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Abstract. We present a uniform algorithm for proving automatically a
fairly wide class of elementary facts connected with integer divisibility.
The assertions that can be handled are those with a limited quantifier
structure involving addition, multiplication and certain number-theoretic
predicates such as ‘divisible by’, ‘congruent’ and ‘coprime’; one notable
example in this class is the Chinese Remainder Theorem (for a specific
number of moduli). The method is based on a reduction to ideal mem-
bership assertions that are then solved using Gröbner bases. As well as
illustrating the usefulness of the procedure on examples, and considering
some extensions, we prove a limited form of completeness for properties
that hold in all rings.

1 Introduction

Various classes of mathematical problems, when expressed in formal logic, can
be solved automatically by suitable algorithms. This is often valuable, if only for
dealing with relatively uninteresting subtasks of larger formal proofs. Some al-
gorithms implement decision procedures for theories or logical fragments known
to be decidable, such as Cooper’s algorithm [7] for Presburger arithmetic [17].
Others are more heuristic in nature, e.g. automated induction proofs employ-
ing conjecture generalization [4], though many of these can be understood in a
general framework of proof planning [6].

Here we present a new algorithm for a useful class of elementary number-
theoretic properties. We will introduce and motivate the procedure by focusing
on the integers Z, though we will see later that the procedure is only complete
for properties that hold in the class of all rings. (Thus it is perhaps neither a
heuristic method nor a decision procedure, but rather a heuristic application
of a decision procedure outside its domain of completeness.) The formulas that
can be handled are expressed in a first-order language. The terms can be built
up using integer constants, negation, addition, subtraction and multiplication,
as well as exponentiation with constant nonnegative exponents. (For example,
2x2−y3(w−42z)9 is allowed, but not xy.) The formulas can be built from these
terms using the equality symbol as well as three ‘divisibility’ relationships, all of
which we consider as mere shorthands for other formulas using equality as the
only predicate:



– s | t, read ‘s divides t’ abbreviates ∃d. t = sd
– s ≡ t (mod u), read ‘s is congruent to t modulo u’, abbreviates ∃d.t−s = ud
– coprime(s, t), read ‘s and t are coprime’, abbreviates ∃x y. sx + ty = 1.

Over the integers, coprime(m,n) holds precisely if m and n have no common
factors besides±1. This equivalence is proved in many elementary number theory
texts [2, 8].

We attempt to explain any algebraic terminology as it is used, but a reader
may find it helpful to refer to an algebra textbook such as [21] for more on rings,
polynomials and ideals. It is worth noting that we tend to blur the distinction
between three distinct notions of ‘polynomial’: (i) a first-order formula in the
language of rings, (ii) a polynomial itself as an algebraic object, and (iii) a
polynomial function or its evaluation for a specific argument. When we want
to emphasize the polynomial as a function we tend to write the arguments (so
p(x) rather than just p), and when treating it as an element of the ring of
polynomials we tend to omit arguments, and perhaps emphasize that equations
are to be understood as polynomial identities. Sometimes, however, we write
the arguments just to emphasize which variables are involved in the polynomial.
Over an infinite base ring such as Z, two polynomials are equal as algebraic
objects (p = q) if and only if the associated functions are equal on all arguments
(∀x. p(x) = q(x)). By contrast, over a 2-element ring the polynomials x2 +x and
0 are considered distinct even though they determine the same function.

2 Example

We will explain the procedure by a typical example first, proving this ‘cancella-
tion’ property for congruences:

∀a n x y. ax ≡ ay (mod n) ∧ coprime(a, n) ⇒ x ≡ y (mod n)

The first step is to expand away the number-theoretic predicates:

∀a n x y. (∃d. ay − ax = nd)∧
(∃u v. au + nv = 1)
⇒ (∃e. y − x = ne)

and we then pull out the existential quantifiers in the antecedent:

∀a n x y d u v. ay − ax = nd ∧ au + nv = 1 ⇒ ∃e. y − x = ne

We prove this by proving something related, but in general stronger, namely that
over the ring Z[a, n, x, y, d, u, v] the polynomial y − x is contained in the ideal
generated by the polynomials in the antecedent (ay− ax− nd and au + nv− 1)
and the multiplier (n) for the existentially quantified variable:

(y − x) ∈ Id 〈ay − ax− nd, au + nv − 1, n〉



i.e. that there exist ‘cofactor’ polynomials p(a, n, x, y, d, u, v), q(a, n, x, y, d, u, v)
and r(a, n, x, y, d, u, v) such that the following is a polynomial identity:

y − x = (ay − ax− nd)p(a, n, x, y, d, u, v)+
(au + nv − 1)q(a, n, x, y, d, u, v)+
nr(a, n, x, y, d, u, v)

To see that the identity implies the original claim, note that if ay− ax = nd
and au + nv = 1, the identity reduces to y − x = nr(a, n, x, y, d, u, v), which
certainly implies ∃e. y − x = ne. In fact, it shows something stronger: there is a
polynomial expression for the witness e in terms of the other variables.

To prove the ideal membership goal, the most natural and straightforward
technique is to apply Buchberger’s algorithm [5] to find a Gröbner basis for
the ideal, and then show that y − x reduces to 0 w.r.t. this basis. A suitably
instrumented version of the algorithm can actually produce the explicit cofactor
polynomials, giving a simple ‘certificate’ of the result. For our example, one
natural possibility for the cofactors is:

p(a, n, x, y, d, u, v) = u

q(a, n, x, y, d, u, v) = x− y

r(a, n, x, y, d, u, v) = ud + vy − vx

We can then verify the polynomial identity simply by normalizing both sides in
some reasonable way.

3 Detailed procedure

We aim to reduce the initial problem to one or more sub-problems of the following
standard form, where the ei(x), ai(x) and pij(x) are polynomials in variables
x = x1, . . . , xl:

∀x.

m∧
i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · ·+ p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · ·+ pkn(x)yn = ak(x)

We need to test whether this formula holds over the integers, and we do it
by testing the following ideal membership problem in Z[x1, . . . , xl, u1, . . . , uk],
where the ui are fresh variables not occurring in the original problem:

(a1u1 + · · ·+ akuk)
∈ Id 〈e1, . . . , em, (p11u1 + · · ·+ pk1uk), . . . (p1nu1 + · · ·+ pknuk)〉

(Note that we are considering integer polynomials only in the ideal mem-
bership.) In the common special case k = 1, as in the example of the previous
section, we do not need to introduce the auxiliary variables, but can use simply:

a1 ∈ Id 〈e1, . . . , em, p11, . . . , p1n〉



Incompleteness over the integers

The standard problem above takes in the degenerate case (n = 0 and k =
0) of proving that a Diophantine equation has no solutions over the integers:
∀x.

∧m
i=1 ei(x) = 0 ⇒ ⊥. Since this is known to be undecidable [16] while ideal

membership over the integers is decidable [1] it follows that our test based on
ideal membership cannot be both sound and complete. And indeed, it is not
hard to find examples of incompleteness, where the existential assertion holds
over Z but the corresponding ideal membership does not. The following are all
variations on a theme that x2 + x is always even:

– ∀x. ∃a. x2 + x = 2a holds over the integers, yet (x2 + x) 6∈ Id 〈2〉.
– ∀x y. y = 1 ⇒ ∃a. x2 + x = (y + 1)a holds over the integers, yet (x2 + x) 6∈

Id 〈y − 1, y + 1〉
– ∀x y. ∃a b. x2 + x = (y + 1)a + (y − 1)b yet (x2 + x) 6∈ Id 〈y − 1, y + 1〉

Nevertheless, we will show (i) that our procedure is sound, and (ii) that it is
complete for properties that hold in all rings, not just in the integers.

Soundness

Consider first the special case k = 1, when we just test

a1 ∈ Id 〈e1, . . . , em, p11, . . . , p1n〉

If this ideal membership assertion holds, then concretely there are cofactor
polynomials f1, . . . , fm, g1, . . . , gn such that

e1f1 + · · ·+ emfm + p11g1 + · · ·+ p1ngn = a1

Evaluating when
∧m

i=1 ei(x) = 0 we get

p11(x)g1(x) + · · ·+ p1n(x)gn(x) = a1(x)

which does indeed show that there exist y1, . . . , yn such that

p11(x)yn + · · ·+ p1n(x)yn = a1(x)

and from the cofactors in the ideal membership, we obtain a simple and ex-
plicit proof of the original formula, with witnesses for the existentially quantified
variables that are polynomials in the other variables. In the general case (not
requiring k = 1), suppose that the ideal membership holds:

(a1u1 + · · ·+ akuk)
∈ Id 〈e1, . . . , em, (p11u1 + · · ·+ pk1uk), . . . , (p1nu1 + · · ·+ pknuk)〉

which means explicitly we have a polynomial identity of the form:

(a1u1 + · · ·+ akuk) =
e1(x)r1(x, u) + · · ·+ em(x)rm(x, u)+
(p11u1 + · · ·+ pk1uk)q1(x, u) + · · ·+ (p1nu1 + · · ·+ pknuk)qn(x, u)



with the qi and ri polynomials in Z[x1, . . . , xl, u1, . . . , uk]. Let us separate each
qi(x, u) into:

qi(x, u) = ci(x) + di(x, u)

where ci(x) does not involve any of the ui, and all monomials in di(x, u) contain
at least one of the ui. Similarly we decompose ri(x, u) into:

ri(x, u) = si(x, u) + ti(x, u)

where each monomial in si(x, u) has degree 1 in exactly one of the ui (e.g. 3u1

or x2
5u2) and each monomial in ti(x, u) either does not involve any ui, involves

more than one, or has a degree higher than 1 in one of them (e.g. 42, 7u1u2,
xu2

3). Now:

(a1u1 + · · ·+ akuk) =
e1(x)s1(x, u) + · · ·+ em(x)sm(x, u)+
e1(x)t1(x, u) + · · ·+ em(x)tm(x, u)+
(p11u1 + · · ·+ pk1uk)c1(x) + · · ·+ (p1nu1 + · · ·+ pknuk)cn(x)+
(p11u1 + · · ·+ pk1uk)d1(x, u) + · · ·+ (p1nu1 + · · ·+ pknuk)dn(x, u)

Note that all terms on the LHS have degree exactly 1 in just one of the ui.
Thus all terms on the right that are not of that form must cancel, leaving:

(a1u1 + · · ·+ akuk) =
e1(x)s1(x, u) + · · ·+ em(x)sm(x, u)+
(p11u1 + · · ·+ pk1uk)c1(x) + · · ·+ (p1nu1 + · · ·+ pknuk)cn(x)

Evaluating when
∧m

i=1 ei(x) = 0 gives:

(a1u1 + · · ·+ akuk) =
(p11u1 + · · ·+ pk1uk)c1(x) + · · ·+ (p1nu1 + · · ·+ pknuk)cn(x)

Successively setting ui = 1 and uj = 0 for all j 6= i, we find that for all
1 ≤ i ≤ k the following holds:

ai = c1(x)pi1(x) + · · ·+ cn(x)pin(x)

which does indeed show that there exist y1, . . . , yn such that

p11(x)y1 + · · ·+ p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · ·+ pkn(x)yn = ak(x)

and once again we obtain explicit polynomials yi = ci(x) as witnesses.



Completeness over all rings

We will now prove that the ideal membership assertion is equivalent to the
validity of the starting formula in all rings (as usual, we mean commutative
rings with 1). The reasoning in the previous section extends easily from Z to
an arbitrary ring, showing that the ideal membership implies the validity of the
starting formula in all rings. To establish the other direction, we first recall that
a Horn clause is a first-order formula that is either of the form:

∀v1, . . . , vn. P1[v1, . . . , vn] ∧ · · · ∧ Pn[v1, . . . , vn] ⇒ Q[v1, . . . , vn]

including the degenerate case

∀v1, . . . , vn. Q[v1, . . . , vn]

or
∀v1, . . . , vn. P1[v1, . . . , vn] ∧ · · · ∧ Pn[v1, . . . , vn] ⇒ ⊥

where Q[v1, . . . , vn] and all Pi[v1, . . . , vn] are atomic formulas. In particular, the
axioms for commutative rings with 1 are just (implicitly universally quantified)
equations, and are therefore Horn clauses. In fact, all truly algebraic axioms are
just universally quantified equations, and thus Horn clauses. For example, we can
add the infinite set of axioms xk = 0 ⇒ x = 0 for all k ≥ 1 to axiomatize the class
of reduced rings (rings without nilpotent elements). However neither the integral
domain axiom xy = 0 ⇒ x = 0∨y = 0 nor the field axiom ¬(x = 0) ⇒ x−1x = 1
is a Horn clause, and so the special results we will note for Horn clause theories
are not directly applicable, though analogous results can be derived for general
theories by considering canonical resolution proofs [14].

In order to state these special properties of Horn clause theories, it is more
convenient to consider first-order logic without special treatment of equality. By
a standard result [13], a formula is valid in first-order logic with equality iff
it is a general first-order consequence of the set of equivalence and congruence
properties of equality for the language at issue. In particular, a formula holds in
all rings iff it is a first-order consequence of the following axioms, all of which
are Horn clauses:

x + y = y + x
x + (y + z) = (x + y) + z
x + 0 = x
x + (−x) = 0
xy = yx
x(yz) = (xy)z
x1 = x
x(y + z) = xy + xz
x = x
x = y ⇒ y = x
x = y ∧ y = z ⇒ x = z
x = x′ ⇒ −x = −x′

x = x′ ∧ y = y′ ⇒ x + y = x′ + y′

x = x′ ∧ y = y′ ⇒ xy = x′y′



If Γ is a set of Horn clauses and A an atomic formula or ⊥, then Γ ` A if
and only if there is a ‘Prolog-style’ proof of A from Γ , i.e. a tree whose nodes are
atomic formulas, with A as the top node, such that for every node B in the tree,
there is a clause in the axiom set that can be instantiated so its conclusion is
B and its antecedent atoms are the nodes below B in the tree [10]. This special
canonical proof format for deductions from Horn clauses allows us to deduce
some interesting consequences. We start with a theorem due to Simmons [19, 12,
21]:

Theorem 1. Let p1(x), . . . , pr(x) and p(x) be polynomials with integer coeffi-
cients over the variables x = x1, . . . , xl. Then the following holds in all commu-
tative rings with 1:

∀x1, . . . , xl. p1(x) = 0 ∧ · · · ∧ pr(x) = 0 ⇒ p(x) = 0

iff the following ideal membership holds over Z[x]:

p ∈ Id 〈p1, . . . , pr〉

in other words, if there are cofactor polynomials q1(x), . . . , qr(x) with integer
coefficients such that the following is a polynomial identity:

p(x) = p1(x)q1(x) + · · ·+ pr(x)qr(x)

Proof. (Sketch.) The bottom-to-top direction is immediate, because given that
identity, the right-hand side collapses to zero when all the pi(x) are zero. Con-
versely, if the top result holds in all rings, then there is a Prolog-style proof
from the Horn clause axioms for rings and equality. By induction on this tree,
for every equation s(x) = t(x) deduced, s(x) − t(x) is in the ideal generated by
p1, . . . , pr. ut

The following is essentially Theorem 7.0.6 (“Horn-Herbrand theorem”) in
[10]. It states that for deduction from Horn clauses we can strengthen the usual
classical Herbrand theorem to one with the same ‘existence property’ as in in-
tuitionistic logic:

Theorem 2. Let T be a set of Horn clauses and Ai[y1, . . . , yn] atomic formulas
(in a language with at least one individual constant). Then

T |= ∃y1, . . . , yn. A1[y1, . . . , yn] ∧ · · · ∧Ak[y1, . . . , yn]

(where ‘Γ |= P ’ means ‘P is a first-order consequence of Γ ’) if and only if there
are ground terms t1, . . . , tn in the language such that:

T |= A1[t1, . . . , tn] ∧ · · · ∧Ak[t1, . . . , tn]

Proof. (Sketch.) The bottom-to-top direction is immediate. For the other direc-
tion, note that the top is equivalent to

T ∪ {(∀y1, . . . , yn. A1[y1, . . . , yn] ∧ · · · ∧Ak[y1, . . . , yn] ⇒ ⊥)} |= ⊥

The usual ‘Prolog style’ backchaining proof for Horn clauses can only apply
the extra clause once, and will give rise to the corresponding instantiation. ut



Thus we can deduce a corollary:

Theorem 3. The following formula:

∀x.

m∧
i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · ·+ p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · ·+ pkn(x)yn = ak(x)

holds in all rings iff there are terms q1(x),. . . ,qn(x) in the language of rings (i.e.
polynomials with integer coefficients) such that the following holds in all rings:

∀x.

m∧
i=1

ei(x) = 0 ⇒ p11(x)q1(x) + · · ·+ p1n(x)qn(x) = a1(x)∧
· · · ∧
pk1(x)q1(x) + · · ·+ pkn(x)qn(x) = ak(x)

Proof. We can replace the variables x by constants, and regard the ei(x) as new
(Horn) axioms. The result is then an immediate consequence of Theorem 2 and
the Horn nature of the ring and equality axioms. ut

This leads us to the following:

Theorem 4. The following formula:

∀x.

m∧
i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · ·+ p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · ·+ pkn(x)yn = ak(x)

holds in all rings iff there are terms q1(x),. . . ,qn(x) and r1j(x),. . . ,rmj(x) in
the language of rings (i.e. polynomials with integer coefficients) such that the
following is a polynomial identity for each j with 1 ≤ j ≤ k:

e1(x)r1j(x) + · · ·+ em(x)rmj(x) + pj1(x)q1(x) + · · ·+ pjn(x)qn(x) = aj(x)

Proof. Just combine the previous theorem and Theorem 1. ut

The case k = 1 takes a particularly simple form, which was used in the motivating
example of the previous section:

Theorem 5. The formula:

∀x.

m∧
i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p1(x)y1 + · · ·+ pn(x)yn = a(x)

holds in all rings iff the following ideal membership holds for integer polynomials:

a ∈ Id 〈e1, . . . , em, p1, . . . , pn〉

Proof. Just a special case of the previous theorem. ut



The conclusion of Theorem 4 for general k is not just a conjunction of inde-
pendent ideal membership assertions, because we need to constrain the cofactors
qi(x) to be the same for each one. However, by introducing auxiliary variables
u1, . . . , uk we will show:

Theorem 6. The following formula:

∀x.

m∧
i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · ·+ p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · ·+ pkn(x)yn = ak(x)

holds in all rings iff the following ideal membership assertion, where the ui are
fresh variables not occurring in the original problem, holds in Z[x1, . . . , xl, u1, . . . , uk]:

(a1u1 + · · ·+ akuk)
∈ Id 〈e1, . . . , em, (p11u1 + · · ·+ pk1uk), (p1nu1 + · · ·+ pknuk)〉

Proof. The bottom-to-top direction was dealt with above under ‘soundness’. For
the other direction, note that by Theorem 4, the initial assertion is equivalent to
the existence of q1(x),. . . ,qn(x) and r1j(x),. . . ,rmj(x) such that for all 1 ≤ j ≤ k:

e1(x)r1j(x) + · · ·+ em(x)rmj(x) + pj1(x)q1(x) + · · ·+ pjn(x)qn(x) = aj(x)

Multiplying this identity by uj and summing over 1 ≤ j ≤ k we obtain

a1u1 + · · ·+ akuk =
e1(x)(u1r11(x) + · · ·+ ukr1k(x)) + · · ·+
em(x)(u1rm1(x) + · · ·+ ukrmk(x))+
(p11u1 + · · ·+ pk1uk)q1(x) + · · ·+ (p1nu1 + · · ·+ pknuk)qn(x)

which verifies the claimed ideal membership. ut

4 Reduction to standard form

In reducing the initial problem to standard form, we expand the number-theoretic
predicates into existentially quantified equations. Note that the equivalence as-
sumed between ∃x y. sx + ty = 1 and coprime(s, t), in the usual sense of having
no non-unit common factors, does not hold over an arbitrary ring (though it
does in all principal ideal domains). For example, x + 1 and 2 are coprime over
the polynomial ring Z[x], but there are no integer polynomials p and q such that
(x + 1)p(x) + 2q(x) = 1. This means that even though the core reduction is
complete w.r.t. the class of all rings, the initial processing into standard form
relies on additional axioms. Moreover, we will sometimes want to exploit the
integral domain property st = 0 ⇔ s = 0 ∨ t = 0 (see below), which also fails in
an arbitrary ring (e.g. 2 · 3 = 0 in Z/6 but 2 6= 0 and 3 6= 0). This mismatch be-
tween a preprocessing step valid only in certain rings and a core procedure sound



and complete with respect to all rings gives our overall procedure a somewhat
heuristic flavour.

But once we accept the mappings of the basic concepts down to algebraic
statements, then we can translate a wide variety of assertions into the standard
form. In particular, any Horn clause built up from the basic number-theoretic
concepts works, e.g. our first example:

ax ≡ ay (mod n) ∧ coprime(a, n) ⇒ x ≡ y (mod n)

as well as numerous others such as

d|a ∧ d|b ⇒ d|(a− b)
a|b ⇒ (ca)|(cb)
x|y ∧ y|z ⇒ x|z
(xd)|a ⇒ d|a
a|b ∧ c|d ⇒ (ac)|(bd)
coprime(d, a) ∧ coprime(d, b) ⇒ coprime(d, ab)
coprime(d, ab) ⇒ coprime(d, a)
m|r ∧ n|r ∧ coprime(m,n) ⇒ (mn)|r
x ≡ x′ (mod n) ∧ y ≡ y′ (mod n) ⇒ xy ≡ x′y′ (mod n)
x ≡ y (mod m) ∧ n|m ⇒ x ≡ y (mod n)
coprime(a, b) ∧ x ≡ y (mod a) ∧ x ≡ y (mod b) ⇒ x ≡ y (mod (ab))
x2 ≡ y2 (mod (x + y))
x2 ≡ a (mod n) ∧ y2 ≡ a (mod n) ⇒ n|((x + y)(x− y))

It is also clear we can solve problems of the form P ⇔ Q by separating them
into P ⇒ Q and Q ⇒ P ; more generally we can place a problem in conjunctive
normal form and split up the conjuncts. For example, this deals with:

x ≡ y (mod n) ⇒ (coprime(n, x) ⇔ coprime(n, y))
x ≡ 0 (mod n) ⇔ n|x
x + a ≡ y + a (mod n) ⇔ x ≡ y (mod n)
coprime(xy, x2 + y2) ⇔ coprime(x, y)

Additional negated equations can easily be absorbed into the conclusion using
the integral domain property, passing from ¬(t = 0) ∧ P ⇒ ∃y. s(y) = 0 to
P ⇒ ∃y. s(y)t = 0, which allows us to handle things like:

¬(c = 0) ⇒ ((ca)|(cb) ⇔ a|b)

Perhaps more interesting is that we can even handle existential quantifiers
present in the original problem before the algebraic reduction, e.g.

coprime(a, n) ⇒ ∃x. ax ≡ b (mod n)

We will treat a somewhat more general version of that problem in detail below
(‘extension with GCDs’). Here we will run through the basic binary Chinese
Remainder Theorem, which also has an existential quantifier in the conclusion:

∀a b u v. coprime(a, b) ⇒ ∃x. x ≡ u (mod a) ∧ x ≡ v (mod b)



If we proceed as usual we obtain the goal:

∀a b u v w z. aw + bz = 1 ⇒ ∃x d e. u− x = da ∧ v − x = eb

Since we have multiple equations under the existential quantifier, the reduc-
tion to ideal membership introduces two new variables r and s:

(ur + vs) ∈ Id 〈aw + bz − 1, r + s, ar, bs〉

and this is true since we have

ur+vs = (aw+bz−1)(rv−ru)+(r+s)(v+buz−bvz)+(ar)(uw−vw)+(bs)(vz−uz)

5 Extensions

Although the basic procedure above is already quite powerful, we can extend its
scope by a number of perhaps ad hoc but quite natural refinements.

Introduction of GCDs

It is often convenient to express properties using greatest common divisors
(GCDs). One simple approach for handling gcd(a, b) is to replace it with a vari-
able g while adding as an additional hypothesis a characterizing theorem:

g | a ∧ g | b ∧ (∃u v. au + bv = g)

This does not characterize g uniquely because of the ambiguity over sign (or
multiplication by a unit in a general ring), but any divisibility relationships are
also invariant under such a change, so this is not a severe obstacle. For example,
consider proving a basic condition for the solvability of a congruence:

gcd(a, n) | b ⇒ ∃x. ax ≡ b (mod n)

After the initial augmentation we get:

g | a ∧ g | n ∧ (∃u v. au + nv = g) ∧ g | b ⇒ ∃x. ax ≡ b (mod n)

and the usual expansion, normalization and prenexing yields:

gq = a ∧ gr = n ∧ au + nv = g ∧ gs = b ⇒ ∃x y. ax + yn = b

giving the ideal membership question

b ∈ Id 〈gq − a, gr − n, au + nv − g, gs− b, a, n〉

which is true since

b = (gq − a)0 + (gr − n)0 + (au + nv − g)(−s) + (gs− b)(−1) + a(su) + n(sv)

The converse implication ∃x. ax ≡ b (mod n) ⇒ gcd(a, n) | b can be proved
in a similar way.



Elimination using linear equations

For a motivating example here, consider again the binary Chinese Remainder
Theorem:

∀a b u v. coprime(a, b) ⇒ ∃x. x ≡ u (mod a) ∧ x ≡ v (mod b)

If we proceed as before we obtain the goal:

∀a b u v w z. aw + bz = 1 ⇒ ∃x d e. u− x = da ∧ v − x = eb

Earlier, we introduced auxiliary variables to handle the double equation.
However, in this case it is fairly obvious that we can get an equivalent that just
eliminates x between the two equations:

∀a b u v w z. aw + bz = 1 ⇒ ∃d e. v − u = eb− da

This gives a reduction to the ideal membership goal:

(v − u) ∈ Id 〈aw + bz − 1, b,−a〉

which is true since

v − u = (aw + bz − 1)(u− v) + b(zv − zu) +−a(wu− wv)

This elimination does not help with the ternary Chinese Remainder Theorem,
whereas the method using auxiliary variables still works perfectly. However, on
a heuristic level it seems prudent always to eliminate existentially quantified
variables when there is a simple linear equation that allows us to do so.

Sequential treatment of equations

Our standard form requires each equation to be linear in the existentially quan-
tified variables. However, note that linearity is irrelevant to Theorem 2, and only
appears as a restriction in order to reduce witness-finding to ideal membership.
So we can consider more general means of finding witnesses by building in tech-
niques for nonlinearity. Elimination using linear equations, as in the previous
example, may enable us to get round this restriction in some cases. Otherwise,
we can at least find witnesses for those equations we can, and hope that they
will then in turn allow us to solve the overall problem. For example, consider:

gcd(a, b) 6= 0 ⇒ ∃a′ b′. a = a′ gcd(a, b) ∧ b = b′ gcd(a, b) ∧ coprime(a′, b′)

Proceeding in the usual way, eliminating number-theoretic concepts, we obtain:

a = gx∧b = gy∧g = ua+vb∧¬(g = 0) ⇒ ∃a′ b′ w z.a = a′g∧b = b′g∧a′w+b′z = 1

and as usual we eliminate the negated equational hypothesis using the integral
domain property:

a = gx∧b = gy∧g = ua+vb ⇒ ∃a′ b′ w z.ag = a′g2∧bg = b′g2∧a′wg+b′zg = g



This does not fall into our subset because of the nonlinearity: in a′wg we have
two existentially quantified variables a′ and w multiplied together. On the other
hand, we might heuristically try to find witnesses by considering the equations
one at a time. First

a = gx ∧ b = gy ∧ g = ua + vb ⇒ ∃a′. ag = a′g2

gives the ideal membership assertion

(ag) ∈ Id
〈
gx− a, gy − b, ua + vb− g, g2

〉
from whose solution

ag = (gx− a)(−g) + g2x

we extract the witness a′ = x. Similarly solving the next equation gives us b′ = y.
After inserting those, two equations in the problem are trivial and everything
reduces to:

a = gx ∧ b = gy ∧ g = ua + vb ⇒ ∃w z. xwg + yzg = g

giving the ideal membership

g ∈ Id 〈gx− a, gy − b, ua + vb− g, xg, yg〉

which is true since

g = (gx− a)(−u) + (gy − b)(−v) + (ua + vb− g)(−1) + (xg)u + (yg)v

and in particular we obtain the witnesses w = u, z = v.

6 Implementation

We have implemented a simple prototype of the routine, containing fewer than
100 lines of code, in the HOL Light theorem prover [9]; in version 2.20, it is
included in the standard release. The implemented version does not yet use the
extension to multiple equations using auxiliary variables, and some of the initial
normalization is a little ad hoc. But it does include all the extensions in the
previous section, and all the examples we have mentioned in this paper can
be proved automatically by it. Here is a typical interaction, proving a slight
generalization of the binary Chinese remainder theorem, not assuming that the
moduli are coprime: if a1 ≡ a2 (mod gcd(n1, n2)) then there is an x such that
x ≡ a1 (mod n1) and x ≡ a2 (mod n2). The user passes the desired result
as a parameter to INTEGER_RULE on the first line, and after some informative
messages, the required theorem is proved automatically:



# INTEGER_RULE
‘!a1 a2 n1 n2:int.

(a1 == a2) (mod (gcd(n1,n2)))
==> ?x. (x == a1) (mod n1) /\ (x == a2) (mod n2)‘;;

4 basis elements and 1 critical pairs
5 basis elements and 0 critical pairs
1 basis elements and 0 critical pairs
Translating certificate to HOL inferences
val it : thm =

|- !a1 a2 n1 n2.
(a1 == a2) (mod gcd (n1,n2))
==> (?x. (x == a1) (mod n1) /\ (x == a2) (mod n2))

We just use the normal Buchberger algorithm for polynomial ideals over Q,
implemented in HOL via int_ideal_cofactors. Properly speaking, we should
use a version of Buchberger’s algorithm tailored to the ring Z [11]. For example,
consider proving just x+y = 0∧x−y = 0 ⇒ x = 0. This does not hold in all rings
(e.g. set x = y = 1 in the integers modulo 2). The Gröbner basis algorithm over
the rationals, however, would appear to prove it giving coefficients of 1/2 in the
cofactors. However, testing ideal membership over Z is in general somewhat more
difficult [1], and we have found almost no cases where the distinction mattered
(most problems involve no explicit constants |c| > 1, which helps). Because the
actual HOL Light proof proceeds rigorously by logical inference, no false result
could be generated, but the proof construction step will fail if the ideal cofactors
contain rationals.

7 Conclusions and related work

We are not aware of any related work on automating problems involving both
multiplication and ‘divisibility’ concepts. Indeed, as we have noted, the problem
is in general unsolvable and our procedure, though remarkably effective, is a
combination of a preprocessing step tailored to the integers followed by a decision
procedure complete only over the class of rings in general.

There are established results for decidability of universal linear formulas in
the language of Presburger arithmetic including divisibility by non-constants [3,
15], though we are not aware of any actual implementation. Allowing a richer
quantifier structure soon leads to undecidability, even in the linear case; for
example multiplication can be defined in terms of divisibility, successor and 1
only [18], so even that theory is undecidable. In contrast, we allow more or less
unrestricted use of multiplication, which in principle leads to undecidability. But
the approach of seeking properties true in all rings seems to work very well.

We have found the procedure very useful in practice. Just as it is convenient
to have automated provers for routine facts of linear arithmetic and propositional
tautologies, being able to generate routine lemmas about divisibility with so little
effort is a considerable help in proofs. In fact, we were inspired to create this
procedure during the formal verification of an arithmetic algorithm, when we
found ourselves repeatedly proving trivialities about divisibility by hand. The
procedure has also been useful in some HOL proofs in pure mathematics, e.g.
quadratic reciprocity.



In all the examples we have tried, the ideal membership goals are easy: our
straightforward Gröbner basis algorithm works in a fraction of a second. It might
be interesting to try some large (even if artificial) problems, such as n-ary Chinese
remainder theorems for large n. Perhaps in such cases more care would be needed,
e.g. over the monomial order in the Gröbner basis algorithm. At present we order
the monomials by total degree then reverse lexicographic order of variables [21],
ordering the variables themselves alphabetically. Other optimizations might be
worthwhile, e.g. using reduced Gröbner bases or constructing the basis more
incrementally when dealing with equations sequentially.

Also, it would be more satisfactory to use a Gröbner basis algorithm tailored
to the integers. This would open up the possibility of dealing with a wider
range of problems involving specific numbers. It is even conceivable that the
approach could then be used to reason about machine arithmetic modulo 2n

in a useful way. Perhaps the results here could also be used in other situations
where restricted quantifier instantiation is needed, e.g. checking that universally
quantified polynomial equations are invariant over a program block.
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