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Abstract. The HOL Light prover is based on a logical kernel consisting
of about 400 lines of mostly functional OCaml, whose complete formal
verification seems to be quite feasible. We would like to formally verify
(i) that the abstract HOL logic is indeed correct, and (ii) that the OCaml
code does correctly implement this logic. We have performed a full veri-
fication of an imperfect but quite detailed model of the basic HOL Light
core, without definitional mechanisms, and this verification is entirely
conducted with respect to a set-theoretic semantics within HOL Light
itself. We will duly explain why the obvious logical and pragmatic diffi-
culties do not vitiate this approach, even though it looks impossible or
useless at first sight. Extension to include definitional mechanisms seems
straightforward enough, and the results so far allay most of our practical
worries.

1 Introduction: quis custodiet ipsos custodes?

Mathematical proofs are subjected to peer review before publication, but there
are plenty of cases where published results turned out to be faulty [13,4]. Such
errors seem more likely in mathematical correctness proofs of algorithms, proto-
cols etc. These tend to be more messy and intricate than (most) proofs in pure
mathematics, and those performing the proofs are often not primarily trained
as mathematicians. So while there are still some voices of dissent [6], there is a
general consensus in the formal verification world that correctness proofs should
be at least checked, and perhaps partly or wholly generated, by computer. In
pure mathematics a similar opinion is still controversial, but we expect it to
slowly percolate into the mathematical mainstream over the coming decades.
One obvious and common objection to computer-checked proofs is: why
should we believe that they are any more reliable than human proofs? Well,
for most practical purposes, computers can be considered mechanically infallible.
Though ‘soft errors’ resulting from particle bombardment are increasingly signif-
icant as miniaturization advances, techniques for controlling these and other re-
lated effects are well-established and already in widespread use for high-integrity
systems. The issue is not so much one of mechanical reliability, but rather the
correctness of the proof-checking program itself, as well as potentially the stack
of software it runs on. We may be willing to accept a machine-checked proof



that we couldn’t conceivably ‘survey’ ourselves, provided we understand and
have confidence in the checking program — in this sense a proof checker pro-
vides intellectual leverage [16]. But how can we, or why should we? Who checks
the checker?

2 LCF

Many practitioners consider worries about the fallibility of provers somewhat
pointless. Experience shows unambiguously that typical mainstream proof check-
ers are far more reliable than human hand proofs, and abstract theorizing to the
contrary is apt to look like empty chatter. Yet bugs in proof checkers are far
from being unknown, and on at least one occasion, there was an announcement
that an open problem had been solved by a theorem prover, later traced to a
bug in the prover. For example, versions of HOL [9] have in the past had errors
of two kinds:!

— Errors in the underlying logic, e.g. early versions allowed constant definitions
with type variables occurring in the definiens but not the constant.

— Errors in the implementation, e.g. functions implementing logical operations
were found not to rename variables to avoid free variable capture.

So what if we want to achieve the highest levels of confidence? We have no
fully satisfactory answer to the thoroughgoing skeptic who doubts the integrity
of the implementation language, compiler, operating system or hardware. But
at least let us assume those are correct and consider how we might reassure
ourselves about the proof checker itself, proving the absence of logical or imple-
mentation errors.

Since serious proof checkers are large and complex systems of software, their
correctness is certainly open to doubt. However, there are established approaches
to this problem. Some systems satisfy the de Bruijn criterion [2]: they can output
a proof that is checkable by a much simpler program. Others based on the LCF
approach [10] generate all theorems internally using a small logical kernel: only
this is allowed to create objects of the special type ‘theorem’, just as only the
kernel of an operating system is allowed to execute in privileged mode. From a
certain point of view, one can say that an LCF prover satisfies the de Bruijn
criterion, except that the proof exists only ephemerally and is checked by the
kernel as it is created. And it is straightforward to instrument an LCF kernel so
that it does actually output separately checkable proofs [22].

The original Edinburgh LCF system was designed to support proofs in a
special ‘Logic of Computable Functions’ [19], hence the name LCF. But the key
idea, as Gordon [8] emphasizes, is equally applicable to more orthodox logics
supporting conventional mathematics, and subsequently many ‘LCF-style’ proof
checkers have been designed using the same principles. In particular, the original

! In the absence of a highly rigorous abstract specification of the logic, it’s not always
easy to categorize errors in this way, but these examples seem clear.



HOL system [9] and its descendant HOL Light [11] are LCF-style provers. HOL
Light is constructed on top of a logical kernel consisting of only around 400 lines
of Objective CAML. Thus, if we accept that the interface to the trusted kernel
is correct, we need only verify those 400 lines of code. In the present paper, we
describe significant though imperfect progress towards this goal.

3 On self-verification

Tarski’s theorem on the undefinability of truth tells us that no logical system
(capable of formalizing a certain amount of arithmetic) can formalize its own
semantics, and Godel’s second incompleteness theorem tells us that it cannot
prove its own consistency in any way at all — unless of course it isn’t consistent,
in which case it can prove anything [21]. So, regardless of implementation details,
if we want to prove the consistency of a proof checker, we need to use a logic
that in at least some respects goes beyond the logic the checker itself supports.

The most obvious approach, therefore, would be to verify HOL Light using a
system whose logic is at least strong enough to formalize HOL Light’s semantics,
e.g. Mizar [18] based on Tarski-Grothendieck set theory. Instead, simply on the
grounds of personal expertise with it, we have chosen to verify HOL Light in
itself. Of course, in the light of the above observations, we cannot expect to
prove consistency of HOL in itself, gy, Con(HOL). Instead, we have proven two
similar results: consistency of HOL within a stronger variant of HOL, and of a
weaker variant of HOL within ordinary HOL:?

— I Fygr, Con(HOL) for a new axiom I about sets.
— Fygr, Con(HOL — {oo}) where HOL — {oo} is HOL with no axiom of infinity.

One can still take the view that these results are pointless, but they cover
most of the problems we worry about. Almost all implementation bugs in HOL
Light and other versions of HOL have involved variable renaming, and manifest
themselves in a contradiction regardless of whether we assume the axiom of infin-
ity. So having a correctness proof of something close to the actual implementation
of HOL — {oo}, rather than merely the abstract logic, is a real reassurance.

Naturally, it is possible that a soundness bug in HOL Light could mean that
these correctness statements themselves are not true, but have only been ‘proved’
by means of this bug! There are two counterarguments. Intuitively, it seems
unlikely that some logical or implementation bug, never spotted in any other
domain, should just happen to manifest itself in the proof of consistency. And
HOL Light is able to generate proof logs that can be checked in Isabelle/HOL,
thanks to work by Steven Obua. Thus, having a proof in HOL Light, we effec-
tively have a proof in Isabelle/HOL too, which implements a similar logic but
is quite different in terms of internal organization and so unlikely to feature the
same implementation bugs.

2 Thanks to Rob Arthan for pointing out this kind of possibility.



4 HOL Light foundations and axioms

HOL Light’s logic is simple type theory [3,1] with polymorphic type variables.
The terms of the logic are those of simply typed lambda calculus, with formulas
being terms of boolean type, rather than a separate category. Every term has a
single welldefined type, but each constant with polymorphic type gives rise to
an infinite family of constant terms. There are just two primitive types: bool
(boolean) and ind (individuals), and given any two types o and 7 one can form
the function type o — 7.3

For the core HOL logic, there is essentially only one predefined logical con-
stant, equality (=) with polymorphic type a — a — bool. However to state one
of the mathematical axioms we also include another constant ¢ : (& — bool) —
«, explained further below. For equations, we use the conventional concrete syn-
tax s = t, but this is just surface syntax for the A-calculus term ((=)s)t, where
juxtaposition represents function application. For equations between boolean
terms we often use s < t, but this again is just surface syntax.

The HOL Light deductive system governs the deducibility of one-sided se-
quents I' - p where p is a term of boolean type and I is a set (possibly empty) of
terms of boolean type. There are ten primitive rules of inference, rather similar
to those for the internal logic of a topos [12].

l—t:tREFL

I'Fs=t Att=u
IT'UAFs=u

TRANS

I'Fs=t Atu=
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3 In Church’s original notation, also used by Andrews, these are written o, ¢ and 7o
respectively. Of course the particular concrete syntax has no logical significance.
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Llxy, ..., xn] Fplzr, ... 2]
F[tl,...,tn] I_p[t177tn]

INST

Iog, ... on) Fplog, ..., o]
T o P ™ M TR

In MK_COMB it is necessary for the types to agree so that the composite terms
are well-typed, and in ABS it is required that the variable x not be free in any
of the assumptions I'. Our notation for term and type instantiation assumes
capture-avoiding substitution, which we discuss in detail later.

All the usual logical constants are defined in terms of equality — see below for
exactly what we mean by defined. The conventional syntax Va. P[z] for quantifiers
is surface syntax for (V)(Az. P[z]), and we also use this ‘binder’ notation for the
€ operator.

INST_TYPE

T =def (Ap-p) = (Ap.p)
N=def Ap.- M- (Af fpg)=(f. fTT)
= =def AD-AN.DAG S D
V=ge AP.P=Xz. T
3 =aef AP.Vq. (Vz. P(z) = q) = ¢
V=gef Ap- AV (p=7) = (¢=71)=>r
L =ges Vp.p
T =def Ap-p = L
N =4y \AP.IPAVE.Vy. PxAPy=— 2=y

These definitions allow us to derive all the usual (intuitionistic) natural de-
duction rules for the connectives in terms of the primitive rules above. All of the
core ‘logic’ is derived in this way. But then we add three mathematical axioms:

— The axiom of extensionality, in the form of an eta-conversion axiom ETA_AX:
F (Az.t 2) = t. We could have considered this as part of the core logic rather
than a mathematical axiom; this is largely a question of taste.

— The axiom of choice SELECT_AX, asserting that the Hilbert operator ¢ is a
choice operator: = P & = P((¢)P). It is only from this axiom that we can
deduce that the HOL logic is classical [5].

— The axiom of infinity INFINITY_AX, discussed further below.

In addition, HOL Light includes two principles of definition, which allow
one to extend the set of constants and the set of types in a way guaranteed
to preserve consistency. The rule of constant definition allows one to introduce
a new constant ¢ and an axiom F ¢ = t, subject to some conditions on free
variables and polymorphic types in ¢, and provided no previous definition for
¢ has been introduced. All the definitions of the logical connectives above are



introduced in this way. Note that this is ‘object-level’ definition: the constant
and its defining axiom exists in the object logic. However, in our verification
we don’t formalize the rule of definition, instead regarding the definitions of the
connectives as ‘meta-level’ definitions. When we write, say, |, it is merely an
abbreviation for the term Vp. p and so on. We took this path to avoid technical
complications over the changing signature of the logic, but eventually we want
to generalize our proof to cover the actual HOL definitional principles. Neither
do we presently formalize the rule of type definition, though we would eventually
like to do so.

5 Added and removed axioms

Since in our self-verifications we either remove the axiom of infinity ‘co’ or add
a new axiom I, we will explain these carefully. The HOL Light axiom of infinity
asserts that the type ind of individuals is Dedekind-infinite, i.e. that there is a
function from ind to itself that is injective but not surjective:

|- 3f:ind->ind. ONE_ONE f A —ONTO f

where the subsidiary concepts are defined as follows:

|- V£. ONE_ONE f < (Vx1 x2. f x1 = f x2 =—> x1 = x2)
|- VE. ONTO £ < (Vy. 3x. y = £ x)

This is the only rule or axiom that says anything specifically about ind. If
we exclude it, we can find a model for the HOL logic where ind is modelled
by (say) a l-element set, and bool as usual by a 2-element set. Then any type
we can construct from those using the function space constructor will also have
an interpretation as a finite set. Thus we can find a model for the entire type
hierarchy inside any infinite set, which we have in the full HOL logic.

But to model all of HOL including its axiom of infinity, we must take an
infinite set, say N, to model the type of individuals. We then need to be able to
model at least the infinite hierarchy of types ind, ind — bool, (ind — bool) —
bool and so on, so we need a set for the universe of types that can contain p"(N),
the n-fold application of the power set operation to N, for all n € N. Since for
successive n these have cardinality Rg, 280, 22" and so on, we cannot prove in
HOL that there is any set large enough. So we add a new axiom [ that gives us
a ‘larger’ universe of sets. In the traditional terminology of cardinal arithmetic
it asserts that there is a cardinal ¢ with the property that it is strictly larger
than the cardinality of N and is closed under exponentiation applied to smaller
cardinals: Rg < ¢ A (Vk. kK < ¢ => 2% < ). This is unproblematic in ZF set
theory (e.g. take ¢ to be the cardinal of V1, in the hierarchy of sets) so there
is nothing dubious or recherché about our new axiom.

In order to deal with the two cases of removing and adding an axiom almost
entirely uniformly, we start each proof by defining a type ind_model to model
the type ind, as well as the type I that will model the whole type universe. In
proving I = Con(HOL), we introduce such types and assert our higher axiom
of infinity for them:



|- (:ind_model) <_c (:I) A
(Vs:A->bool. s <_c (:I) = {t | t SUBSET s} <_c (:I)

Here ‘(:I)’ is a HOL Light shorthand for the universal set on type I, and
‘<.’ is strict cardinal comparison, defined as the irreflexive form of non-strict
cardinal comparison, itself defined in terms of the existence of an injective map
from one set to the other.*

In the case of proving Fyor, Con(HOL —{o0}), we just define a type ind_model
in bijection with a finite nonempty set and I in bijection with N. In this case
we can easily prove the statement about cardinal closure, instead of taking it
as an axiom. The subsequent proofs are all completely identical based on this
cardinality property, except that right at the end we need in one case to show
how we can model the axiom of infinity.

6 Formalized syntax

The various OCaml types representing logical entities of types and terms are
formalized inside the HOL logic using analogous recursive type definitions. How-
ever, there is an important difference, which we will explain for types first. In
the code, the type of HOL types is declared by the following OCaml recursive
type definition:

type hol_type = Tyvar of string
| Tyapp of string * hol_type list

The second clause allows a type constructor with any name and arity. How-
ever, the constructors themselves are hidden by an abstract type interface, which
permits only types using type constructors that have been declared. In the ini-
tial state these amount to just the base types bool, ind and the binary function
space constructor fun, but later type definitions can extend the list. In the HOL
formalization, we do not consider the potentially extensible type signature, and
just ‘hardwire’ the base types we will consider:

define_type "type = Tyvar string
| Bool
| Ind
| Fun type type";;

Similarly, the basic type of HOL terms is defined in OCaml without any
well-typedness restriction, with any term as the “bound variable” of a lambda-
abstraction, with these restrictions imposed by the abstract type interface.

type term = Var of string * hol_type
| Const of string * hol_type
| Comb of term * term
| Abs of term * term

4 In simple type theory, it is problematic defining a general type of cardinals, but many
arguments can be rephrased in terms of cardinal comparison and set operations [7].



In the HOL formalization, we wire in the two primitive constants, where
‘Equal o’ represents (=) : @« — a — bool and ‘Select &’ represents (¢) : (o —
bool) — «, and we syntactically force the bound variable of a lambda-abstraction
to be a (typed) variable and not any other kind of term:

define_type "term = Var string type
| Equal type | Select type
| Comb term term
| Abs string type term";;

This allows ill-typed terms that could not be constructed using the abstract
type interface of HOL Light, so we often need to state side-conditions connected
with well-typedness on our theorems. This notion is defined as

|- welltyped tm <> Jty. tm has_type ty

where the typing judgement, written infix, is defined inductively as follows; every
welltyped term then has a unique type, extracted by a function typeof.

|- (Vn ty. (Var n ty) has_type ty) A
(Vty. (Equal ty) has_type (Fun ty (Fun ty Bool))) A
(Vty. (Select ty) has_type (Fun (Fun ty Bool) ty)) A
(Vs t dty rty. s has_type (Fun dty rty) A t has_type dty
—> (Comb s t) has_type rty) A
(Vn dty t rty. t has_type rty = (Abs n dty t) has_type (Fun dty rty))‘;;

Subject to these systematic differences, we model much of the OCaml code in
the core faithfully. Most syntax functions are purely functional, and we “naively”
transcribe them into corresponding definitional theorems in the logic, following
[20]. In general, recursive functions in OCaml may fail to terminate, and this
aspect is not adequately modelled by our encoding.® In practice all the functions
we use do terminate, and without some inductive argument we would not be
able to prove anything non-trivial about them. So this distinction is somewhat
academic, and generally speaking the structural similarity is very clear. (It’s
particularly important to emphasize this point, since most of our discussion
here is devoted to differences.) For example, the function that performs a union
of term lists modulo alpha-equivalence in OCaml is:

let rec term_union 11 12 =
match 11 with
1 ->12
| (h::t) -> let subun = term_union t 12 in
if exists (aconv h) subun then subun else h::subun;;

and the HOL formalization is:

|- (TERM_UNION [] 12 = 12) A
(TERM_UNION (CONS h t) 12 =
let subun = TERM_UNION t 12 in
if EX (ACONV h) subun then subun else CONS h subun)

5 HOL Light’s derived rules can prove consistency of various recursive definitions,
in particular all tail-recursive ones (I owe the observation that these are always
consistent to J Moore). This does not imply termination of the analogous functional
program.



At the other end of the spectrum, the worst case for the correspondence
between code and HOL formalization is the type instantiation function, which
replaces type variables a, ..., a, with other types o1, ..., 0, in some term. The
OCaml code involves exceptions and pointer-equality tests:

let rec inst env tyin tm =
match tm with
Var(n,ty) -> let ty’ = type_subst tyin ty in
let tm’> = if ty’ == ty then tm else Var(n,ty’) in
if rev_assocd tm’ env tm = tm then tm’
else raise (Clash tm’)
| Comst(c,ty) -> let ty’ = type_subst tyin ty in

if ty’ == ty then tm else Const(c,ty’)
| Comb(f,x) -> let f’ = inst env tyin f and x’ = inst env tyin x in
if f° == f & x’ == x then tm else Comb(f’,x’)
| Abs(y,t) -> let y’ = inst [] tyin y in
let env’ = (y,y’)::env in
try let t’ = inst env’ tyin t in
if y? == y & t’ == t then tm else Abs(y’,t’)

with (Clash(w’) as ex) ->

if w’ <> y’ then raise ex else

let ifrees = map (inst [] tyin) (frees t) in

let y’’ = variant ifrees y’ in

let z = Var(fst(dest_var y’’),snd(dest_var y)) in
inst env tyin (Abs(z,vsubst[z,y] t))

The tyin argument is an association list [o1, ;- - ;0n, ] specifying the
desired instantiation, tm is the term to instantiate, and env is used to keep
track of correspondences between original and instantiated variables to detect
name clash problems. Note first that the recursive cases are optimized to avoid
rebuilding the same term. For example, the case for Comb(f,x) checks if the
instantiated subterms £’ and x’ are pointer identical (‘==") to the originals, and
if so just returns the full original term. This optimization is not, and cannot be,
reflected in our naive model.

The main complexity in this function is detecting and handling variable
capture. For example, the instantiation of a to bool in the constant function
Az : bool. x : a would, if done naively, result in the identity function Az : bool. z :
bool. We want to ensure instead that we get something like Az’ : bool. x : bool.
So each time a variable is type-instantiated (first clause) we check that it is
consistent with the list env, which roughly means that if after instantiation it
is bound by some abstraction, it was already bound by the same one before. If
this property fails, an exception Clash is raised with the problem term. This
exception is supposed to be caught by exactly the outer recursive call for that
abstraction, which renames the variable appropriately and tries again (last line).

Exceptions also have no meaning in our naive model. Instead, we include
the possibility of exceptions by extending the return type of the function in our
HOL formalization to a disjoint sum type defined by:

’define_type "result = Clash term | Result term";;

In all expressions we manually ‘propagate’ the Clash exception with the help
of discriminator (IS_RESULT and IS_CLASH) and extractor (RESULT and CLASH)
functions. These are also used at the end to take us back to a simple analog INST



of the OCaml code’s main inst function.® With all these caveats, the overall
structure should faithfully model the OCaml code:

|- (INST_CORE env tyin (Var x ty) =
let tm = Var x ty
and tm’ = Var x (TYPE_SUBST tyin ty) in
if REV_ASSOCD tm’ env tm = tm then Result tm’ else Clash tm’) A
(INST_CORE env tyin (Equal ty) = Result(Equal(TYPE_SUBST tyin ty))) A
(INST_CORE env tyin (Select ty) = Result(Select(TYPE_SUBST tyin ty))) A
(INST_CORE env tyin (Comb s t) =
let sres = INST_CORE env tyin s in
if IS_CLASH sres then sres else
let tres = INST_CORE env tyin t in
if IS_CLASH tres then tres else
let s’ = RESULT sres and t’ = RESULT tres in
Result (Comb s’ t’)) A
(INST_CORE env tyin (Abs x ty t) =
let ty’ = TYPE_SUBST tyin ty in
let env’ = CONS (Var x ty,Var x ty’) env in
let tres = INST_CORE env’ tyin t in
if IS_RESULT tres then Result(Abs x ty’ (RESULT tres)) else
let w = CLASH tres in
if = (w = Var x ty’) then tres else
let x’ = VARIANT (RESULT(INST_CORE [] tyin t)) x ty’ in
INST_CORE env tyin (Abs x’ ty (VSUBST [Var x’ ty,Var x tyl t)))

The termination of this function needs a careful argument. The last line can
result in a recursive call on a term of the same size, but the choice of new variable
means that the subcall will then not raise the same exception that would lead
to yet another subcall from this level.

We now introduce a handy abbreviation for equations (an exact counterpart
to a function mk_eq in the OCaml code):

|- (s === t) = Comb (Comb (Equal(typeof s)) s) t

and are ready to model the HOL Light deductive system using an inductively
defined ‘is provable’ predicate ‘| -’. For reasons of space, we only show clauses for
rules REFL, TRANS and INST_TYPE, but none of them are complex or surprising:

|- (Vt. welltyped t = [] |-t === t) A
(Vasll asl2 1 ml m2 r.
asll |- 1 ===ml A asl2 |- m2 === r A ACONV ml m2
— TERM_UNION asll asl2 |- 1 === 1) A

(Vtyin asl p. asl |- p == MAP (INST tyin) asl |- INST tyin p) A

7 Set theory

We next develop a HOL type V of ‘sets’ big enough to model all types. The sets
are arranged in levels somewhat analogous to the Zermelo-Fraenkel hierarchy,

5 The main recursion for inst shown above is used internally in the definition of
the main inst, which simply provides the empty list as the initial env argument.
The choice of names is a bit confusing: this is used in the inference rule INST_TYPE;
the rule INST is term instantiation and the corresponding term operation is called
VSUBST.



each containing all subsets of the levels below it. The membership symbol in V
is written as an infix <:, and has type V' — V — bool. (This is quite distinct
from the usual HOL set/predicate membership operation IN with type a —
(¢ — bool) — «a.) Many of the axioms and constructs familiar from ZF set
theory appear, e.g ‘s suchthat p’ is the subset of elements of s satisfying p,
whose existence is assured by the ZF separation axiom:

’ |- (level(s suchthat p) = level s) A Vx. x <: s suchthat p <& x <: s A px ‘

Similarly we have a choice function ch satisfying:

’ |- Vs. (3x. x <: 8) = ch(s) <: s ‘

But we have no need of ‘mixed level’ sets like {0,{0}}, so we make the
hierarchy non-cumulative, with the levels all distinct. This means that there
are multiple empty sets at all levels of the hierarchy, so we don’t have simple
extensionality. We also have a primitive notion of pairing (it is not defined as is
usually done in ZF set theory), and we start with two basic sets of ‘ur-elements’
boolset (with elements true and false) and indset to model the base HOL
types. We will not show the technical details of the construction, since they are
not particularly interesting or challenging. We just observe some notation for
later use.

The set of functions from set s to set t (constructed much as in ZF set theory,
as a certain set of ordered pairs) is denoted by funspace s t, and function
application is apply. We also define a set-theoretic analog abstract of lambda-
abstraction to allow us to construct certain functions explicitly. Here are a few
relevant lemmas to help the reader to get a picture of the setup.

|- x <: s A £(x) <: t = (apply(abstract s t £) x = £(x))

|- x <: s A f <: funspace s t = apply f x <: t

|- (Vx. x <t s = f(x) <: t) = abstract s t f <: funspace s t

Note that everything in the construction of this set-theoretic hierarchy is
based on the key cardinality property we noted earlier; no other axioms are
used. Of course, this property was designed exactly to allow the construction of
such a type.

8 Formalized semantics

HOL is a fairly simple logic, and it isn’t so difficult to give it a set-theoretic
semantics. However, the presence of polymorphic type variables makes it a bit
trickier than it first appears. Our approach is inspired by the semantics given
by Andy Pitts [9], though we use more traditional valuation-based formulation
rather than using contexts, since it seems (to us) technically simpler. The se-
mantics is parameterized throughout by a valuation 7 : string — V of the type
variables. We require only that it always returns a nonempty set:



|- type_valuation tau < Vx. (Jy. y <: tau x)

Given such a type valuation, each HOL type is allocated a corresponding set
in V using the following straightforward definition:

|- (typeset tau (Tyvar s) = tau(s)) A
(typeset tau Bool = boolset) A
(typeset tau Ind = indset) A
(typeset tau (Fun a b) = funspace (typeset tau a) (typeset tau b))

Now we come to the semantics of terms. As well as the valuation 7 of type
variables, this has as another parameter a valuation ¢ of term variables, or more
precisely of name-type pairs. This should always be consistent with 7, i.e. should
map each variable-type pair into the set corresponding to that type:

|- term_valuation tau sigma <> Vn ty. sigma(n,ty) <: typeset tau ty

The definition of the semantics is:

|- (semantics sigma tau (Var n ty) = sigma(n,ty)) A
(semantics sigma tau (Equal ty) =
abstract (typeset tau ty) (typeset tau (Fun ty Bool))
((Ax. abstract (typeset tau ty) (typeset tau Bool)
(Ay. boolean(x = y)))) A
(semantics sigma tau (Select ty) =
abstract (typeset tau (Fun ty Bool)) (typeset tau ty)
(As. if Jx. x <: ((typeset tau ty) suchthat (holds s))
then ch ((typeset tau ty) suchthat (holds s))
else ch (typeset tau ty))) A
(semantics sigma tau (Comb s t) =
apply (semantics sigma tau s) (semantics sigma tau t)) A
(semantics sigma tau (Abs n ty t) =
abstract (typeset tau ty) (typeset tau (typeof t))
(Ax. semantics (((n,ty) |-> x) sigma) tau t))

The first clause is easy: just apply the valuation o. The fourth and fifth clauses
are also fairly natural: they just map application and abstraction into their set-
theoretic counterparts. The semantics of a term An : ty. ¢ is a function taking an
argument x that recursively evaluates the semantics of ¢ in a modified valuation
with n : ty mapped to x but which is otherwise the same as . (The modification
is done by an infix function update ‘|->’.) The second and third clauses look
involved only because we actually need to interpret = and ¢ as functions of the
appropriate type, but they just give the right sets for the obvious equality and
choice functions. (If it would otherwise be applied to an empty set, we force
the choice operator to pick any element of the right type.) When the equality
constant is actually used in an equation in the usual way, the semantics, with
reasonable side-conditions, is about what we would expect. Note that here and
above boolean just maps a HOL boolean into the corresponding member of
boolset in V:7

" The typing condition is a shorthand for saying that both subterms are welltyped;
an equation always has boolean type if so.



|- (s === t) has_type Bool A type_valuation tau A term_valuation tau sigma
—> (semantics sigma tau (s === t) =
boolean(semantics sigma tau s = semantics sigma tau t))

We proceed with various lemmas about how the semantics interacts with
syntactic operations. The most complex governs the type instantiation operation
whose definition we considered earlier:

|- Vtyin tm sigma tau.
welltyped tm A type_valuation tau A term_valuation tau sigma
—> (semantics sigma tau (INST tyin tm) =
semantics
(A (x,ty). sigma(x,TYPE_SUBST tyin ty))
(XAs. typeset tau (TYPE_SUBST tyin (Tyvar s))) tm)

where TYPE_SUBST is substitution of types for type variables within a type, de-
fined by straightforward recursion. Finally, we define the semantic notion of
entailment:

|- asms |= p < ALL (MAa. a has_type Bool) (CONS p asms) A
Vsigma tau. type_valuation tau A term_valuation tau sigma A
ALL (Ma. semantics sigma tau a = true) asms
—> (semantics sigma tau p = true)

and hence by induction, considering the various inference rules, we deduce that
HOL is sound:

’ |- Vasl p. asl |- p = asl |=p ‘

and consistent in the sense that there is an unprovable formula:

’ |- 3p. p has_type Bool A —([] |- p) ‘

9 Conclusions and related work

We believe that this is the first time anything close to the implementation of a
‘real’ theorem prover has been verified against a semantic model, though syntac-
tic features of the HOL logic have been formalized before [23], and full correctness
for a first-order proof checker [14] and a simple first-order tableau prover [17]
have been verified. We believe that a proof based on a semantics is more valu-
able than one relative to an abstract description of the same deductive system:
even the abstract definitions of notions like capture-avoiding substitution are
somewhat involved, and it is much more satisfactory to characterize them by
their (relatively) simple semantics — cf. the key theorem about the semantics
of INST above. On the other hand, it might be a fruitful separation of concerns
to use a more abstract description of the logic as an intermediate step between
the implementation and the semantics.

As for practical consequences, we are genuinely pleased to have finally con-
vinced ourselves that the variable renaming methods (notably the rather involved
mechanism in type instantiation) are correct. This is where our practical worries



lay. Still, we view the present work only as a proof of concept: we have shown
that all the key things can be made to work as we would wish; there is not
much intellectual work involved in taking it further. But there are many obvious
shortcomings in the work so far that need to be addressed. First of all, we need
to properly model the full extensible signatures and the definitional principles
that extend them. It would also be desirable to use a more detailed model of the
implementation language. Our present work certainly does little to guard against
language issues. In fact there is one that we know about: OCaml’s strings are
mutable, and this leads to imperfect protection of the abstract types of types
and terms.

Another avenue for future work would be to extend the semantics to cover
extensions to the logic, such as the introduction of quantifiers over type variables
suggested in [15]. Tom Ridge has already updated large parts of HOL Light to
incorporate them, and we believe the extension of the semantics is straightfor-
ward.
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