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Abstract. We present a HOL formalization of the foundational parts of
Dijkstra’s classic monograph “A Discipline of Programming”. While em-
bedding programming language semantics in theorem provers is hardly
new, this particular undertaking raises several interesting questions, and
perhaps makes an interesting supplement to the monograph. Moreover,
the failure of HOL’s first order proof tactic to prove one ‘theorem’ indi-
cates a technical error in the book.

0 A Discipline of Programming

Dijkstra’s “A Discipline of Programming” [4] is widely, and we think rightly,
regarded as a classic. As he describes it, the original intention was to present
some algorithms, emphasizing the process of discovery leading to them rather
than giving them as cut-and-dried results. However, Dijkstra also wished to
present the programs using more mathematical rigour than is the norm. The
book emphasizes a view of a program as an abstract mathematical object, whose
runnability on a machine is, so to speak, a fortunate accident:

Historically speaking . . . the fact that programming languages could be
used as a vehicle for instructing existing automatic computers . . . has for
a long time been regarded as their most important property. . . . I view
a programming language primarily as a vehicle for the description of
(potentially highly sophisticated) abstract mechanisms. [pp. 8–9]

Dijkstra’s main technical innovation, covered in depth for the first time in
this book, is the use of predicate transformers to give the semantics of programs.
Predicate transformer semantics is quite convenient for formal correctness proofs,
since it has a direct relationship with the satisfaction of appropriate input-output
conditions. Moreover, it turned out [1] that one could introduce predicate trans-
formers not implementable as code, and use these as stepping stones in formal
program derivations, giving a natural formalization of informal top-down design
methods.

Dijkstra was one of the earliest and strongest advocates of formal correctness
proofs of programs rather than extensive testing. Nowadays this point of view is
increasingly having a practical impact, with major hardware companies pursuing
formal verification. But for a long time Dijkstra must have felt like a prophet
crying in the wilderness.



As I have now said many times and written in many places: program
testing can be quite effective for showing the presence of bugs, but is
hopelessly inadequate for showing their absence. [p. 20]

These points of view must lie behind flourishes such as:

None of the programs in this monograph, needless to say, has been tested
on a machine. [p. xvi]

In the light of this comment, it seemed interesting to check his proofs by
machine! While Dijkstra [7] attacked the anti-verification polemic of DeMillo,
Lipton, and Perlis [2] as a ‘political pamphlet from the Middle Ages’, he ac-
cepted that long tedious proofs are inadequate, and that ‘communication be-
tween mathematicians is an essential part of our culture’. Moreover Dijkstra [5]
elsewhere seems to oppose the idea of checking proofs by computer:

To the idea that proofs are so boring that we cannot rely upon them
unless they are checked mechanically I have philosophical objections,
for I consider mathematical proofs as a reflection of my understanding
and ‘understanding’ is something we cannot delegate, either to another
person or to a machine.

Formalizing programming languages inside theorem provers has become a
major research topic. Our work largely follows the classic paper by Gordon [9],
and doesn’t pretend to offer any major technical advances, but we think that in
combination with an analysis of Dijkstra’s book it raises a few interesting issues.

1 Formalization of States

A fundamental concept throughout the book, and imperative programming gen-
erally, is the notion of a state. Dijkstra devotes all of Chap. 2 to a gentle and
rather non-operational introduction to the concept. To fall short of his ideal
somewhat, we may briefly describe the state as a mapping that given a particu-
lar point during execution returns the values of all the program variables at that
point.

For the moment, we will not concern ourselves with how states are repre-
sented and how variables as rvalues or lvalues consult or modify the state, nor
how variables are declared or scoped – this is discussed much later, as in Dijk-
stra’s monograph where it is delayed until Chap. 10. For all the basic semantics
and program command definitions, we can think of the state as simply some
arbitrary type, and we normally use the HOL type variable :S.

In what follows, predicates over states, or equivalently sets of states, are used
incessantly.1 One often wants to say that for example ‘P and Q both hold in state

1 Dijkstra [p14] talks about predicates ‘corresponding’ to sets; in the HOL formaliza-
tion they actually are sets.



s’. This isn’t the same as P ∧Q, but rather P (s) ∧Q(s). It’s often attractive –
and in any case Dijkstra does it this way – to ‘hide’ the state in such assertions.
The easiest way, already used in many programming language embeddings, is to
define analogs of all the logical operations but lifted up to the level of predicates:

|- False = (λx. F)

|- True = (λx. T)

|- Not p = (λx. ¬p x)

|- p And q = (λx. p x ∧ q x)

|- p Or q = (λx. p x ∨ q x)

|- p Imp q = (λx. p x ⇒ q x)

|- (!!) q = (λx. ∀k. q k x)

|- (??) q = (λx. ∃k. q k x)

These correspond to Dijkstra’s F, T, non, and, or, ⇒, A and E respectively.
(It would be possible, and consistent with our later approach to operators in
the programming language, to overload the standard logical symbols for this
level too, but on balance that is probably too confusing.) We also use the fol-
lowing variant, which doesn’t give a function on states, but rather says that the
implication holds for all states:

|- p Implies q = ∀x p x ⇒ q x

Dijkstra doesn’t define this explicitly, but rather says sometimes in words ‘for
all states’. Some writers use a special triple-lined implication sign for this pur-
pose. Dijkstra and his followers also sometimes enclose an expression in square
brackets to indicate universal quantification over all free variables, though that
isn’t quite the same thing.

2 The Characterization of Semantics

Chapter 3 of Dijkstra’s book discusses the behaviour of ‘mechanisms’, viewing
them as systems that when started in an initial state, will end up in a final
state (or else fail to terminate). Dijkstra distinguishes between deterministic
and nondeterministic machines (in the former, ‘the happening that will take
place upon activation of the mechanism is fully determined by its initial state’
[p. 15]), but doesn’t describe mechanisms with great formality. There is not
much controversy over how to formalize this in HOL: essentially, a mechanism
is formalized as a relation between possible initial and final states.



Gordon [9] actually used relations Σ × Σ → bool. But as he pointed out,
this formalization can only indicate the nontermination of R on a state s by the
absence of any state s′ with R(s, s′). So while it allows us to consider nondeter-
ministic machines, there is no obvious way to indicate possible nontermination
rather than certain nontermination. Indeed, Grundy [10] shows how there is no
really satisfactory way of doing so based on this formalization. Instead, there-
fore, we consider relations Σ → Σ⊥ → bool, where Σ⊥ augments the state space
with an additional element denoting nontermination. We refer to Σ⊥ as the set
of outcomes; it is defined in HOL as a type:

(A)outcome = Loops | Terminates A

However, our formalization still has one peculiar feature that should be com-
mented on. It does not automatically follow that the relation associates each
state s with some outcome. How are we to interpret a relation where this is not
the case – some abnormal condition such as arithmetic overflow or division by
zero? We don’t do this here; as we shall see below, its interpretation in terms
of program correctness is quite the reverse! In any case we define a notion of
totality and include it as a condition in theorems where needed.

Dijkstra introduces in Chap. 3 the key notions of the weakest precondition
and weakest liberal precondition. The weakest precondition of a command2 c
with respect to a postcondition q is the set of initial states such that c, when
started in one of those states, is guaranteed to terminate in a state satisfying q.
The weakest liberal precondition is the set of initial states such that if the
command terminates it does so in a state satisfying q, but nontermination is
allowed as an alternative. The HOL formalization follows Dijkstra except that
we use a curried rather than paired wp function. This is mainly a matter of
taste, but as we will see shortly, our version makes sequencing of commands
correspond exactly to function composition of the weakest preconditions.

|- terminates c s = ¬c s Loops

|- wlp c q s = ∀s’. c s (Terminates s’) ⇒ q s’

|- wp c q s = terminates c s ∧ wlp c q s

A feature of non-total commands is that they trivially satisfy every pre/post-
condition relationship! Hesselink [11] regards this as a virtue, using them as an
‘miracles’. We, however, regard non-total commands as a blemish, and rule them
out where needed.

Dijkstra then gives informal derivations of some important conditions that
the predicate transformer must obey if it is to arise as wp c for some ‘mechanism’
c. In our formalization, the first of these only follows from an assumption of
totality, and is in fact equivalent to it:
2 Dijkstra unusually bows to the masses and refers to statements, but we will stick to

commands. Dijkstra admits himself [p. 25] that this is better.



|- total c = ∀s. ∃t. c s t

|- (wp c False = False) = total c

Dually, we have:

|- terminating c = ∀s. terminates c s

|- (wp c True = True) = terminating c

The other ‘healthiness conditions’ (2–4) are rendered in HOL very easily, and
the proofs are essentially automatic using a tactic for first order reasoning by
model elimination:

|- q Implies r ⇒ wp c q Implies wp c r

|- wp c q And wp c r = wp c (q And r)

|- wp c q Or wp c r Implies wp c (q Or r)

A stronger form of the last is predicated on an assumption of determinacy:

|- deterministic c = ∀s t1 t2. c s t1 ∧ c s t2 ⇒ (t1 = t2)

|- deterministic c ⇒ (wp c p Or wp c q = wp c (p Or q))

Conversely, it’s straightforward to recover (the relational semantics of) a
command c from wp c and wlp c. This topic is not discussed explicitly by Dijk-
stra, who keeps operational details informal, though Hesselink [11] does mention
it [p. 105]. Once again, the HOL proof is essentially automatic:

|- (c s Loops = ¬wp c True s) ∧
(c s (Terminates s’) = Not (wlp c (λx. ¬(x = s’))) s)

For a deterministic command, wp c alone suffices:

|- deterministic c

⇒ (c s (Terminates s’) = ¬wp c False s ∧ wp c (λx. x = s’) s) ∧
(c s Loops = ¬wp c True s)

Indeed, on the assumption of totality, determinism implies a simple relation
between wp c and wlp c; as Hesselink [11] mentions [p. 111] we can split this up
into two strong equivalences:

|- total c = ∀p. wp c p Implies Not (wlp c (Not p))

|- deterministic c = ∀p. Not (wlp c (Not p)) Implies wp c p

|- ∀c. total c ∧ deterministic c = ∀p. wp c p = Not (wlp c (Not p))



However, for nondeterministic commands, wp c alone isn’t enough – as with
a relation on Σ ×Σ, the weakest precondition semantics cannot distinguish be-
tween possible and certain nontermination. Dijkstra only introduces wlp c on
p. 21, some time after wp c, probably precisely because it is necessary to give a
satisfactory account in predicate transformer terms of the behaviour of a non-
deterministic machine. On pp. 21–2 Dijkstra enumerates 7 ‘mutually exclusive’
possibilities when a nondeterministic command c is started in a given state with
a postcondition r in mind:

– (a) c will terminate and establish r

– (b) c will terminate and establish r

– (c) c will not terminate
– (ab) c will terminate and may or may not satisfy r

– (ac) c may or may not terminate, but if it does will satisfy r

– (bc) c may or may not terminate, but if it does will satisfy r

– (abc) c may or may not terminate, and if it does may or may not satisfy r

Unfortunately, Dijkstra’s rendering of some of these in formal terms is wrong,
a fact we noticed only when one of HOL’s automatic tactics failed to prove 3 out
of the 15 mutual exclusions between the above. (In the precise terms of Dijk-
stra’s description, far from all being mutually exclusive, area (c) is contained in
areas (ac) and (bc).) Dijkstra uses Not (wp c True) to indicate possible non-
termination, but this wrongly includes the third case of certain nontermination.
There is a confusion here of levels of certainty: we need to be uncertain whether
we are certain that a command will not terminate. We can express this correctly
by saying we are not certain it will terminate, and not certain that it will fail to
terminate. Using instead Not (wp c True Or wlp c False), we find that all
the cases are indeed distinct:

|- total c

⇒ (wp c r And wp c (Not r) = False) ∧
(wp c r And wlp c False = False) ∧
....

and still enumerate all the possibilities:

|- total c

⇒ (wp c r Or

wp c (Not r) Or

wlp c False Or

wp c True And Not (wlp c r) And Not (wlp c (Not r)) Or

wlp c r And Not (wp c True Or wlp c False) Or

wlp c (Not r) And Not (wp c True Or wlp c False) Or

Not (wlp c r Or wlp c (Not r) Or wp c True)

= True)



That Dijkstra should make such an elementary error is perhaps indicative
of something slightly unintuitive about nondeterministic machines, despite his
confident pronouncements:

Eventually I came to regard nondeterminacy as the normal situation,
determinacy being reduced to a –not even very interesting – special case.
[p. xv]
Once the mathematical equipment needed for the design of nondeter-
ministic mechanisms achieving a purpose has been developed, the non-
deterministic machine is no longer frightening. On the contrary! We shall
learn to appreciate it, even as a valuable stepping stone in the design of
an ultimately fully deterministic mechanism. [p. 20]

3 The Semantic Characterization of a Programming
Language

Up to now we have considered a fairly abstract notion of mechanism; now we
specialize this by considering how to build them up from a fixed repertoire of
constructs. It must be made clear that Dijkstra defines the weakest preconditions
axiomatically, and often stresses the primacy of this view:

We take the point of view that we know the possible performance of the
mechanism S sufficiently well, provided that we can derive for any post-
condition R the corresponding weakest precondition wp(S, R), because
then we have captured what the mechanism can do for us; and in the
jargon the latter is called “its semantics”. [p. 17]

We sometimes have freedom to choose a particular operational definition that
yields the same notion of weakest precondition; see for example the discussion
of abort below. The commands or command-building constructs are all defined
as HOL constants. We don’t give any HOL version of the concrete syntax at
this stage, but we indicate the concrete syntax for the sake of familiarity, and to
allow easy comparison with Dijkstra’s book.

The simplest command is skip which ‘does nothing’, rather like a no-op in
machine codes. This is defined in HOL as the identity relation between initial
states and final outcomes.

|- Skip s z = (z = Terminates s)

It’s easy to see that this gives the identity as its weakest precondition:

|- ∀q. wp Skip q = q

More interesting is the abort command, which always fails to establish any
postcondition. Our operational definition is that it always loops indefinitely:

|- Abort s z = z = Loops



This gives the appropriate weakest precondition:

|- ∀q. wp Abort q = False

On the other hand, we have the following, for which Dijkstra offers no par-
ticular support:

|- ∀q. wlp Abort q = True

Obeying Dijkstra’s mantra that the weakest precondition is all we are inter-
ested in, we need not consider whether the operational definition is reasonable.
It has some support in the literature, e.g. in Hesselink [11] [p. 17]. But the name
rather suggests the immediate erroneous termination of the computation, and
this conception is borne out by some of Dijkstra’s later comments. For example
at the end of Chap. 7 [p. 50], he comments on a program’s “pleasant property
that attempted activation outside its domain will lead to immediate abortion”,
something that can hardly be called pleasant if abortion is an infinite loop. It’s
interesting that occasionally Dijkstra’s mask slips and operational thinking can
be glimpsed.

Next comes the assignment statement. This is written concretely using the
assignment symbol :=, but at this level, we abstract away from variables and so
on, treating an assignment simply as a functional state transition:

|- Assign f s z = (z = Terminates (f s))

and we find simply:

|- ∀f q. wp (Assign f) q = q o f

These are all the ‘atomic’ commands, and next come the ways in which
compound commands can be built up from other commands. The simplest and
most conventional is sequencing, where two commands are executed one after
the other. This is defined by an infix constant Seq, corresponding to a semicolon
in the concrete syntax:

|- (c1 Seq c2) s z =

c1 s Loops ∧ (z = Loops) ∨
(∃s’. c1 s (Terminates s’) ∧ c2 s’ z)

This operational definition is a bit involved, because we need to consider
separately whether the first command loops or not. However the weakest pre-
condition version could hardly be simpler. Two equivalent forms of it are:

|- ∀c1 c2 q. wp (c1 Seq c2) q = wp c1 (wp c2 q)

|- ∀c1 c2. wp (c1 Seq c2) = wp c1 o wp c2



Dijkstra’s other composite constructs involve ‘guarded commands’, and are
more complicated than the usual if-then-else and while-do forms. It’s clear he
considers them a significant innovation, for he starts Chap. 15 [p. 117] with
‘When the guarded commands had emerged and the word got around . . . ’. He
doesn’t really offer any detailed justification for not taking conventional forms,
and we can scarcely dare to ask for some when we read elsewhere [3]:

I do not know whether . . . it is a Swiss national trait to be “solid” first
and only “adventurous” as far as then allowed (and that is not very far).
Part of my talk dealt with guarded commands. Now, for anyone with
some understanding it is clear that as sequencing tools they are much
more attractive to use than the traditional while-do and if-then-else,
and if, fifteen years ago, someone had thought of them, while-do and if-
then-else would perhaps never have become established the way they are
now. While at other places – Albuquerque and Toronto, for instance –
it sufficed to show the difference, I felt this time more or less pressed to
quantify the improvement.

We start with the notion of a guarded command; this is simply a pair of a
predicate (the ‘guard’) and a command, written b −→ c, with the approximate
meaning ‘only execute the command c if the guard b is true’. However this doesn’t
tell us what to do if the guard is false, and in fact it depends on context, so we
can’t really consider these as independent commands (and Dijkstra doesn’t try
to). Rather, they are building-blocks for the alternative and repetitive constructs,
each of which takes a finite number of guarded commands. We take as the HOL
formalization of a such a set of guarded commands a list of predicate-command
pairs. Using lists means that first, there can be zero guarded commands; Dijkstra
doesn’t rule this out, but remarks [p. 34, p. 36] that in this case the if and
do constructs reduce to abort and skip respectively. Also, we are introducing
an order, but this seems quite reasonable at the level of abstract syntax: the
semantics is, as we shall see shortly, independent of this order.

Using lists means that many of the theorems require quantification over lists,
which we do both at the boolean and state level:

|- (EX P [] = F) ∧ (EX P (CONS h t) = P h ∨ EX P t)

|- (FORALL P [] = T) ∧ (FORALL P (CONS h t) = P h ∧ FORALL P t)

|- (Exists P [] = False) ∧ (Exists P (CONS h t) = P h Or Exists P t)

|- (Forall P [] = True) ∧ (Forall P (CONS h t) = P h And Forall P t)

Dijkstra instead uses an indexing function, so it could be argued that we
would stay closer to his treatment by doing the same, but then we would need
to include an indication of the domain, i.e. the number of guarded commands.

Dijkstra’s conditional statement is written as follows:



if g0 −→ c0

[] g1 −→ c1

· · ·
[] gn −→ cn

fi

The intuitive meaning is: if one of the guards is true, execute one of the
commands with a true guard; otherwise abort. This permits nondeterminism
since more than one guard can be true. The HOL translation of the intuitive
semantics is as follows:

|- If gcs s t =

EX (λ(g,c). g s ∧ c s t) gcs ∨
¬EX (λ(g,c). g s) gcs ∧ (t = Loops)

We can derive the weakest precondition effectively as Dijkstra gives it:

|- ∀gcs q.

wp (If gcs) q =

Exists (λ(g,c). g) gcs And Forall (λ(g,c). g Imp wp c q) gcs

The repetitive construct is constructed syntactically just like the conditional:

do g0 −→ c0

[] g1 −→ c1

· · ·
[] gn −→ cn

od

The intended semantics is: while some guard is true, execute one of the com-
mands with a true guard then repeat. If no guard is true, terminate immediately.
Dijkstra pointedly defines the semantics at the level of weakest preconditions in
terms of k-fold iteration. Although our definitions are at the operational level, we
try to follow his style, rather than use an inductive definition. First, we define a
relation between initial and final states meaning that this input-output relation
can hold after executing the loop a given number of times.

|- (Do_step 0 gcs s s’ = s’ = s) ∧
(Do_step (SUC k) gcs s s’ =

(∃s’’. If gcs s (Terminates s’’) ∧ Do_step k gcs s’’ s’))

This is then used to define the semantics of the do-loop as a whole. Note
that we need to ensure that looping is possible if the body can be executed
indefinitely.



|- (Do gcs s Loops =

(∃k s’. Do_step k gcs s s’ ∧
EX (λ(g,c). g s’ ∧ c s’ Loops) gcs) ∨

(∃ss. (ss 0 = s) ∧
(∀k. EX (λ(g,c). g (ss k) ∧

c (ss k) (Terminates (ss (SUC k))))

gcs))) ∧
(Do gcs s (Terminates s’) =

(∃k. Do_step k gcs s s’ ∧ ¬EX (λ(g,c). g s’) gcs))

This definition is rather messy, but it’s easy to get fixpoint characterizations,
which are useful later:

|- Do gcs s Loops =

EX (λ(g,c). g s ∧ c s Loops) gcs ∨
(∃s’. EX (λ(g,c). g s ∧ c s (Terminates s’)) gcs ∧

Do gcs s’ Loops)

|- Do gcs s (Terminates s’) =

¬EX (λ(g,c). g s) gcs ∧ (s’ = s) ∨
(∃s’’. EX (λ(g,c). g s ∧ c s (Terminates s’’)) gcs ∧

Do gcs s’’ (Terminates s’))

We can’t actually derive Dijkstra’s (axiomatic) weakest precondition seman-
tics for loops, which somewhat hampers our ability to copy his later proofs.
The reason is that his axiomatic definition is based on the assumption that if a
loop is guaranteed to terminate, there is some maximum number of iterations
after which it is guaranteed to terminate. This follows from an assumption of
‘bounded nondeterminacy’, i.e. that a command guaranteed to terminate can-
not have infinitely many possible successor states. Presumably Dijkstra hoped
to sneak this assumption past his readers till he was ready to discuss it.

It is in fact the case that all commands constructed so far have only bounded
nondeterminism, as Dijkstra proves in Chap. 9, where he finally discusses the
notion. Here he belatedly admits [p. 77] that in the presence of unbounded non-
determinacy, the ‘semantics of the repetitive construct would have been subject
to doubt, to say the least’. Actually, the idea of bounded nondeterminacy is only
meaningful from an operational point of view, and he proves a property of con-
tinuity that is the appropriate concept at the level of weakest preconditions. Of
course Dijkstra’s proof presupposes the semantics of do-loops, so while perfectly
sound from his axiomatic viewpoint, it is useless (circular) as a justification
of the semantics. To be fair to Dijkstra, he doesn’t explicitly claim otherwise,
though this has often been misunderstood [6]. This impression is heightened by
the fact that he remarks in this chapter [p. 77] that unbounded nondeterminism
cannot be implemented, but doesn’t give a serious discussion of why it isn’t a
useful abstraction any more than the assumption of unbounded execution time
or unlimited storage.



One thing we can easily prove without further assumptions is a fixpoint
equation for the weakest preconditions of do-loops:

|- wp (Do gcs) q =

q And Not (Exists (λ(g,c). g) gcs) Or wp (If gcs) (wp (Do gcs) q)

We could in fact prove that Do gcs is the least fixpoint, i.e. the smallest
(w.r.t. inclusion) solution of the above equation. It is customary in programming
language semantics to define the semantics of loops as least fixpoints. Dijkstra
seems to dislike this trend [p. xvii], and in some ways we agree that an iterative
version is more intuitive. However fixpoints are very nice to work with, and as
we shall see, the leastness is not normally needed.

4 Theorems about Commands

Dijkstra devotes Chap. 5 to proving some useful theorems about if and do com-
mands, that are more useful than the raw weakest preconditions for performing
correctness proofs of programs. First of all, we have the following theorem for
the conditional:

|- (∀s. (q Imp Exists (λ(g,c). g) gcs) s) ∧
(∀s. Forall (λ(g,c). q And g Imp wp c r) gcs s)

⇒ (∀s. (q Imp wp (If gcs) r) s)

This is more or less a direct translation of Dijkstra’s statement. In fact, we
can strengthen it to hold pointwise. (Dijkstra normally specifies ‘for all states’,
though occasionally forgets to even when it is clearly intended.)

|- (q Imp Exists (λ(g,c). g) gcs) And

Forall (λ(g,c). q And g Imp wp c r) gcs Implies

q Imp wp (If gcs) r

These are really versions of the traditional Hoare rule: if q implies that one
of the guards holds, and if q together with the ith guard is enough to ensure that
the ith command terminates in a state satisfying r, then the whole conditional
always leads from a state satisfying q to one satisfying r.

Next we have the theorem for the do-loop. Once again, this is close to the
traditional Hoare rule, with p acting as a loop invariant, and the assumption wp
(Do gcs) True included because we want to guarantee termination, not just
partial correctness.

|- p And Exists (λ(g,c). g) gcs Implies wp (If gcs) p

⇒ p And wp (Do gcs) True Implies

wp (Do gcs) (p And Not (Exists (λ(g,c). g) gcs))



Because our semantics of loops is different from Dijkstra’s, we can’t use his
proof, but the above is easy to prove by induction on the number of steps as
seen by Do step.

The above theorem simply includes an assumption of termination, with no
indication as to how it might be proved. In Chap. 6, this difficulty is addressed,
and versions of the above theorems are proved with the assumption of a non-
negative ‘variant’ that decreases with each iteration of the loop. We actually
generalize Dijkstra’s version somewhat by allowing any wellfounded ordering on
the state, not just those defined by measure functions:

|- WF (<<) ∧
(∀X. p And Exists (λ(g,c). g) gcs And (λs. s = X) Implies

wp (If gcs) (p And (λs. s << X)))

⇒ p Implies wp (Do gcs) (p And Not (Exists (λ(g,c). g) gcs))

where wellfoundedness is defined in the usual way:

|- WF (<<) = ∀P. (∃x. P x) ⇒ (∃x. P x ∧ (∀y. y << x ⇒ ¬P y))

We then specialize this general version to Dijkstra’s theorem based on an
integer (sic) measure function f . This just uses the fact that the order x<<y =def

0 < f(x) ∧ f(x) < f(y) is wellfounded, where f : Σ → Z. We use the auxiliary
notion:

|- wdec c t s = wp c (λs’. t(s’) < t(s)) s

and so derive the exact theorem he gives:

|- ∀t. p And Exists (λ(g,c). g) gcs Implies (λs. t s > & 0) ∧
FORALL (λ(g,c). p And g Implies wp c p And wdec c t) gcs

⇒ p Implies wp (Do gcs) (p And Not (Exists (λ(g,c). g) gcs))

There is an interesting feature of these theorems using a wellfounded ordering
or measure function. The proofs only rely on the fixpoint property of the do-loop,
not leastness or any equivalent property. Even if one dislikes inductive definitions,
the fixpoint is highly intuitive, for in the context of an ordinary while-loop it
just amounts to the admissibility of a one-step loop unrolling of ‘while e do
c’ to ‘if e then (c; while e do c) else skip’. That the above theorems –
the ones actually used in proving programs – should only depend on this seems
worth noting.

Note that the first theorem about do-loops, with a raw assumption of termi-
nation, doesn’t follow from the fixpoint property alone. For example

do x > 0 -> x := x + 1 od

has a fixpoint of guaranteed termination with x = 0, which plainly doesn’t
satisfy the constraints of that theorem. We actually prove this in HOL:



|- ¬(∀D gcs p.

(∀q. D q = q And Not (Exists (λ(g,c). g) gcs) Or

wp (If gcs) (D q)) ∧
p And Exists (λ(g,c). g) gcs Implies wp (If gcs) p

⇒ p And D True

Implies D (p And Not (Exists (λ(g,c). g) gcs)))

5 Program Variables

So far, we have used a completely indeterminate type for the state. Though
this is fine for the general theory, particular programs manipulate the state by
referencing and assigning to program variables. We now need to decide how
to represent program variables in the HOL formalization. Perhaps the simplest
approach, used by von Wright, Hekanaho, Luostarinen, and L̊angbacka [15] for
example, is to regard the state space as a large tuple, and implicitly abstract
expressions involving variables over this tuple. For example, if the state consists
of variables x, y and z, the expression x + y is translated by the parser into
λ(x, y, z).x+y, while the assignment z := x+y is translated into a state mapping
λ(x, y, z). (x, y, x + y). With this approach, operations on the data values can
be inherited directly from HOL’s theories and used in programs, and there is
no problem using arbitrary different types for the variables. Moreover, HOL’s
typechecking and type inference apply automatically. Some parsing and printing
support is needed to maintain these transformations, but it isn’t really difficult.
The main defect is, however, that variable names have no first-class existence.
From a HOL point of view λ(x, y, z). x + y is the same as λ(y, x, z). y + x; this
means that the intuitive meaning of programs is sensitive to the choice of bound
variable names. Compositionality is poor: one can only plug together program
fragments in the obvious way if they have exactly the same state, even with the
variables in the same order.

A simple alternative, originally used by Gordon [9], that gives variables a
first-class existence is to represent the state as a function from names to values. In
a simply typed system like HOL, however, this presents some problems because
the state function can have only a single type string -> X for some particular
X. If used in a straightforward way, this would require all the variables in a
program to have the same type, rather an irksome restriction. A first way of
avoiding this is to declare an enumerated type containing all the possible types
one might want to use. However even in simple imperative languages the range
of types is potentially unlimited, e.g. assuming one allows arrays of arrays of
arrays . . . . But there is a reasonable alternative, which we adopt: we can use
instead of an enumerated type a properly recursive type.3 This has already been
used [13, 14] for languages with rather richer type systems. The idea is that
we can allow in this recursive type certain ways of constructing new types, e.g.
‘array of’, ‘pointer to’ etc:

3 We are grateful to Tanja Vos for pointing out this possibility.



value = Bool bool

| Int int

| Array ((value)array)

| Pointer value

| ...

Then we still have an unlimited range of types constructed using this fixed
repertoire of constructors. At present, we only allow booleans, integers and ar-
rays. Arrays, with various operations as defined in Chap. 11 of Dijkstra’s book,
are represented as a pair consisting of a starting index and a list of elements, the
size and upper bound of the array being calculated from these. HOL’s nested
type definition package is able to define this type automatically. We can imme-
diately define appropriate type discrimination and destructor functions, e.g.

|- Intval (Int x) = x

We take the view that program expressions are functions from state to values.
This means that various transformations are required by the parser and printer.
Actually, we shift a lot of the transformations away from this level and down to
the logical level, by defining new operations on program expressions, e.g.

|- x + y = λs. Int (Intval (x s) + Intval (y s))

Thanks to operator overloading (available in the HOL Light version of HOL),
we can use the standard addition symbol here, and similarly for all the other
operators. (Excluding completely polymorphic ones such as equality; at present
we use a C-like operator ==.) This is done for addition by the following directive,
which tells HOL Light that instances of + with the appropriate type map down
to the constant value add.

overload_interface("+",

‘(value_add):((string->value)->value)->((string->value)->value)

->((string->value)->value)‘);;

Of course, this requires us to set up versions of every operation we want
to use. This seems acceptable since typical programming languages only offer a
fairly small range. However it stands in sharp contrast to von Wright’s approach,
where all the standard operators can be used ‘as is’. At present it should be
regarded as experimental, and we will see how it performs when we consider
more particular programs. We still need to perform parser transformations for
constants and variables. Variables are translated using the function that looks
up the appropriate name (a HOL string) in the state:

|- lookup x s = s x

Assignments are built up in several stages. The modification of the state s
caused by assignment of a single variable x the value a is as follows:



|- update (x,a) s = λy. if y = x then a else s(y)

However, following Dijkstra, we allow concurrent assignments of the form
x1,...,xn := E1,...,En, where the xi can be assumed distinct. To implement
this we need to evaluate all the Ei in the starting state, then iteratively apply
the function update. This is done by the following function:

|- Assignment asl s = ITLIST update (MAP (λ(x,e). (x,e s)) asl) s

This relies on two standard list combinators:

|- (MAP f [] = []) ∧ (MAP f (CONS h t) = CONS (f h) (MAP f t))

|- (ITLIST f [] b = b) ∧ (ITLIST f (CONS h t) b = f h (ITLIST f t b))

We still need to deal with the declarations of variables and scoping rules.
Dijkstra’s system, given in Chap. 10, is somewhat unusual. He uses blocks as
in Algol-like languages generally, but the usual distinctions between local and
global variables are ramified. First, blocks are not allowed to inherit global val-
ues implicitly: all global variables used in the body must be explicitly declared.
This means that as well as the usual declarations of local variables (which Di-
jkstra calls pri for private), blocks contain declarations of the imported ones.
These imported variables are further divided into initialized (glo for global) and
uninitialized (vir for virgin). Finally, all ‘variables’ are split into true variables
(var) and constants con. The latter might simply be considered non-program
variables, but we follow Dijkstra in considering them as program variables that
aren’t allowed to be assigned to. Hence it’s permissible for a variable to be treated
as a constant in an inner block and a variable outside. This means there are no
fewer than six different classes of variable declaration: privar, pricon, glovar,
glocon, virvar and vircon. Finally, all variables must be initialized before being
referenced, using a statement similar to an assignment but with a type decla-
ration. There are quite strong syntactic restrictions on variable initialization so
that this condition can easily be checked statically.

Formalizing the above looks quite intimidating. But we elect to treat most
of it extra-logically, as a series of static checks much like type checking that are
performed before the parser even accepts a program and parses it into its HOL
form. (And in fact at present we haven’t bothered to implement any static checks
at all, partly because it’s not very interesting, partly because we assume Dijk-
stra will manage to stick to his own rules.) This means that distinctions between
constants and variables, and between global and virgin variables, need have no
semantic interpretation. These variable declarations are all represented as sepa-
rate constants, to keep the representation of program texts invertible, but most
of them mean the same semantically. All of them are represented not as individ-
ual commands, but rather as functions building a command from a declaration
and a command, which is the remainder of the block, possibly including other
declarations. This makes it easy to restore the value of a temporarily-overridden
global variable. The main distinction is between imports of global names, which
are semantically null, e.g.



|- Glovar x c = c

|- Vircon x c = c

and introduction of local names, which temporarily hide outer parts of the state,
e.g.

|- (Privar x c s Loops = (∃a. c (update (x,a) s) Loops)) ∧
(Privar x c s (Terminates s’) =

(∃a s’’.

c (update (x,a) s) (Terminates s’’) ∧
(s’ = update (x,lookup x s) s’’)))

Here we express the undefinedness of the initial value a for the new variable
by making the semantics nondeterministic. In practice, this never matters since
one always has an initialization before the variable is referenced. Initializing as-
signments are represented by a constants semantically equivalent to the usual
assignment, but with an extra argument for the type; this is only retained for
invertibility. Finally, we have another semantically null tagging constant to in-
dicate the start of a block; without this we would have no means of deciding
whether a series of declarations belong to the same block or several nested ones.

6 Conclusions and Future Work

Our formalization has almost covered all the ‘foundational’ parts of Dijkstra’s
monograph. The gaps that remain are (i) the parser does not perform any static
checks like typechecking, making sure variables are initialized and that parallel
assignments do not include repeated variables, etc., and (ii) the theory of arrays
has not been fully developed. Once the latter at least is finished, we will be
ready to try verifying some of the examples given later in the book. Doing so
will reveal how successful the formalization we have chosen is in practice.
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