]) — here
there is a first-class notion of ‘defined’ and ‘undefined’ in the foundational
system itself. Note that while it is possible to make the logic itself 3-valued
so there is also an ‘undefined’ proposition [Barringer et al., 1984], this is
not necessary and many systems allow partial terms while maintaining biva-
lence. One can have different variants of the equality relation such as ‘either
both sides are undefined or both are defined and equal’. While apparently
complicated and apt to throw up additional proof obligations, this sort of
logical system and interpretation of the equality relation arguably gives the
most faithful analysis of informal mathematics.

6.2 Proof language

As we noted at the beginning, one significant design decision in interactive theorem
proving is choosing a language in which a human can communicate a proof outline
to the machine. From the point of view of the user, the most natural desideratum
might be that the machine should understand a proof written in much the same
way as a traditional one from a paper or textbook. Even accepting that this is
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indeed desirable, there are two problems in realizing it: getting the computer to
understand the linguistic structure of the text, and having the computer fill in the
gaps that human mathematicians consider as obvious. Recently there has been
some progress in elucidating the structure of traditional mathematical texts such
that a computer could unravel much of it algorithmically [Ganesalingam, 2013],
but we are still some way from having computers routinely understand arbitrary
mathematical documents. And even quite intelligent human readers sometimes
have difficulty in filling in the gaps in mathematical proofs. Subjectively, one can
sometimes argue that such gaps amount to errors of omission where the author
did not properly appreciate some of the difficulties, even if the final conclusion is
indeed accurate. All in all, we are some way from the ideal of accepting existing
documents, if ideal it is. The more hawkish might argue that formalization presents
an excellent opportunity to present proofs in a more precise, unambiguous and
systematic — one might almost say machine-like — way [Dijkstra and Scholten,
1990].

In current practice, the proof languages supported by different theorem proving
systems differ in a variety of ways. One interesting dichotomy is between pro-
cedural and declarative proof styles [Harrison, 1996c]. This terminology, close to
its established meaning in the world of programming languages, was suggested
by Mike Gordon. Roughly, a declarative proof outlines what is to be proved, for
example a series of intermediate assertions that act as waystations between the
assumptions and conclusions. By contrast, a procedural proof explicitly states how
to perform the proofs (‘rewrite the second term with lemma 7 . . . ’), and some
procedural theorem provers such as those in the LCF tradition use a full program-
ming language to choreograph the proof process. To exemplify procedural proof,
here is a HOL Light proof of the core lemma in the theorem that

√
2 is irrational,

as given in [Wiedijk, 2006]. It contains a sequence of procedural steps and even for
the author, it is not easy to understand what they all do without stepping through
them in the system.

let NSQRT_2 = prove

(‘!p q. p * p = 2 * q * q ==> q = 0‘,

MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN

REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN

REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN

DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN

FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN

POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;

By contrast, consider the following declarative proof using the Mizar mode for
HOL Light [Harrison, 1996b], which is a substantial fragment of the proof of the
Knaster-Tarski fixed point theorem [Knaster, 1927; Tarski, 1955].16 There is not
a single procedural step, merely structuring commands like variable introduction

16See http://code.google.com/p/hol-light/source/browse/trunk/Examples/mizar.ml.
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(‘let a’) together with a sequence of intermediate assertions and the premises
from which they are supposed (somehow) to follow:

consider a such that

lub: (!x. x IN Y ==> a <= x) /\

(!a’. (!x. x IN Y ==> a’ <= x) ==> a’ <= a)

by least_upper_bound;

take a;

!b. b IN Y ==> f a <= b

proof

let b be A;

assume b_in_Y: b IN Y;

then L0: f b <= b by Y_thm;

a <= b by b_in_Y, lub;

so f a <= f b by monotonicity;

hence f a <= b by L0, transitivity;

end;

so Part1: f(a) <= a by lub;

so f(f(a)) <= f(a) by monotonicity;

so f(a) IN Y by Y_thm;

so a <= f(a) by lub;

hence thesis by Part1, antisymmetry;

A more declarative style can offer significant advantages. Declarative proof
scripts are generally easier to write and understand independent of the prover,
whereas one usually needs to develop, or even understand, a procedural script by
running it step-by-step through the system to see the intermediate results. (By
analogy, consider replaying a chess game from a newspaper chess column given
just the sequence of moves with no diagrams of the board state.) Because they
lack explicit inference instructions, declarative proofs are also usually less tied to
the details of the prover’s implementation and so are likely to be more readable
for non-experts and portable in a general sense. On the other hand, declarative
proofs can be clumsy and verbose when they involve large and complex terms or
are naturally expressed as a simple process of transformation, something that is
particularly common in verification applications. As for making modifications to
an existing proof, which is often an important activity [Curzon, 1995], there are
pluses and minuses on both sides. In a declarative proof, key variable introductions
and intermediate statements are made explicit instead of arising as a side-effect
of some intermediate step, and are more amenable to systematic changes. Some
existing experience [Chen, 1992; Gonthier, 1996] supports the declarative style as
yielding proofs that are easier to maintain. On the other hand, some procedural
proofs can be surprisingly insensitive to small changes and may even work with
no changes at all. These questions are surveyed in a bit more detail in [Harrison,
1996c].
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At one extreme, the most declarative proof language is the one supported by
a completely automated theorem prover: just state the theorem to be proved
without any hint as to how to prove it! Of course, the whole point of interactive
theorem proving is to allow user guidance, but some theorem provers that we
have classified as interactive do indeed use this approach, the only difference being
that the user must identify a series of intermediate lemmas that can be stepping-
stones to the main result such that the gap between successive steps is within
the scope of the automation. In particular, proof scripts in NQTHM and ACL2
are usually just sequences of lemmas without much procedural information. The
primary additional data is that for each lemma, the user may add hints about
how the automation should use that lemma in the future (rewrite, elimination,
generalization or induction lemma).

Mainstream mathematics normally uses much richer quantifier structures than
are possible (or at least conveniently usable) in NQTHM/ACL2. This can make it
less appealing to use a simple series of toplevel lemmas as a proof outline, because
one often wants to structure the proof according to the introduction and elimi-
nation of variables and localize reasoning to some assumed environment. Several
theorem proving systems and program verifiers adopted a structured style of proof
close to natural deduction, organized around variable elimination and introduction
rules. Consider for example the following sample proof from NuPRL’s precursor,
the program verifier PL/CV [Constable and O’Donnell, 1978]:

LEMMA_T:

/# TRANSITIVITY OF DIVIDES #/

ALL (A, B, C) FIXED . (DIV(A,B) & DIV(B, C) => DIV(A, C))

BY INTRO,

PROOF;

CHOOSE M1 FIXED WHERE M1*A = B;

CHOOSE M2 FIXED WHERE M2*B = C;

M2*(M1*A) = C; /# BY SUBSTITUTION #/

(M2*M1)*A = C; /# BY ASSOCIATIVITY OF * #/

DIV(A,C) BY SOMIN, M2*M1;

QED;

Exactly such a structured approach was used by Mizar, inspired not only by
the Jaśkowski-Fitch approach to natural deduction [Jaśkowski, 1934; Fitch, 1952]

but also by the block structure of the Pascal programming language [Jensen and
Wirth, 1974]. As the examples given above show, the proof is structured around
a ‘skeleton’ indicating the introduction and elimination of variables and assump-
tions, and then the intermediate steps are just stated as assertions, without any
procedural information. In this sense Mizar’s proof style successfully combined
structure and a declarative style. (By contrast, the PL/CV example does have
some explicit inference rules and instantiation, although they are only used in one
line of the above example.)
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The relative readability of Mizar proofs contrasts quite starkly with the ob-
scurity of many procedural languages, particularly the traditional tactic scripts
in LCF-style systems with their invocations of mysterious and arcane transfor-
mations, once parodied by Conor McBride as EAR_OF_BAT_TAC. Because of this,
there has been considerable interest in supporting more declarative proof styles in
other systems. This started with the ‘Mizar mode for HOL’ [Harrison, 1996b] and
was followed by several other declarative languages for other systems [Syme, 1997;
Wenzel, 1999; Zammit, 1999]. In particular the Isar language for Isabelle, already
discussed above, has now largely superseded the use of the traditional ML level, al-
though the Isar proofs are usually a mix of a structured skeleton with intermediate
proof steps, making them highly structured but only partly declarative. Indeed,
it is natural to desire a smooth combination of both procedural and declarative
approaches. A number of experiments in HOL Light have resulted in quite usable
systems [Wiedijk, 2001; Wiedijk, 2012b] that have been subsequently applied and
refined by Bill Richter.17

The ability to program other proof styles like ‘Mizar mode’ in LCF systems
shows that although the traditional style of such systems is highly procedural, one
can layer virtually any proof style on top. This applies even if one wants a purely
procedural language that differs from the full implementation language. Among
procedural systems, the traditional LCF approach where the implementation lan-
guage read-eval-print loop is the primary interface stands at one end of a spectrum,
with very simple macro languages at the other. A high level of programmability
can be extremely valuable, for example in allowing simple custom inference rules
to be implemented, or a slew of related subgoals to be disposed of by a single
script. In order to maintain programmability and flexibility while keeping the
language somewhat more constrained — for example to close off obscure language
loopholes, enforce a more uniform style, or allow more straightforward parsing and
processing by other tools — there is a good case for adopting some intermediate
position on this spectrum. The main Ltac language of Coq is a good example
[Delahaye, 2000], as is the more recent SSReflect language.

Even if one has a declarative style as the intention, it can be difficult to avoid
explicit invocations of proof commands unless there is a kind of default automa-
tion that is rather powerful. Mizar’s built-in checker has a deliberately constrained
first-order prover, though it also includes other features like congruence closure,
representing a certain point of view on what constitutes an obvious inference [Rud-
nicki, 1987b]. This prover is simple and efficient, but quite limited compared to
state-of-the-art automated systems [Wiedijk, 2000]. Thus, to support a suitably
high-level declarative proof style, automation is an important component, and we
turn to this question next.

17See http://code.google.com/p/hol-light/source/browse/trunk/

RichterHilbertAxiomGeometry/HilbertAxiom_read.ml
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6.3 Automation and certification

The convenience and practicality of interactive proof greatly increases if the sys-
tem is able to automate as much routine work as possible. Given the extensive
development of automated methods for propositional logic, first-order logic, arith-
metic etc. and special tools like model checkers and computer algebra systems, it
is natural to want to use some of the same ideas in interactive tools, and perhaps
even use automated systems themselves as subcomponents.

It is usually not too difficult to identify appropriate subsets of the logic sup-
ported by an interactive prover with those automated by special tools like SAT
solvers. Once this is done, it is usually feasible to to implement similar algorithms
oneself, and often much easier and faster to use highly engineered off-the-shelf
tools themselves as subroutines. For example [Seger and Joyce, 1991] and [Rajan
et al., 1995] describe effective combinations of theorem provers and model checkers.
However, even if one makes the effort to maintain full control over the implemen-
tation, it can be difficult to get such complex algorithms right, so there is a danger
of compromising the high standards of rigour. Milner [MacKenzie, 2001] compared
using an unverified decision procedure to ‘selling your soul to the Devil [. . . ] you
get this enormous power [. . . but] you’ve lost proof in some sense’. Since many
share these qualms, though they might not express them so forthrightly, there has
been considerable interest in the implementation of automation in a highly reliable
way. We can identify three main approaches:

• Fully-expansive algorithm design: rewrite the algorithm to perform inference
at each step and carry through formally proven theorems.

• Reflection: use the theorem proving tool to prove the correctness of the new
proof procedure’s implementation and only then include it in the trusted
code base.

• Certification: organize the algorithm so that it produces not only a result
but some kind of ‘proof’ or ‘certificate’ that can be independently checked.

The first approach, fully expansive recoding of the algorithm, is the traditional
LCF answer to most such problems. A long-established methodology — see [Mel-
ham, 1989] for early non-trivial examples — means that it is often a fairly routine
matter to translate many symbolic algorithms into inference-producing versions,
for example replacing each ad-hoc term transformation with a conversion as out-
lined above. A good example of such methods at work is the implementation by
Slind [1991] of Knuth-Bendix completion in HOL. Other methods are even easier
to integrate into an LCF-style system because they mainly involve heuristics and
other techniques for putting together existing rules or tactics — this applies for ex-
ample to Boyer-Moore automation of induction and related techniques like proof
planning, which have indeed been implemented in LCF-style provers [Boulton,
1992; Dixon, 2005; Papapanagiotou, 2007].
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Figure 5: Using ‘reflection’ inside the logic

One reason why this fully-expansive inference-producing style is more practical
than might appear at first sight is that to implement many derived rules, all the
complicated reasoning can be embedded in a single ‘proforma theorem’. To take
a trivial example, the fact that from p ∧ q we can deduce p can be embedded in
the theorem ` p ∧ q ⇒ p. Now in any particular instance ` a ∧ b, we need only
instantiate this theorem, to get ` a ∧ b⇒ a, and perform Modus Ponens and get
` a. Of course, this is a trivial example but one can embed much more interesting
reasoning in a single theorem that later merely needs to be instantiated.

In more elaborate cases, it may even be worth defining some special syntactic
forms inside the logic so that the workings of the algorithm can be expressed more
directly via general proforma theorems, at the cost of some folding and unfolding of
equivalent forms to apply it to concrete cases. (This is setting up a deep embedding
of a sublogic, in the terminology we discuss near the end of this paper.) For
example, in the implementation of Cooper’s algorithm [Cooper, 1972] for integer
quantifier elimination in HOL Light, a kind of ‘shadow syntax’ is defined for a class
of quantifier-free first-order formulas inside the logic, with their semantics defined
using an interpretation function interp. The key syntactic transforms involved
can then be expressed as a simple equivalence in interpretations of the shadow
syntax. Now, in order to eliminate a quantifier in HOL from an expression ∃x.P [x],
one first rewrites backwards with the definition of interp to map it into a formula
in the canonical form ∃x.interp x p, appeals to the general theorem to transform
it into a quantifier-free equivalent, then rewrites forward with the definition of
interp to eliminate the internal syntax. In general, we can justify a transformation
of some formula ψ to another one F (ψ) via a formalized transformation on the
syntactic form pψq (see Figure 5).

Taking the ‘proforma theorem’ approach to its logical extreme, one can formally
define the entire workings of an algorithm as operations on the embedded ‘shadow
syntax’ inside the logic. Most algorithms that can be written in a functional
language can also be developed entirely inside the logic in this way. Of course
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the process of ‘executing’ inside the logic involves inference steps, meaning that is
likely to be substantially slower, perhaps only by a constant factor but most likely
a substantial one [McLaughlin and Harrison, 2005]. However, Coq features a
highly efficient reduction mechanism that comes close in performance to a native
functional language, so provided the shadow syntax lives in the right subset, it
can be executed quite fast. On the other side of the coin, conventional inference
in Coq is relatively slow and memory-hungry because it actually creates explicit
proof objects. All this means that the benefits of the ‘shadow syntax’ approach,
commonly called ‘reflection’ in the Coq world, are much more compelling even for
relatively simple algorithms.

More generally, we use ‘reflection’ to refer to any scheme where one is basi-
cally ‘verifying code and executing it’. In most established examples like the
pioneering use of metafunctions in NQTHM [Boyer and Moore, 1981], the code
is actually extracted to a conventional programming language rather than, as
in Coq, executed inside the logical kernel. (On the other hand for ACL2 this
distinction essentially does not exist.) A nexus of distinct but related ideas
often going under the name of ‘reflection’ have been tried in theorem proving
systems like FOL/GETFOL [Weyhrauch, 1980; Weyhrauch and Talcott, 1994;
Weyhrauch, 1982] and NuPRL [Knoblock and Constable, 1986; Allen et al., 1990;
Howe, 1992]. These ideas are surveyed in more detail in [Giunchiglia and Smaill,
1989; Harrison, 1995b]. Significant recent examples of some classical logical deci-
sion procedures implemented using reflection include [Chaieb and Nipkow, 2008]

and [Cohen and Mahboubi, 2010].

In many important cases, there is a simpler approach to implementing correct
proof procedures: have the proof procedure produce some kind of certificate that
can be checked relatively simply and efficiently by proof. The general merit of this
kind of approach — not limited to foundational theorem proving — was empha-
sized by Blum [1993]. He suggests that in many situations, checking results may
be more practical and effective than verifying code. A very simple case is verifying
that a number is not prime, which can be done easily, even by logical inference,
given a factorization as the certificate, even if finding that certificate is difficult.
An early example of the certification approach in our context is the linkup between
the HOL theorem prover and Maple computer algebra system reported by Har-
rison and Théry [1998]. Here Maple is used to perform polynomial factorization
and transcendental function integration. In each case the checking process (re-
spectively multiplying polynomials and taking derivatives) is substantially easier
than the process of finding the certificate. And note that by taking this path we
are often able to inherit the extensive implementation and optimization work done
by others on the external tools without any additional work on our own part.

In the cases considered so far (integer and polynomial factorization and an-
tiderivatives) the certificate is just what one might intuitively call ‘the answer’.
Sometimes, though, it is useful to have a more information in the certificate in
order to verify it without an expensive and complicated search process. This
applies in particular to various decision procedures for quantifier-free first-order
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arithmetic theories. These can provide relatively compact certificates that can be
checked reasonably easily. For example, an invalid conjunction of linear arithmetic
constraints can be checked by providing a linear combination that sums to give a
trivial inequality like 1 < 0; the existence of such linear combinations is essentially
the content of Farkas’s lemma [Webster, 1995]. This method was first used in a
formal context by Boulton [1993] in a linear arithmetic procedure for HOL, using
his own implementation of the certificate-finding, and by Necula (in connection
with proof-carrying code), using an off-the-shelf linear programming package to
find the certificate [Necula and Lee, 2000]. It has reached its apotheosis in the work
of Alexey Solovyev [Solovyev and Hales, 2011], who has checked the very large lin-
ear programs in the Flyspeck project (discussed in more detail later) inside HOL
Light using such certification, remarkably efficiently. Analogous techniques based
on the Hilbert Nullstellensatz can handle the universal theory of integral domains
or fields (see [Harrison, 2009b] for a detailed discussion), and this first done in our
context in [Harrison, 2001]. A similar but more complicated technique works for
real-closed fields like the real numbers using certificates involving sums of squares
that can be found using semidefinite programming tools [Parrilo, 2003], and this
has also been exploited for formal proof [Harrison, 2007]. This is perhaps best
illustrated by a specific example. Suppose we want to show that if a quadratic
equation has a (real) solution, its discriminant is nonnegative:

∀a b c x. ax2 + bx+ c = 0⇒ b2 − 4ac ≥ 0

A suitable certificate is b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c). Since the
first term on the right is a square, and the second is zero by hypothesis, it is clear
that the LHS is nonnegative. Almost all the conceptual/implementation difficulty
and computational cost is in coming up with the right algebraic rearrangement;
checking this and the consequent reasoning is then easy.

In other cases like first-order theorem proving, successful runs of the prover
may perform a lot of search, but usually find a relatively short proof. Provided
the automated system is indeed able to produce the final proof, it is in principle
a fairly straightforward matter to check it by inference in the ITP system. This
approach has been used for a long time to incorporate first-order proof methods
into LCF-style provers [Kumar et al., 1991], first of all with custom code to find the
proof and later with off-the-shelf external provers [Hurd, 1999]. This brings with it
a host of apparently minor but sometimes quite knotty problems. First of all, one
is usually interested in using provers for pure first-order logic to tackle problems
in ITPs with richer logics like polymorphically typed higher-order logic, which
raises interesting choices about how to relate the two worlds [Harrison, 1996b;
Dahn and Wernhard, 1997; Hurd, 2003; Meng and Paulson, 2006; Blanchette et al.,
2013]. Many off-the-shelf first-order provers are not particularly good at returning
proofs, sometimes necessitating quite elaborate programming to reconstruct them.
And typically, off-the-shelf systems have a bias towards relatively small synthetic
problems and can be swamped if they are presented with a large database of
lemmas to use, making premise selection an issue.
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The first convincing arrangement that successfully addresses all these problems
is the ‘Sledgehammer’ framework for Isabelle developed by Paulson [Paulson and
Blanchette, 2010]. For many Isabelle users this has led to a distinct change in
their approach to theorem proving, tending to let the automation plug the gaps
eagerly, even working in the background while the user thinks. Traditionally,
LCF systems have tended to encourage tight and careful control over the proof
process, but as a result of the success of Sledgehammer, there is now a trend
among Isabelle users at least back to the earlier automated approaches — for
example, Ontic [McAllester, 1989] already anticipated the effective automated use
of a large background database. Related ‘hammer frameworks’ for HOL Light and
Mizar offering a variety of premise selection schemes [Kühlwein et al., 2012] based
on machine learning and allowing use of a central server over the network, are
described by Kaliszyk and Urban [2014a] and Urban et al. [2013].

Quite generally, the current trend in many Artificial Intelligence domains (for
example, translation between languages) is to use general machine learning on huge
datasets [Shawe-Taylor and Cristianini, 2004] in preference to intricately hand-
crafted algorithms. In the light of this the relative lack of such techniques in the
world of theorem proving seems surprising. Apart from the premise selection task,
Urban, Schulz, Bridge, Kaliszyk, Kühlwein and others have recently used machine
learning for selecting suitable theorem-proving strategies [Kühlwein et al., 2013;
Schulz, 2002; Bridge et al., 2014] and automated construction of such strategies
[Urban, 2014] over large sets of related problems, mining the large inference graphs
of ITP systems for suitable lemmas and conjectures [Kaliszyk and Urban, 2014b;
Denzinger and Schulz, 1996], and fine-grained guidance of the automated theorem
provers [Urban et al., 2011; Schulz, 2000]. Combinations of such machine learning
systems with automated theorem provers on the large ITP libraries may result in
AI-style feedback loops, where the learning and the proving components gradu-
ally improve from the data supplied by the other component [Urban et al., 2008].
Note that since these methods usually contribute high-level guidance such as a
set of lemmas, it’s generally straightforward to integrate them into fully-expansive
systems without any issues. And they greatly benefit from training on the large li-
braries of formal mathematics that are associated with interactive systems. Thus,
somewhat paradoxically, machine learning impinges at least as effectively on in-
teractive theorem proving as traditional automated proving.

As with first-order provers, many SAT solvers are capable of emitting proofs
(usually recast as resolution proofs even if that doesn’t reflect how they were
found), which have applications not only in proof-checking but for invariant gen-
eration via interpolation [McMillan, 2003]. Unlike FOL proofs, SAT proofs tend
to be relatively large, but nevertheless it has turned out to be possible to check
them in a fully expansive way in a time comparable to the time used to generate
them [Weber and Amjad, 2009]. Combined decision procedure suites can also be
checked in a fully-expansive way; this was first done by Boulton for his own imple-
mentation [Boulton, 1993] and then for an off-the-shelf SMT system by Mclaughlin
et al. [2005]. However, the case of quantified Boolean formulas (QBF) appears
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to be a less favorable one where the proof reconstruction in a formal prover can
be considerably more time-consuming than the process of finding it [Weber, 2010;
Kunc̆ar, 2011; Kumar and Weber, 2011].

Finally, we noted above the relative triviality of proving non-primality. The
dual problem of proving primality doesn’t admit quite such a straightforward cer-
tification, but there are known certificates of primality that are usable for this
purpose, the first to be presented being due to Pratt [Pratt, 1975]. At the time,
the key interest of Pratt’s observation was to establish that primality testing is in
the complexity classes NP and co-NP. Though primality testing was much later
established to be in P [Agrawal et al., 2004], Pratt’s result retains its interest as
an effective way of certifying primality. Caprotti and Oostdijk [2001] first imple-
mented primality proving in Coq using an optimized Pocklington variant of Pratt
certificates. Proving primality of p in this way requires at least a partial prime
factorization of p − 1 and hence recursive proofs of primality of those factors;
these certificates can be generated without proof using sophisticated off-the-shelf
factorization software and checked by applying Pocklington’s theorem. Much sub-
sequent work has optimized the implementation in Coq and extended this to more
sophisticated primality-proving methods based on elliptic curves [Théry and Han-
rot, 2007]. While this has mainly been pursued for its pure intellectual interest and
as a motivation for optimizing basic operations inside Coq [Grégoire et al., 2006],
proving the primality of specific numbers can actually have genuine applications
in verification [Harrison, 2003].

6.4 Sharing

This chapter has repeatedly hinted at the variety of different proof assistants, often
with radically different foundations. On the positive side this means that there
is diversity of experience in using various systems in applications, which helps us
to better understand the strengths and weaknesses of approaches. However, given
the overhead in learning to use even one of these systems effectively, there is a
tendency for researchers to get trammelled into using just one system, as a result
of which essentially similar work gets duplicated many times. It would obviously
be appealing to have some practical way of sharing work among different systems.

One approach, arguably the simplest, is to import theorems from one system
to another without in any sense attempting to check their correctness, though
perhaps tagging them in some way to indicate their provenance. If we assume that
we are importing from a similarly reliable tool, then such results should have been
checked at a similar level of rigour. The primary difficulty is ensuring a meaningful
semantic match between the two systems, i.e. making sure that precise definitions,
types, treatment of partial functions etc. in the source system are compatible with
the target. This tends to work better when the target system’s logic is at least as
rich in some sense, so that there are indeed faithful models of the source results
on the target side, whatever constructs get used there. The first such example
was the pioneering work of Felty and Howe [Felty and Howe, 1997] on importing
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mathematics from HOL to NuPRL. Other more recent examples have included
the import from ACL2 into hol90 [Staples, 1999] and HOL4 [Gordon et al., 2006].

Still more challenging is importing not only statements but actually reading in
and checking proofs in the target system. Given the strong tendencies to foun-
dational precision and rigour in this research community, this has attracted more
attention recently. Examples include

• hol90 → Coq [Denney, 2000]

• hol90 → NuPRL [Naumov et al., 2001]

• HOL4 → Isabelle/HOL [Obua and Skalberg, 2006]

• HOL Light→ Isabelle/HOL [Obua and Skalberg, 2006; Kaliszyk and Krauss,
2013]

• Isabelle/HOL → HOL Light [McLaughlin, 2006]

• HOL Light → Coq [Keller and Werner, 2010]

The work of McLaughlin [2006] on importing Isabelle/HOL to HOL Light shows
that the general requirement that the target system should be at least as rich as
the source is not an absolute prohibition. Isabelle/HOL extends the simple type
theory of HOL with a system of axiomatic type classes, so in some sense is richer.
McLaughlin handles this by mapping an Isabelle theorem to an ML functor that
can be instantiated to produce specific instances.

Translation between systems like HOL4, HOL Light and ProofPower is particu-
larly appealing since despite their differences as systems they implement effectively
the same logic. (They do not have exactly the same primitive rules, but they have
the same provable theorems and it is easy to implement the primitive rules of
one in terms of those of another.) OpenTheory [Hurd, 2010] is a general frame-
work designed to support the transfer of theorems and proofs between HOL family
provers, while HOL Zero [Adams, 2010] is a specially simple and transparent ver-
sion of HOL designed as a vehicle for proof import and checking.

Yet another alternative is still to transfer results without proofs but to have
a machine-formalized argument about why the two systems correspond. In this
case it would be natural to have a simple theorem proving system to act as a
metatheory to analyze other systems, perhaps proving relative consistency results
etc. and so justifying the importing of results from one to another. Just such a
general scheme was proposed as a solution to the current Tower of Babel in the
ambitious ‘QED manifesto’ [Anonymous, 1994]. Perhaps the closest concrete work
is in the Logosphere project,18 using Twelf as the metalogic.

18http://www.logosphere.org/



History of Interactive Theorem Proving 49

6.5 User interfaces, search and presentation tools

Interacting with theorem provers and their large formal libraries combines aspects
of programming, writing mathematical papers and system specifications, and also
aspects of managing and searching large encyclopedias. A comprehensive overview
of the early ITP interfaces and of the human-computer interaction (HCI) research
[Hewett, 1992] in the ITP world is given by Aitken et al. [1998], focusing on HOL
and LCF-style systems, and differentiating three views of formal proof: (i) proof
as programming as for example the tactical programming in the LCF world, (ii)
proof by pointing as proposed by Bertot et al. [1994] for selecting subexpressions of
the current goal (typically, using a mouse), and proof as structure editing used in
the ALF system for editing the proof objects [Magnusson and Nordström, 1993].

A number of these ideas have been incorporated in the Proof General Emacs
interface by Aspinall [2000], which has dominated proof development in Coq and
Isabelle for over a decade. More recent widely used non-Emacs interfaces to Coq
and Isabelle include the GTK-based CoqIDE [Bertot and Théry, 1998], the web-
based ProofWeb19 by Kaliszyk [2007] and the Isabelle/jEdit IDE by Wenzel [2012].
The traditional mode of interaction in such interfaces for LCF-style systems has
been coupled with the read-eval-print loop of the underlying interpreter-like ITPs,
using region-locking corresponding to the processed part of the formal article,
together with forward and backward (undo/reload) commands. For the compiler-
style Mizar system, the Emacs user interface [Urban, 2006a] instead processes
the whole article at one go (similarly to some IDEs for TEX and for compiled
languages like C and Pascal), directly putting the error messages afterwards into
the edited buffer. This relies on the general speed of the Mizar verifier, and also on
mechanisms that speed up the verification by omitting the parts that had already
been verified and by parallelizing the verification process [Urban, 2012]. An early
example of a rapprochement between these two user-interface approaches is tmEgg
[Mamane and Geuvers, 2007] – a document oriented Coq plugin for TEXMacs
that allows more liberal editing mode (inspired by LATEX) than Proof General and
CoqIDE. Similar document-centric effort is done in the Isabelle/JEdit plugin.

As in programming and scientific writing, the authoring can be done with differ-
ent degrees of collaboration: there are essentially one-person projects such as HOL
Light and its core libraries, but also widely distributed loosely managed projects
such as the construction of the Mizar Mathematical Library. A number of projects
are in between these two extremes. In the Flyspeck project, the formal proofs of
a large part of the formalization outlined by Tom Hales have been carried out
by a group of mathematicians in Hanoi. Another example of such collaborative
project with a strong leader is the formal proof of the Feit-Thompson theorem,
with Georges Gonthier proposing and controlling the overall formalization plan,
the proof style, the integrity of concept and theorem naming, the automation
methods used, etc. While in the one-person projects, most of the library devel-
oped is typically remembered by its author, this is no longer the case with large

19http://proofweb.cs.ru.nl/
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collaborative projects where library re-use turns into a major issue. This has led to
the development of a number of search facilities. The most obvious and still widely
used search method is just grep (regular expression search), which can be further
modified in various ways: for example searching the whole multiline statements
and searching the formalizations in their library-processing order has turned quite
useful when working with the Mizar library [Urban, 2006a]. Regular expressions
however have only limited knowledge about the term and type structure, symbol
overloading, and other ITP specifics.

The next level of ITP search tools is typically aware of such issues, providing
more semantic ways for specifying the search patterns. In HOL, Isabelle and Coq
this includes tools such as find_theorems and SearchAbout, provided directly
by the interactive shell of these systems and well-integrated with the underlying
datastructures used for representing terms, formulas and theories. A potential dis-
advantage of such deeply integrated tools is that they usually work only with the
theories loaded by the user into the current interactive session, possibly omitting a
number of other developments and libraries because the user does not know about
them, or because they require additional effort to load due to various incompat-
ibilities. This has led to the development of tools that are both globally usable
across all developments (in the same way as grep is) and ‘semantic’, i.e., allow-
ing the ITP-specific search patterns. Such tools include Bancerek’s MML Query
[Bancerek and Rudnicki, 2003; Bancerek, 2006], which processes and searches the
whole Mizar library and all its versions, and the Whelp system [Asperti et al.,
2004] developed at University of Bologna for searching Coq libraries.

Such semantic search tools are already close to the present automated theorem
proving linkups for Isabelle, Mizar and HOL Light mentioned above. Where such
full-scale proof finding turns out to be too hard, the use of ATP-indexing methods
such as perfect discrimination trees is still possible for performing more restricted
search such as type-aware subsumption over the millions of lemmas in the whole
ITP libraries [Urban, 2006b]. Also, the machine learning premise-selection meth-
ods, used today mostly in the context of large-theory ATP, can be used as separate
search tools for the libraries and integrated into the authoring interfaces. An early
example is the Mizar Proof Advisor [Urban, 2006a]. All such ‘global’ tools are
typically external to the ITP systems and often work in a server mode over an
internet connection, usually providing further presentation capabilities.

This introduces another large topic, which is presentation of the ITP devel-
opments, targeting not just their authors (writers), but a much wider audience
interested in their possible re-use, or just in the study of fully formal proofs.
Particularly with the arrival of HTML and the World Wide Web in the 1990s,
formal mathematical libraries, where the meaning of each symbol and proof step
is completely disambiguated, seemed to be a strong candidate for general pre-
sentation of mathematics in a cross-linked HTML-ized form where learning the
exact definition of a particular concept is just one click away. The first large
project that took advantage of HTML-based cross-linking was the Journal of
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Formalized Mathematics20 started in 1995, presenting the Mizar abstracts (i.e.,
with proofs omitted) in a completely cross-linked HTML format. Similar cross-
linking is today available for Coq21 (using the coqdoc tool) and for MetaMath
[Megill, 1996] developments.22 Practically all large ITP libraries, such as the
Isabelle Archive of Formal Proofs23, the Coq Users’ Contributions24, and the
HOL Light, Flyspeck and HOL4 libraries, are easily accessible on the web to-
day. The HTML presentations have gradually acquired more features than just
symbol-linking: particularly useful is the optional display of the proof state (the-
sis) after each proof step in tools like Proviola [Tankink et al., 2010] and in
the more recent Mizar HTML25 [Urban, 2005], linking with online interfaces
to the ITPs and ATPs such as ProofWeb and MizAR26 [Urban and Sutcliffe,
2010], experimental wiki platforms for formal mathematics [Urban et al., 2010;
Alama et al., 2011], and even linking with the world of the Semantic Web [Tankink
et al., 2012] which has taken off in the meantime, and particularly benefited from
informal resources such as Wikipedia.

Describing mathematics in Wikipedia has in some sense inherited some of the
library and encyclopedia-building spirit of the formal libraries projects, but allowed
much more massive collaboration in the informal setting, resulting in much faster
coverage and cross-linking of the mathematical landscape. In 2010 — only a decade
since the inception of Wikipedia — the number of Wikipedia mathematical articles
grew over 25,000,27 with the number of active participants in the Mathematics
WikiProject counting over 400. These numbers dwarf the long-developed formal
ITP libraries by an order of magnitude. Allowing a similarly explosive level of
collaboration and providing further alignment of such shallow semantic corpora
with the fully formal ITP libraries are again very interesting research topics. An
early effort in this direction is Hales’s cross-linking of his informal LATEX book on
Flyspeck [Hales, 2012] with the formal Flyspeck development in HOL Light and a
wiki platform for such joint informal/formal alignment [Tankink et al., 2013].

6.6 Ultimate reliability

For purely automated theorem proving, the main emphasis is usually on power
and convenience. While of course reliability is always an important goal, it is not
usually at the forefront of the research agenda. In interactive theorem proving,
by contrast, we are not usually so interested in having the computer impress us
with its creativity (though we are always willing to be pleasantly surprised). The

20http://mizar.org/JFM
21http://coq.inria.fr/library/
22http://us.metamath.org/mpegif/mmset.html
23http://afp.sourceforge.net/
24http://coq.inria.fr/contribs
25http://mizar.org/version/current/html/
26http://mizar.cs.ualberta.ca/~mptp/MizAR.html
27https://web.archive.org/web/20101222014223/http://en.wikipedia.org/wiki/Portal:

Mathematics
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primary goal is to rather to assist the human to construct a proof while checking
all the low-level details precisely. Because of this, reliability comes higher up the
list of desiderata, since it’s hard to justify the extra labor usually involved in
formalization if the end result is likely to be just as fallible as a human proof.

However, the degree of importance attached to reliability varies among the ITP
system communities and among individual members. In the PVS world there has
traditionally been a rather relaxed and pragmatic view of correctness, while the
HOL world has usually attached a very high level of importance to — one might
also say fetishized — secure foundations and reliability. A simplified caricature of
the case against caring might look something like this:

Even if a theorem prover does have obscure bugs that in principle af-
fect soundness, for proofs in verification it is still orders of magnitude
more reliable than a human proof. In any case such issues pale into
insignificance compared with the very real problems of getting speci-
fications right and correctly modeling the system, where a small error
can make any ‘correctness proof’ meaningless. Verification is almost
always more valuable for discovering bugs rather than producing some
nebulous ‘guarantee’, and a prover that lets you find interesting bugs
quickly is the most useful, even if it has issues of its own.

As the reader may guess, we do not entirely accept this critique. In any case,
there is surely considerable intellectual interest in seeing how far a rigorously foun-
dational approach can be pushed. So, without necessarily taking any particular
position on this issue, we will just consider how systems may be made highly re-
liable if one does indeed care enough for it to be an issue. First of all, we can
identify two major sources of unreliability:

• The logic implemented by the theorem prover or the mathematical axioms
assumed may be unsound or even inconsistent.28

• The actual implementation of the logical system as computer code may be
incorrect, or the implementation may include additional infrastructure like
arithmetic decision procedures not part of the abstract description of the
logic.

We should not ignore the first possibility. Many notable logicians including
Frege, Curry and Martin-Löf have proposed logical systems that turned out to be
inconsistent for fundamental conceptual reasons. And even starting from a valid
semi-formal idea, specifying the details of a logical system can be a painstaking and
error-prone activity where even famously careful and precise workers like Church
have erred — problems with variable capture are a perennial source of errors. Such

28Since Gödel we have known that a system can be consistent yet unsound — for example add
to a consistent system an axiom asserting the inconsistency of that system. We will just refer
vaguely to this nexus of concepts when we use words like ‘sound’, ‘correct’ or ‘reliable’.
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errors seem fairly unlikely using relatively simple and time-tested foundations like
first order set theory or HOL-style simple type theory, and more likely when
the foundations are newer and more complex. Yet even in a system as simple as
HOL, early versions had a conceptual error in the definitional mechanism (allowing
polymorphic type variables occurring in the definiens but not the constant) that
led to their being inconsistent, as was later discovered independently by Roger
Jones and Mark Saaltink.

Nevertheless, we will concentrate mainly on errors of the second kind. Since se-
rious proof checkers are large and complex systems of software, skepticism about
their correctness is certainly reasonable. In general, it is much easier to feel confi-
dent about a theorem proving program that has a relatively small trusted kernel
so that correctness of this kernel is all that needs to be established. Type theory
provers are often organized according to what has been called the de Bruijn cri-
terion [Barendregt, 1997]: they can output a proof that is checkable by a much
simpler checker program that can be considered to be the logical kernel. LCF
systems of course already do perform all inference using a small trusted kernel,
and they satisfy the de Bruijn criterion into the bargain because it is very easy
to instrument the kernel so that it actually records proofs that can be separately
checked [Wong, 1993]. Most of the experiments on sharing proofs among differ-
ent systems outlined above depend on exactly this kind of proof export, and such
checking using another system provides an additional level of confirmation even
beyond the rigor of the native LCF kernel. Thus, systems that are architected
around logical kernels, and those in the LCF style in particular, can reasonably
be considered more reliable than those with freer design principles, other things
being equal.

But of course, the relative size and complexity of the kernels is a significant
factor in reliability. For example, HOL Light [Harrison, 1996a] has a logical kernel
consisting of about 600 lines of mostly functional OCaml, and the most complex
inference rule (type instantiation, INST_TYPE) can be described as

Γ[α1, . . . , αn] ` p[α1, . . . , αn]

Γ[γ1, . . . , γn] ` p[γ1, . . . , γn]

On the other hand, Coq’s logical kernel consists of about 20,000 lines of code,
sometimes quite stateful and with some 2,500 of them being in C, one of the more
complex rules (K-match) being the following29

29Strictly speaking this is drawn from the documentation for Matita [Asperti et al., 2006],
which is supposed to be an implementation of essentially the same foundations, though it is no
longer exactly the same. Indeed, there does not seem to be any precise written specification of
Coq’s current foundations, other than the actual code.
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46 A BI-DIRECTIONAL REFINEMENT ALGORITHM FOR CIC
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Even if the system demonstrably only produces valid theorems, there is the
danger that humans can misunderstand the appearance of those theorems. First
of all, one can be confused over the precise definitions involved, particularly if
they have some less intuitive features like aggressive totalization, though of course
all systems make it easy to inspect those definitions. But for many purposes the
designers of theorem provers tend to think at the level of abstract syntax and
neglect the concrete representation that the user sees. From a practical point of
view, one might consider all this as part of the logical kernel, since not many
users in practice would be willing to read the abstract syntax trees. As such,
even nominally reliable systems can produce quite confusing and counterintuitive
results, as Adams [2010] and Wiedijk [2012a] observe.

One of the primary intended applications of interactive theorem provers is in
computer system correctness, that is, ‘proving programs correct’ (we discuss this
in more detail in the next section). As such, just as compilers compile themselves,
it seems natural to use proof assistants to verify themselves. There are two distinct
but related ideas that we might try to pursue here: prove metaproperties such as
consistency of the logical system itself, and verify that the prover’s code correctly
implements that logical system. Combining these, we could actually conclude with
pretty high confidence that the output of the actual implementation is correct.

However, the analogy with compilers breaks down because of limitative results
of logic. Tarski’s theorem on the undefinability of truth tells us that no formal
system of the type we consider here can formalize its own semantics, and Gödel’s
Second Incompleteness Theorem tells us that it cannot prove its own consistency
in any way at all — unless of course it isn’t consistent, in which case it can
prove anything [Smullyan, 1992]. Thus, even ignoring implementation aspects,
successfully proving `P Con(P ), the consistency of the logic implemented by P
within P itself, would actually imply either that P ’s logic is not consistent or that
the implementation is wrong!

One can still use a proof checker to formalize its own inference system (far from
being ruled out by Gödel-type theorems, this is a key idea in their usual proof)
and so discuss the correctness of a proof checking program relative to the assumed
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correctness of the logic [Wright, 1994]. If one wants a truly semantic correctness
theorem, perhaps the most satisfying approach would be to prove the correctness
of prover P inside a different prover Q implementing a sufficiently strong logic
for the limitative results not to present an obstacle — for example proving HOL
correct using Mizar.

However, probably because not many people are sufficiently conversant with two
different systems, most existing experiments have been closer to self-verifications
where the same or similar systems are used, but one either proves the correctness
of a weakened version or uses additional axioms in the proof. Barras and Werner
[1996] describe the formalization inside Coq itself of a proof-checker for the core
Calculus of Constructions. Harrison [2006b] presents two HOL-in-HOL consistency
proofs that include not only the abstract logic but a reasonably faithful model of
the actual system code with the exception of its definitional mechanisms.

• `HOL Con(HOL − {∞}) proves in plain HOL the consistency of HOL with
the axiom of infinity removed. This removal allows the whole type hierarchy
to be modeled inside one infinite set; although this is a mathematically
trivial universe there is considerable interest in the basic correctness of the
implementations of the various syntax operations and inference rules (no
variable capture etc.)

• I `HOL Con(HOL) proves the consistency of plain HOL inside HOL strength-
ened with a new axiom I about sets, that there is an uncountable cardinal
κ so that whenever λ < κ, we also have 2λ < κ. From the point of view of
ZF set theory this trivially holds (e.g. κ = |Vω+ω|), but with respect to the
simple type construction principles of HOL this plays a role analogous to the
existence of inaccessible cardinals.

Even Harrison’s work does not model all aspects of the actual implementation,
and the correspondence between code and its formalization is naive. These short-
comings, however, are being systematically addressed. Kumar et al. [2014] have
ported the proof to use HOL4 as the metaframework (while still being a verifi-
cation of HOL Light), extended the consistency proof to cover the definitional
principles and proven the correctness of an implementation in a special ML di-
alect CakeML with a machine-checked formal semantics. In fact, we could not
even expect to prove a similarly strong result for the main OCaml implementa-
tion of HOL Light, since OCaml has additional ‘real world programming language’
mechanisms beyond traditional functional constructs that can be used to break the
LCF abstraction boundaries, such as a general type-casting operation Obj.magic.
CakeML even has a formal semantic link via decompilation to machine code, mean-
ing that one can anticipate a correctness proof for an implementation of HOL Light
from a toplevel semantic soundness right down to the level of the machine code
that runs it. An analogous result has already been achieved [Myreen and Davis,
2014] for Milawa, a simplified bootstrapping version of ACL2 developed by Jared
Davis [2009]. These are remarkable achievements very much in the spirit of the
pioneering CLInc stack [Young, 1993].
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Even if the implementation is proved correct at this level, we can never ulti-
mately banish skepticism completely. We are talking about things running on a
computer, a real physical object, and we cannot make any final statement con-
necting any mathematical model to reality, nor can we exclude soft errors in the
computer hardware (these are intermittent faults usually resulting from external
particle bombardment, which are becoming increasingly significant as miniatur-
ization advances). However, using a small logical kernel, performing rigorous veri-
fication from its semantics down to the machine code that runs it, and being able
to independently check proofs in other systems — perhaps repeatedly so to make
the chance of soft errors even more astronomically small — seems to give about
the best guarantee one could possibly hope for.

6.7 Applications

Interactive theorem provers have found applications in two main areas, the for-
malization of mathematics and the formal verification of computer systems. In a
general sense, both of these involve the formalization of mathematical proof, but
the applications tend to place different demands on a system, and usually those
we have described here were developed for some more or less specific application.
For example, Mizar was clearly intended for formalizing mathematics, while HOL
was intended for verifying hardware. Yet most of the systems have found unex-
pected applications in other areas too. And sometimes the two areas are mutually
reinforcing — for example in order to verify some very concrete and practical
floating-point algorithms, one may need first to verify a significant amount of real
analysis and number theory [Harrison, 2000].

The formalizability in principle of mathematical proof is widely accepted among
professional mathematicians as the final arbiter of correctness. Bourbaki [1968]
clearly says that ‘the correctness of a mathematical text is verified by comparing
it, more or less explicitly, with the rules of a formalized language’, while Mac Lane
[1986] is also quite explicit (p. 377):

As to precision, we have now stated an absolute standard of rigor: A
Mathematical proof is rigorous when it is (or could be) written out in
the first-order predicate language L(∈) as a sequence of inferences from
the axioms ZFC, each inference made according to one of the stated
rules. [. . . ] When a proof is in doubt, its repair is usually just a partial
approximation to the fully formal version.

However, before the advent of computerization, the idea of actually formalizing
proofs had seemed quite out of the question. The painstaking volumes of proofs in
Principia Mathematica [Whitehead and Russell, 1910] are for extremely elemen-
tary results compared with even classical real analysis, let alone mathematics at
the research level. It is only because of the availability of modern interactive proof
assistants that we can contemplate the actual formalization of non-trivial amounts
of contemporary mathematics.
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Figure 6: Footnotes from Jech’s ‘Set Theory’, p. 118

Such formalization may answer a real need. Well-established branches of math-
ematics such as elementary real analysis are by now precisely formulated (one
might almost say ossified) and presented in rigorous way. But at the research
level, mathematics is often quite vaguely formulated, because mathematicians can
usually rely on the deep understanding and intuition of themselves and their fellows
to keep them out of trouble. Indeed, as Lakatos [1976] describes, mathematicians
often begin to prove theorems before the fundamental concepts they involve are
clearly articulated, and the concepts often change in response to criticism of such
theorems. Even if mathematical assertions are formulated precisely, there is still
plenty of scope for errors in proofs. Mathematical proofs are subjected to peer
review before publication, but there are plenty of well-documented cases where
published results turned out to be faulty. A notable example is the first purported
proof of the 4-color theorem [Kempe, 1879]; the error in this proof was eventu-
ally pointed out in print a decade later [Heawood, 1890]. A book by Lecat [1935]
gave 130 pages of errors made by major mathematicians up to 1900. With the
abundance of theorems being published today, often emanating from writers who
are not trained mathematicians, one fears that a project like Lecat’s would be
practically impossible, or at least would demand a journal to itself! Consider for
example the five footnotes from a single page of [Jech, 1973] shown in Figure 6.

Such examples can be adduced to argue that the usual social process works, at
least for results that are considered sufficiently important. Yet we live in an age of
increasingly large proofs relying on highly specialized knowledge, where the num-
ber of people who reasonably could check them is small indeed. In cases where the
proof relies on extensive computer calculation, it is difficult to really say convinc-
ingly that any human being has checked it [Lam, 1990]. Even Ruffini’s, arguably
quite correct, 1799 proof of what is now a very classical result, the insolvability
of general quintics by radicals, was in its day considered too unwieldy to reward
study and was largely ignored. Nowadays we have proofs of key results that are
much larger, such as the classification of finite simple groups, which is spread over
numerous journal articles with a total page count of the order of 10,000. Is the
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social process really a reliable method of checking such huge proofs?
Over the last few decades there has been a significant amount of mathematics

formalized in interactive proof assistants. Wiedijk [2009] surveys the libraries
of formal mathematics provided by several interactive theorem provers, with the
Mizar MML discussed above being the largest.30 Despite this, the frontier of what
has been formalized is on average perhaps 100 years behind the actual development
of that mathematics — for example it was only quite recently that some of the
jewels of 19th century mathematics such as the Prime Number Theorem were
formalized [Avigad et al., 2007; Harrison, 2009a]. The first notable exception
to this state of affairs was arguably Gonthier’s machine-checked proof [Gonthier,
2005; Gonthier, 2008] of the 4-color theorem, originally proved in 1976 [Appel
and Haken, 1976]. This also showed convincingly that proofs involving a large
amount of computation could be brought within the purview of formalization.
More recently Gonthier has also led a team that formalized a proof of of the
Feit-Thompson theorem, a milestone in group theory from 1963 that forms an
important part of the classification of finite simple groups [Gonthier et al., 2013].

In one case formalization has reached the frontier of mathematics research itself
and led to the advocacy of formalization by a notable contemporary mathemati-
cian, Thomas Hales. The venerable Kepler conjecture states that no arrangement
of identical balls in ordinary 3-dimensional space has a higher packing density than
the obvious cannonball arrangement. Hales, working with Ferguson, finally proved
this conjecture in 1998, but the size of the proof was daunting: about 300 pages
of traditional mathematics: geometry, measure, graph theory and related combi-
natorics, as well as about 40,000 lines of supporting computer code performing
graph enumeration, nonlinear optimization and linear programming. Hales sub-
mitted the proof to Annals of Mathematics, and after four years of deliberation,
the referees were still unable to provide a satisfactory review:

The news from the referees is bad, from my perspective. They have
not been able to certify the correctness of the proof, and will not be
able to certify it in the future, because they have run out of energy to
devote to the problem. This is not what I had hoped for.

Hales’s proof was indeed eventually published [Hales, 2005], and no significant
error has been found in it [Hales et al., 2010]. Nevertheless, the verdict is dis-
appointingly lacking in clarity and finality. As a result, Hales initiated a project
called Flyspeck to completely formalize the proof [Hales, 2006]. This project in-
volved a sustained effort by a large and geographically distributed team, many of
whom were originally complete novices in the field of formalization. In a major
milestone for formalization of mathematics, the project has just been completed at
time of writing.31 That is, all the ordinary mathematics has been formalized, the
linear and nonlinear optimizations have been reimplemented in a proof-producing

30The list http://www.cs.ru.nl/~freek/100/ gives a more selective ideas about formalizations
of specific theorems.

31https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion
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fashion and the graph enumeration code has been rewritten in ML and formally
proved correct. That a contemporary proof so large, intricate and heterogeneous
can be completely formalized down to the most basic logical principles indicates
just how much can already be achieved with sufficient labour. The process of
formalization, and some other parallel developments, have resulted in a significant
simplification of the proof and its reorganization into a formalization-friendly form
[Hales, 2012].

Much of the early development of interactive theorem provers, as we have noted
above, was motivated not by pure mathematics but by problems in computer
system verification, with the verification of security properties a particular focus
[MacKenzie, 2001]. Using formalization to verify the correct behavior of computer
systems (e.g. hardware, software, protocols and their combinations) is an easy
application to justify on utilitarian grounds. We might wish to prove that a sorting
algorithm really does always sort its input list, that a numerical algorithm does
return a result accurate to within a specified error bound, that a server will under
certain assumptions always respond to a request, or will ensure certain security
properties, etc. etc.

Although recently many of the most notable successes in verification have been
in hardware verification, and there was great interest in higher-level system veri-
fication, the traditional focus has been software verification or ‘proving programs
correct’. (Perhaps in the 1970s, hardware was considered too simple to need
verifying?) Traditionally, program verification has usually been based on special
axiomatic systems for simple imperative programming languages, which were de-
veloped by Hoare [1969] and Dijkstra [1976] among others from earlier work by
Naur [1966] and Floyd [1967]. The axiomatic approach to program semantics as-
serts certain relationships between the precondition and postcondition, which are
predicates over the state before and after execution — in Dijkstra’s formulation a
program is identified with a predicate transformer mapping any postcondition to
the weakest precondition that ensures that postcondition.

Actual correctness proofs can be done in several ways. One can use a proof
system embodying the Hoare logic rules, or use refinement of the specification into
a program [Back, 1980; Morgan, 1990]. Alternatively, one can annotate a program
with special assertions indicating that certain properties of the state should hold
whenever that point is reached. Such an annotated program can be distilled into a
set of purely mathematical assertions called verification conditions: if these can be
proved then the correctness of the whole program in terms of Hoare logic follows
automatically. The first mechanical verifier was built by King [1969] in a PhD
supervised by Floyd, with another more interactive one soon developed by Good
[1970] under the supervision of Ralph London, who had himself pioneered manual
proofs of programs [London, 1970]. Subsequently Good et al. [1979] developed the
GYPSY interactive program verifier which was applied quite successfully to some
non-trivial problems [Good, 1983], and had a significant influence on the field of
automated reasoning.

The use of special verification frameworks continues to this day with systems
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such as KIV [Reif, 1995] and various tools supporting the B method [Abrial, 1996].
But the use of general interactive theorem provers for verification proofs has be-
come a popular alternative to the use of such systems. Of course, the boundary
between the two is not always sharp, but interactive provers generally make avail-
able a richer mathematical infrastructure, make it easier to call on a wide variety
of automated methods, and offer good standards of reliability. In particular, it
is not necessary to hardwire into the framework a connection with a specific pro-
gramming language, and one can reason explicitly about the semantics of different
languages and their relationship, for example to talk about compiler correctness.
A significant theme here is the embedding of other formalisms, whether they be
programming languages, hardware description languages, specification languages,
and even other logics, inside general theorem provers like HOL and PVS. One
approach, perhaps the most obvious, is to create formal models of the syntax and
semantics of the formalism inside the prover’s logic and use the system to reason
about them. Following Boulton et al. [1993], this has become known as deep
embedding, contrasting with the alternative of shallow embedding. In the latter,
language constructs are associated directly with logical entities, and the notation
is merely a convenience. This fits naturally with the view, expressed for exam-
ple by Dijkstra [1976], that a programming language should be thought of first
and foremost as an algorithm-oriented system of mathematical notation, and only
secondarily as something to be run on a machine. A seminal paper by Gordon
[1989] showed how a simple imperative programming language could be semanti-
cally embedded in higher order logic in such a way that the classic Floyd-Hoare
rules simply become derivable theorems.32

Such shallow embedding seems especially natural in the case of embedding less
expressive logics — for instance the basic operators of temporal logic [Gabbay et
al., 1994] can easily be considered just as shorthands for quantified statements
about sequences in higher-order logic. When one writes ‘�P ’ in LTL, Linear
Temporal Logic [Pnueli, 1977], for example, it means that ‘P is true now and at all
future times’. Considering temporal propositions systematically as mappings from
natural numbers (‘times’) to Booleans, we can actually define � by the equation
(�P )(t) =def ∀t′.t′ ≥ t ⇒ P (t′). One then doesn’t need any layer of translation
between LTL and the richer mathematical framework. Actually, the fact that this
is a flexible and satisfying way to reason about other logics may explain why any
explosion of interest in provers for different logics (as might have been anticipated
by the designers of logical frameworks) has so far been relatively muted.

A kind of reversal of the idea of semantic embedding is to consider a subset of the
logic as a programming language and then translate (often ‘extract’, though some
use that in the sense of extracting programs from constructive proofs) into a real
programming language, which is most naturally a functional one like Lisp or ML,
languages that can be said to ‘wear their semantics on their sleeves’ [Henson, 1987].
For a system like ACL2, there is by design a near-equivalence between the logic and

32Gordon (private communication) recalls that the idea of embedding Hoare logic directly in
HOL in this way may have come from Roger Jones.
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the implementation language, so this works in a particularly straightforward and
elegant way. For richer logics like HOL or Coq, one needs to carefully demarcate
a subset that has a natural correspondence with a real functional language. Even
without the actual extraction to code, Coq supports a highly efficient reduction
mechanism inside the logic so that one can effectively ‘run programs’ without
stepping out of the formal inference system, at least in principle. This can be
done in other systems like HOL too, but because of the much more parsimonious
logical kernel, the performance penalty is considerable.

Many in the 1970s dreamed of the pervasive use of correctness proofs from top
to bottom: applications, operating systems, compilers, programming languages
and hardware. A pioneering example of such a verified tower of basic systems
was the ‘CLInc stack’ [Young, 1993]. There have been more recent projects in
the same style such as Verisoft [Paul, 2008], but many recent efforts have been
more piecemeal and focused on particular areas, with applications to floating-
point arithmetic being particularly successful [Moore et al., 1998; Russinoff, 1998;
O’Leary et al., 1999; Harrison, 2000; Kaivola and Aagaard, 2000; Kaivola and
Kohatsu, 2001; Sawada and Gamboa, 2002; Slobodová, 2007; Hunt and Swords,
2009; O’Leary et al., 2013]. A key feature of such examples is that they are
being carried out by those in the hardware industry, not only by academics in
universities, indicating at least some successful penetration of interactive theorem
proving into the ‘real world’.

Two substantial formal verifications carried out with interactive theorem prov-
ing in recent years are the correctness proofs of a ‘CompCert’ optimizing compiler
from a significant subset of C using Coq [Leroy, 2009], and of a designed-for-
verification version of the commercial L4 microkernel using Isabelle/HOL [Klein
et al., 2010]. While these are currently isolated and independent efforts, they
demonstrate the applicability of formal methods to key items of system software,
and have to some extent inspired further interconnecting verifications — for ex-
ample the CompCert compiler has been extended with a formalized treatment of
floating-point arithmetic [Boldo et al., 2013] while the actual ARM binary for the
L4 microkernel has also been verified, using HOL4, by Sewell et al. [2013]. Much
of the impetus for the development of theorem provers and verification frameworks
arose from the interest in proving isolation properties of time-sharing operating
systems, as we have seen, so it is especially pleasing to see that this was not just
a dream, but can be realized — albeit with considerable human effort — using
today’s technology.
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rent Théry, editors. Theorem Proving in Higher Order Logics: 12th International Confer-
ence, TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, Nice, France, 1999.
Springer-Verlag.

[Biggs et al., 1976] Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory
1736–1936. Clarendon Press, 1976.

[Birtwistle and Subrahmanyam, 1989] Graham Birtwistle and P. A. Subrahmanyam, editors.
Current Trends in Hardware Verification and Automated Theorem Proving. Springer-Verlag,
1989.

[Bishop and Bridges, 1985] Errett Bishop and Douglas Bridges. Constructive analysis, volume
279 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.

[Blanchette et al., 2013] Jasmin Christian Blanchette, Sascha Böhme, Andrei Popescu, and
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Jaśkowski-Fitch, 8, 25, 40
Journal of Formalized Mathematics,

50

Kepler conjecture, 58
kernel, 11, 28, 44, 53, 54, 56, 61
KIV, 29, 59

L4, 61
LAMBDA, 21, 22
lambda calculus, 8
lambda cube, 10
large-theory ATP, 50
LCF, 11, 13–18, 20–22, 24, 28, 34, 38,

41, 42, 45, 46, 49, 53, 55
LEGO, 11
LeLisp, 16
LF, 5, 7, 8, 12
LIL, 23
linear arithmetic, 11, 31, 45
Linear Temporal Logic, 60
linkage, 25
Lisp, 16, 18, 19, 26, 30, 32, 34, 35, 60
local constant, 26
Logic of Computable Functions, 13
Logic-Information Languages, 23
logical framework, 8, 11, 20, 60
Logosphere, 48
LONGAL, 8
LONGPAL, 8
LSM, 17
Ltac, 12, 41
LTL, 60

machine learning, 46, 50
machine translation, 23
MacLisp, 16
many-sorted, 26
Maple, 44
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