(* ========================================================================= *) (* Resolution. *) (* *) (* Copyright (c) 2003-2007, John Harrison. (See "LICENSE.txt" for details.) *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Barber's paradox is an example of why we need factoring. *) (* ------------------------------------------------------------------------- *) let barb = <<~(exists b. forall x. shaves(b,x) <=> ~shaves(x,x))>>;; START_INTERACTIVE;; simpcnf(skolemize(Not barb));; END_INTERACTIVE;; (* ------------------------------------------------------------------------- *) (* MGU of a set of literals. *) (* ------------------------------------------------------------------------- *) let rec mgu l env = match l with a::b::rest -> mgu (b::rest) (unify_literals env (a,b)) | _ -> solve env;; let unifiable p q = can (unify_literals undefined) (p,q);; (* ------------------------------------------------------------------------- *) (* Rename a clause. *) (* ------------------------------------------------------------------------- *) let rename pfx cls = let fvs = fv(list_disj cls) in let vvs = map (fun s -> Var(pfx^s)) fvs in map (subst(fpf fvs vvs)) cls;; (* ------------------------------------------------------------------------- *) (* General resolution rule, incorporating factoring as in Robinson's paper. *) (* ------------------------------------------------------------------------- *) let resolvents cl1 cl2 p acc = let ps2 = filter (unifiable(negate p)) cl2 in if ps2 = [] then acc else let ps1 = filter (fun q -> q <> p & unifiable p q) cl1 in let pairs = allpairs (fun s1 s2 -> s1,s2) (map (fun pl -> p::pl) (allsubsets ps1)) (allnonemptysubsets ps2) in itlist (fun (s1,s2) sof -> try image (subst (mgu (s1 @ map negate s2) undefined)) (union (subtract cl1 s1) (subtract cl2 s2)) :: sof with Failure _ -> sof) pairs acc;; let resolve_clauses cls1 cls2 = let cls1' = rename "x" cls1 and cls2' = rename "y" cls2 in itlist (resolvents cls1' cls2') cls1' [];; (* ------------------------------------------------------------------------- *) (* Basic "Argonne" loop. *) (* ------------------------------------------------------------------------- *) let rec resloop (used,unused) = match unused with [] -> failwith "No proof found" | cl::ros -> print_string(string_of_int(length used) ^ " used; "^ string_of_int(length unused) ^ " unused."); print_newline(); let used' = insert cl used in let news = itlist(@) (mapfilter (resolve_clauses cl) used') [] in if mem [] news then true else resloop (used',ros@news);; let pure_resolution fm = resloop([],simpcnf(specialize(pnf fm)));; let resolution fm = let fm1 = askolemize(Not(generalize fm)) in map (pure_resolution ** list_conj) (simpdnf fm1);; (* ------------------------------------------------------------------------- *) (* Simple example that works well. *) (* ------------------------------------------------------------------------- *) START_INTERACTIVE;; let davis_putnam_example = resolution < (F(y,z) /\ F(z,z))) /\ ((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;; END_INTERACTIVE;; (* ------------------------------------------------------------------------- *) (* Matching of terms and literals. *) (* ------------------------------------------------------------------------- *) let rec term_match env eqs = match eqs with [] -> env | (Fn(f,fa),Fn(g,ga))::oth when f = g & length fa = length ga -> term_match env (zip fa ga @ oth) | (Var x,t)::oth -> if not (defined env x) then term_match ((x |-> t) env) oth else if apply env x = t then term_match env oth else failwith "term_match" | _ -> failwith "term_match";; let rec match_literals env tmp = match tmp with Atom(R(p,a1)),Atom(R(q,a2)) | Not(Atom(R(p,a1))),Not(Atom(R(q,a2))) -> term_match env [Fn(p,a1),Fn(q,a2)] | _ -> failwith "match_literals";; (* ------------------------------------------------------------------------- *) (* Test for subsumption *) (* ------------------------------------------------------------------------- *) let subsumes_clause cls1 cls2 = let rec subsume env cls = match cls with [] -> env | l1::clt -> tryfind (fun l2 -> subsume (match_literals env (l1,l2)) clt) cls2 in can (subsume undefined) cls1;; (* ------------------------------------------------------------------------- *) (* With deletion of tautologies and bi-subsumption with "unused". *) (* ------------------------------------------------------------------------- *) let rec replace cl lis = match lis with [] -> [cl] | c::cls -> if subsumes_clause cl c then cl::cls else c::(replace cl cls);; let incorporate gcl cl unused = if trivial cl or exists (fun c -> subsumes_clause c cl) (gcl::unused) then unused else replace cl unused;; let rec resloop (used,unused) = match unused with [] -> failwith "No proof found" | cl::ros -> print_string(string_of_int(length used) ^ " used; "^ string_of_int(length unused) ^ " unused."); print_newline(); let used' = insert cl used in let news = itlist(@) (mapfilter (resolve_clauses cl) used') [] in if mem [] news then true else resloop(used',itlist (incorporate cl) news ros);; let pure_resolution fm = resloop([],simpcnf(specialize(pnf fm)));; let resolution fm = let fm1 = askolemize(Not(generalize fm)) in map (pure_resolution ** list_conj) (simpdnf fm1);; (* ------------------------------------------------------------------------- *) (* This is now a lot quicker. *) (* ------------------------------------------------------------------------- *) START_INTERACTIVE;; let davis_putnam_example = resolution < (F(y,z) /\ F(z,z))) /\ ((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;; END_INTERACTIVE;; (* ------------------------------------------------------------------------- *) (* Positive (P1) resolution. *) (* ------------------------------------------------------------------------- *) let presolve_clauses cls1 cls2 = if forall positive cls1 or forall positive cls2 then resolve_clauses cls1 cls2 else [];; let rec presloop (used,unused) = match unused with [] -> failwith "No proof found" | cl::ros -> print_string(string_of_int(length used) ^ " used; "^ string_of_int(length unused) ^ " unused."); print_newline(); let used' = insert cl used in let news = itlist(@) (mapfilter (presolve_clauses cl) used') [] in if mem [] news then true else presloop(used',itlist (incorporate cl) news ros);; let pure_presolution fm = presloop([],simpcnf(specialize(pnf fm)));; let presolution fm = let fm1 = askolemize(Not(generalize fm)) in map (pure_presolution ** list_conj) (simpdnf fm1);; (* ------------------------------------------------------------------------- *) (* Example: the (in)famous Los problem. *) (* ------------------------------------------------------------------------- *) START_INTERACTIVE;; let los = time presolution <<(forall x y z. P(x,y) ==> P(y,z) ==> P(x,z)) /\ (forall x y z. Q(x,y) ==> Q(y,z) ==> Q(x,z)) /\ (forall x y. Q(x,y) ==> Q(y,x)) /\ (forall x y. P(x,y) \/ Q(x,y)) ==> (forall x y. P(x,y)) \/ (forall x y. Q(x,y))>>;; (* ------------------------------------------------------------------------- *) (* Introduce a set-of-support restriction. *) (* ------------------------------------------------------------------------- *) let pure_resolution fm = resloop(partition (exists positive) (simpcnf(specialize(pnf fm))));; let resolution fm = let fm1 = askolemize(Not(generalize fm)) in map (pure_resolution ** list_conj) (simpdnf fm1);; (* ------------------------------------------------------------------------- *) (* The Pelletier examples again. *) (* ------------------------------------------------------------------------- *) (*********** let p1 = time presolution <

q <=> ~q ==> ~p>>;; let p2 = time presolution <<~ ~p <=> p>>;; let p3 = time presolution <<~(p ==> q) ==> q ==> p>>;; let p4 = time presolution <<~p ==> q <=> ~q ==> p>>;; let p5 = time presolution <<(p \/ q ==> p \/ r) ==> p \/ (q ==> r)>>;; let p6 = time presolution <

>;; let p7 = time presolution <

>;; let p8 = time presolution <<((p ==> q) ==> p) ==> p>>;; let p9 = time presolution <<(p \/ q) /\ (~p \/ q) /\ (p \/ ~q) ==> ~(~q \/ ~q)>>;; let p10 = time presolution <<(q ==> r) /\ (r ==> p /\ q) /\ (p ==> q /\ r) ==> (p <=> q)>>;; let p11 = time presolution <

p>>;; let p12 = time presolution <<((p <=> q) <=> r) <=> (p <=> (q <=> r))>>;; let p13 = time presolution <

(p \/ q) /\ (p \/ r)>>;; let p14 = time presolution <<(p <=> q) <=> (q \/ ~p) /\ (~q \/ p)>>;; let p15 = time presolution <

q <=> ~p \/ q>>;; let p16 = time presolution <<(p ==> q) \/ (q ==> p)>>;; let p17 = time presolution <

r) ==> s <=> (~p \/ q \/ s) /\ (~p \/ ~r \/ s)>>;; (* ------------------------------------------------------------------------- *) (* Monadic Predicate Logic. *) (* ------------------------------------------------------------------------- *) let p18 = time presolution < P(x)>>;; let p19 = time presolution < Q(z)) ==> P(x) ==> Q(x)>>;; let p20 = time presolution <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w)) ==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;; let p21 = time presolution <<(exists x. P ==> Q(x)) /\ (exists x. Q(x) ==> P) ==> (exists x. P <=> Q(x))>>;; let p22 = time presolution <<(forall x. P <=> Q(x)) ==> (P <=> (forall x. Q(x)))>>;; let p23 = time presolution <<(forall x. P \/ Q(x)) <=> P \/ (forall x. Q(x))>>;; let p24 = time presolution <<~(exists x. U(x) /\ Q(x)) /\ (forall x. P(x) ==> Q(x) \/ R(x)) /\ ~(exists x. P(x) ==> (exists x. Q(x))) /\ (forall x. Q(x) /\ R(x) ==> U(x)) ==> (exists x. P(x) /\ R(x))>>;; let p25 = time presolution <<(exists x. P(x)) /\ (forall x. U(x) ==> ~G(x) /\ R(x)) /\ (forall x. P(x) ==> G(x) /\ U(x)) /\ ((forall x. P(x) ==> Q(x)) \/ (exists x. Q(x) /\ P(x))) ==> (exists x. Q(x) /\ P(x))>>;; let p26 = time presolution <<((exists x. P(x)) <=> (exists x. Q(x))) /\ (forall x y. P(x) /\ Q(y) ==> (R(x) <=> U(y))) ==> ((forall x. P(x) ==> R(x)) <=> (forall x. Q(x) ==> U(x)))>>;; let p27 = time presolution <<(exists x. P(x) /\ ~Q(x)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. U(x) /\ V(x) ==> P(x)) /\ (exists x. R(x) /\ ~Q(x)) ==> (forall x. U(x) ==> ~R(x)) ==> (forall x. U(x) ==> ~V(x))>>;; let p28 = time presolution <<(forall x. P(x) ==> (forall x. Q(x))) /\ ((forall x. Q(x) \/ R(x)) ==> (exists x. Q(x) /\ R(x))) /\ ((exists x. R(x)) ==> (forall x. L(x) ==> M(x))) ==> (forall x. P(x) /\ L(x) ==> M(x))>>;; let p29 = time presolution <<(exists x. P(x)) /\ (exists x. G(x)) ==> ((forall x. P(x) ==> H(x)) /\ (forall x. G(x) ==> J(x)) <=> (forall x y. P(x) /\ G(y) ==> H(x) /\ J(y)))>>;; let p30 = time presolution <<(forall x. P(x) \/ G(x) ==> ~H(x)) /\ (forall x. (G(x) ==> ~U(x)) ==> P(x) /\ H(x)) ==> (forall x. U(x))>>;; let p31 = time presolution <<~(exists x. P(x) /\ (G(x) \/ H(x))) /\ (exists x. Q(x) /\ P(x)) /\ (forall x. ~H(x) ==> J(x)) ==> (exists x. Q(x) /\ J(x))>>;; let p32 = time presolution <<(forall x. P(x) /\ (G(x) \/ H(x)) ==> Q(x)) /\ (forall x. Q(x) /\ H(x) ==> J(x)) /\ (forall x. R(x) ==> H(x)) ==> (forall x. P(x) /\ R(x) ==> J(x))>>;; let p33 = time presolution <<(forall x. P(a) /\ (P(x) ==> P(b)) ==> P(c)) <=> (forall x. P(a) ==> P(x) \/ P(c)) /\ (P(a) ==> P(b) ==> P(c))>>;; let p34 = time presolution <<((exists x. forall y. P(x) <=> P(y)) <=> ((exists x. Q(x)) <=> (forall y. Q(y)))) <=> ((exists x. forall y. Q(x) <=> Q(y)) <=> ((exists x. P(x)) <=> (forall y. P(y))))>>;; let p35 = time presolution < (forall x y. P(x,y))>>;; (* ------------------------------------------------------------------------- *) (* Full predicate logic (without Identity and Functions) *) (* ------------------------------------------------------------------------- *) let p36 = time presolution <<(forall x. exists y. P(x,y)) /\ (forall x. exists y. G(x,y)) /\ (forall x y. P(x,y) \/ G(x,y) ==> (forall z. P(y,z) \/ G(y,z) ==> H(x,z))) ==> (forall x. exists y. H(x,y))>>;; let p37 = time presolution <<(forall z. exists w. forall x. exists y. (P(x,z) ==> P(y,w)) /\ P(y,z) /\ (P(y,w) ==> (exists u. Q(u,w)))) /\ (forall x z. ~P(x,z) ==> (exists y. Q(y,z))) /\ ((exists x y. Q(x,y)) ==> (forall x. R(x,x))) ==> (forall x. exists y. R(x,y))>>;; (*** This one seems too slow let p38 = time presolution <<(forall x. P(a) /\ (P(x) ==> (exists y. P(y) /\ R(x,y))) ==> (exists z w. P(z) /\ R(x,w) /\ R(w,z))) <=> (forall x. (~P(a) \/ P(x) \/ (exists z w. P(z) /\ R(x,w) /\ R(w,z))) /\ (~P(a) \/ ~(exists y. P(y) /\ R(x,y)) \/ (exists z w. P(z) /\ R(x,w) /\ R(w,z))))>>;; ***) let p39 = time presolution <<~(exists x. forall y. P(y,x) <=> ~P(y,y))>>;; let p40 = time presolution <<(exists y. forall x. P(x,y) <=> P(x,x)) ==> ~(forall x. exists y. forall z. P(z,y) <=> ~P(z,x))>>;; let p41 = time presolution <<(forall z. exists y. forall x. P(x,y) <=> P(x,z) /\ ~P(x,x)) ==> ~(exists z. forall x. P(x,z))>>;; (*** Also very slow let p42 = time presolution <<~(exists y. forall x. P(x,y) <=> ~(exists z. P(x,z) /\ P(z,x)))>>;; ***) (*** and this one too.. let p43 = time presolution <<(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) ==> forall x y. Q(x,y) <=> Q(y,x)>>;; ***) let p44 = time presolution <<(forall x. P(x) ==> (exists y. G(y) /\ H(x,y)) /\ (exists y. G(y) /\ ~H(x,y))) /\ (exists x. J(x) /\ (forall y. G(y) ==> H(x,y))) ==> (exists x. J(x) /\ ~P(x))>>;; (*** and this... let p45 = time presolution <<(forall x. P(x) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y)) ==> (forall y. G(y) /\ H(x,y) ==> R(y))) /\ ~(exists y. L(y) /\ R(y)) /\ (exists x. P(x) /\ (forall y. H(x,y) ==> L(y)) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y))) ==> (exists x. P(x) /\ ~(exists y. G(y) /\ H(x,y)))>>;; ***) (*** and this let p46 = time presolution <<(forall x. P(x) /\ (forall y. P(y) /\ H(y,x) ==> G(y)) ==> G(x)) /\ ((exists x. P(x) /\ ~G(x)) ==> (exists x. P(x) /\ ~G(x) /\ (forall y. P(y) /\ ~G(y) ==> J(x,y)))) /\ (forall x y. P(x) /\ P(y) /\ H(x,y) ==> ~J(y,x)) ==> (forall x. P(x) ==> G(x))>>;; ***) (* ------------------------------------------------------------------------- *) (* Example from Manthey and Bry, CADE-9. *) (* ------------------------------------------------------------------------- *) let p55 = time presolution < hates(x,y) /\ ~richer(x,y)) /\ (forall x. hates(agatha,x) ==> ~hates(charles,x)) /\ (hates(agatha,agatha) /\ hates(agatha,charles)) /\ (forall x. lives(x) /\ ~richer(x,agatha) ==> hates(butler,x)) /\ (forall x. hates(agatha,x) ==> hates(butler,x)) /\ (forall x. ~hates(x,agatha) \/ ~hates(x,butler) \/ ~hates(x,charles)) ==> killed(agatha,agatha) /\ ~killed(butler,agatha) /\ ~killed(charles,agatha)>>;; let p57 = time presolution < P(x,z)) ==> P(f(a,b),f(a,c))>>;; (* ------------------------------------------------------------------------- *) (* See info-hol, circa 1500. *) (* ------------------------------------------------------------------------- *) let p58 = time presolution < ((P(v) \/ R(w)) /\ (R(z) ==> Q(v))))>>;; let p59 = time presolution <<(forall x. P(x) <=> ~P(f(x))) ==> (exists x. P(x) /\ ~P(f(x)))>>;; let p60 = time presolution < exists y. (forall z. P(z,y) ==> P(z,f(x))) /\ P(x,y)>>;; (* ------------------------------------------------------------------------- *) (* From Gilmore's classic paper. *) (* ------------------------------------------------------------------------- *) let gilmore_1 = time presolution < G(y)) <=> F(x)) /\ ((F(y) ==> H(y)) <=> G(x)) /\ (((F(y) ==> G(y)) ==> H(y)) <=> H(x)) ==> F(z) /\ G(z) /\ H(z)>>;; (*** This is not valid, according to Gilmore let gilmore_2 = time presolution < F(z,y)) /\ (F(z,y) <=> F(z,z)) /\ (F(x,y) <=> F(y,x)) ==> (F(x,y) <=> F(x,z))>>;; ***) let gilmore_3 = time presolution < (G(y) ==> H(x))) ==> F(x,x)) /\ ((F(z,x) ==> G(x)) ==> H(z)) /\ F(x,y) ==> F(z,z)>>;; let gilmore_4 = time presolution < F(y,z) /\ F(z,z)) /\ (F(x,y) /\ G(x,y) ==> G(x,z) /\ G(z,z))>>;; let gilmore_5 = time presolution <<(forall x. exists y. F(x,y) \/ F(y,x)) /\ (forall x y. F(y,x) ==> F(y,y)) ==> exists z. F(z,z)>>;; let gilmore_6 = time presolution < G(v,u) /\ G(u,x)) ==> (exists u. forall v. F(u,y) ==> G(v,u) /\ G(u,y)) \/ (forall u v. exists w. G(v,u) \/ H(w,y,u) ==> G(u,w))>>;; let gilmore_7 = time presolution <<(forall x. K(x) ==> exists y. L(y) /\ (F(x,y) ==> G(x,y))) /\ (exists z. K(z) /\ forall u. L(u) ==> F(z,u)) ==> exists v w. K(v) /\ L(w) /\ G(v,w)>>;; let gilmore_8 = time presolution < (G(y) ==> (forall u. exists v. H(u,v,x)))) ==> F(x,x)) /\ ((F(z,x) ==> G(x)) ==> (forall u. exists v. H(u,v,z))) /\ F(x,y) ==> F(z,z)>>;; (*** This one still isn't easy! let gilmore_9 = time presolution < (forall u. exists v. F(x,u,v) /\ G(z,u) /\ ~H(x,z)) ==> (forall u. exists v. F(x,u,v) /\ G(y,u) /\ ~H(x,y))) /\ ((forall u. exists v. F(x,u,v) /\ G(y,u) /\ ~H(x,y)) ==> ~(forall u. exists v. F(x,u,v) /\ G(z,u) /\ ~H(x,z)) ==> (forall u. exists v. F(y,u,v) /\ G(y,u) /\ ~H(y,x)) /\ (forall u. exists v. F(z,u,v) /\ G(y,u) /\ ~H(z,y)))>>;; ***) (* ------------------------------------------------------------------------- *) (* Example from Davis-Putnam papers where Gilmore procedure is poor. *) (* ------------------------------------------------------------------------- *) let davis_putnam_example = time presolution < (F(y,z) /\ F(z,z))) /\ ((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;; ************) END_INTERACTIVE;; (* ------------------------------------------------------------------------- *) (* Example *) (* ------------------------------------------------------------------------- *) START_INTERACTIVE;; let gilmore_1 = resolution < G(y)) <=> F(x)) /\ ((F(y) ==> H(y)) <=> G(x)) /\ (((F(y) ==> G(y)) ==> H(y)) <=> H(x)) ==> F(z) /\ G(z) /\ H(z)>>;; (* ------------------------------------------------------------------------- *) (* Pelletiers yet again. *) (* ------------------------------------------------------------------------- *) (************ let p1 = time resolution <

q <=> ~q ==> ~p>>;; let p2 = time resolution <<~ ~p <=> p>>;; let p3 = time resolution <<~(p ==> q) ==> q ==> p>>;; let p4 = time resolution <<~p ==> q <=> ~q ==> p>>;; let p5 = time resolution <<(p \/ q ==> p \/ r) ==> p \/ (q ==> r)>>;; let p6 = time resolution <

>;; let p7 = time resolution <

>;; let p8 = time resolution <<((p ==> q) ==> p) ==> p>>;; let p9 = time resolution <<(p \/ q) /\ (~p \/ q) /\ (p \/ ~q) ==> ~(~q \/ ~q)>>;; let p10 = time resolution <<(q ==> r) /\ (r ==> p /\ q) /\ (p ==> q /\ r) ==> (p <=> q)>>;; let p11 = time resolution <

p>>;; let p12 = time resolution <<((p <=> q) <=> r) <=> (p <=> (q <=> r))>>;; let p13 = time resolution <

(p \/ q) /\ (p \/ r)>>;; let p14 = time resolution <<(p <=> q) <=> (q \/ ~p) /\ (~q \/ p)>>;; let p15 = time resolution <

q <=> ~p \/ q>>;; let p16 = time resolution <<(p ==> q) \/ (q ==> p)>>;; let p17 = time resolution <

r) ==> s <=> (~p \/ q \/ s) /\ (~p \/ ~r \/ s)>>;; (* ------------------------------------------------------------------------- *) (* Monadic Predicate Logic. *) (* ------------------------------------------------------------------------- *) let p18 = time resolution < P(x)>>;; let p19 = time resolution < Q(z)) ==> P(x) ==> Q(x)>>;; let p20 = time resolution <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w)) ==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;; let p21 = time resolution <<(exists x. P ==> Q(x)) /\ (exists x. Q(x) ==> P) ==> (exists x. P <=> Q(x))>>;; let p22 = time resolution <<(forall x. P <=> Q(x)) ==> (P <=> (forall x. Q(x)))>>;; let p23 = time resolution <<(forall x. P \/ Q(x)) <=> P \/ (forall x. Q(x))>>;; let p24 = time resolution <<~(exists x. U(x) /\ Q(x)) /\ (forall x. P(x) ==> Q(x) \/ R(x)) /\ ~(exists x. P(x) ==> (exists x. Q(x))) /\ (forall x. Q(x) /\ R(x) ==> U(x)) ==> (exists x. P(x) /\ R(x))>>;; let p25 = time resolution <<(exists x. P(x)) /\ (forall x. U(x) ==> ~G(x) /\ R(x)) /\ (forall x. P(x) ==> G(x) /\ U(x)) /\ ((forall x. P(x) ==> Q(x)) \/ (exists x. Q(x) /\ P(x))) ==> (exists x. Q(x) /\ P(x))>>;; let p26 = time resolution <<((exists x. P(x)) <=> (exists x. Q(x))) /\ (forall x y. P(x) /\ Q(y) ==> (R(x) <=> U(y))) ==> ((forall x. P(x) ==> R(x)) <=> (forall x. Q(x) ==> U(x)))>>;; let p27 = time resolution <<(exists x. P(x) /\ ~Q(x)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. U(x) /\ V(x) ==> P(x)) /\ (exists x. R(x) /\ ~Q(x)) ==> (forall x. U(x) ==> ~R(x)) ==> (forall x. U(x) ==> ~V(x))>>;; let p28 = time resolution <<(forall x. P(x) ==> (forall x. Q(x))) /\ ((forall x. Q(x) \/ R(x)) ==> (exists x. Q(x) /\ R(x))) /\ ((exists x. R(x)) ==> (forall x. L(x) ==> M(x))) ==> (forall x. P(x) /\ L(x) ==> M(x))>>;; let p29 = time resolution <<(exists x. P(x)) /\ (exists x. G(x)) ==> ((forall x. P(x) ==> H(x)) /\ (forall x. G(x) ==> J(x)) <=> (forall x y. P(x) /\ G(y) ==> H(x) /\ J(y)))>>;; let p30 = time resolution <<(forall x. P(x) \/ G(x) ==> ~H(x)) /\ (forall x. (G(x) ==> ~U(x)) ==> P(x) /\ H(x)) ==> (forall x. U(x))>>;; let p31 = time resolution <<~(exists x. P(x) /\ (G(x) \/ H(x))) /\ (exists x. Q(x) /\ P(x)) /\ (forall x. ~H(x) ==> J(x)) ==> (exists x. Q(x) /\ J(x))>>;; let p32 = time resolution <<(forall x. P(x) /\ (G(x) \/ H(x)) ==> Q(x)) /\ (forall x. Q(x) /\ H(x) ==> J(x)) /\ (forall x. R(x) ==> H(x)) ==> (forall x. P(x) /\ R(x) ==> J(x))>>;; let p33 = time resolution <<(forall x. P(a) /\ (P(x) ==> P(b)) ==> P(c)) <=> (forall x. P(a) ==> P(x) \/ P(c)) /\ (P(a) ==> P(b) ==> P(c))>>;; let p34 = time resolution <<((exists x. forall y. P(x) <=> P(y)) <=> ((exists x. Q(x)) <=> (forall y. Q(y)))) <=> ((exists x. forall y. Q(x) <=> Q(y)) <=> ((exists x. P(x)) <=> (forall y. P(y))))>>;; let p35 = time resolution < (forall x y. P(x,y))>>;; (* ------------------------------------------------------------------------- *) (* Full predicate logic (without Identity and Functions) *) (* ------------------------------------------------------------------------- *) let p36 = time resolution <<(forall x. exists y. P(x,y)) /\ (forall x. exists y. G(x,y)) /\ (forall x y. P(x,y) \/ G(x,y) ==> (forall z. P(y,z) \/ G(y,z) ==> H(x,z))) ==> (forall x. exists y. H(x,y))>>;; let p37 = time resolution <<(forall z. exists w. forall x. exists y. (P(x,z) ==> P(y,w)) /\ P(y,z) /\ (P(y,w) ==> (exists u. Q(u,w)))) /\ (forall x z. ~P(x,z) ==> (exists y. Q(y,z))) /\ ((exists x y. Q(x,y)) ==> (forall x. R(x,x))) ==> (forall x. exists y. R(x,y))>>;; (*** This one seems too slow let p38 = time resolution <<(forall x. P(a) /\ (P(x) ==> (exists y. P(y) /\ R(x,y))) ==> (exists z w. P(z) /\ R(x,w) /\ R(w,z))) <=> (forall x. (~P(a) \/ P(x) \/ (exists z w. P(z) /\ R(x,w) /\ R(w,z))) /\ (~P(a) \/ ~(exists y. P(y) /\ R(x,y)) \/ (exists z w. P(z) /\ R(x,w) /\ R(w,z))))>>;; ***) let p39 = time resolution <<~(exists x. forall y. P(y,x) <=> ~P(y,y))>>;; let p40 = time resolution <<(exists y. forall x. P(x,y) <=> P(x,x)) ==> ~(forall x. exists y. forall z. P(z,y) <=> ~P(z,x))>>;; let p41 = time resolution <<(forall z. exists y. forall x. P(x,y) <=> P(x,z) /\ ~P(x,x)) ==> ~(exists z. forall x. P(x,z))>>;; (*** Also very slow let p42 = time resolution <<~(exists y. forall x. P(x,y) <=> ~(exists z. P(x,z) /\ P(z,x)))>>;; ***) (*** and this one too.. let p43 = time resolution <<(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) ==> forall x y. Q(x,y) <=> Q(y,x)>>;; ***) let p44 = time resolution <<(forall x. P(x) ==> (exists y. G(y) /\ H(x,y)) /\ (exists y. G(y) /\ ~H(x,y))) /\ (exists x. J(x) /\ (forall y. G(y) ==> H(x,y))) ==> (exists x. J(x) /\ ~P(x))>>;; (*** and this... let p45 = time resolution <<(forall x. P(x) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y)) ==> (forall y. G(y) /\ H(x,y) ==> R(y))) /\ ~(exists y. L(y) /\ R(y)) /\ (exists x. P(x) /\ (forall y. H(x,y) ==> L(y)) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y))) ==> (exists x. P(x) /\ ~(exists y. G(y) /\ H(x,y)))>>;; ***) (*** and this let p46 = time resolution <<(forall x. P(x) /\ (forall y. P(y) /\ H(y,x) ==> G(y)) ==> G(x)) /\ ((exists x. P(x) /\ ~G(x)) ==> (exists x. P(x) /\ ~G(x) /\ (forall y. P(y) /\ ~G(y) ==> J(x,y)))) /\ (forall x y. P(x) /\ P(y) /\ H(x,y) ==> ~J(y,x)) ==> (forall x. P(x) ==> G(x))>>;; ***) (* ------------------------------------------------------------------------- *) (* Example from Manthey and Bry, CADE-9. *) (* ------------------------------------------------------------------------- *) let p55 = time resolution < hates(x,y) /\ ~richer(x,y)) /\ (forall x. hates(agatha,x) ==> ~hates(charles,x)) /\ (hates(agatha,agatha) /\ hates(agatha,charles)) /\ (forall x. lives(x) /\ ~richer(x,agatha) ==> hates(butler,x)) /\ (forall x. hates(agatha,x) ==> hates(butler,x)) /\ (forall x. ~hates(x,agatha) \/ ~hates(x,butler) \/ ~hates(x,charles)) ==> killed(agatha,agatha) /\ ~killed(butler,agatha) /\ ~killed(charles,agatha)>>;; let p57 = time resolution < P(x,z)) ==> P(f(a,b),f(a,c))>>;; (* ------------------------------------------------------------------------- *) (* See info-hol, circa 1500. *) (* ------------------------------------------------------------------------- *) let p58 = time resolution < ((P(v) \/ R(w)) /\ (R(z) ==> Q(v))))>>;; let p59 = time resolution <<(forall x. P(x) <=> ~P(f(x))) ==> (exists x. P(x) /\ ~P(f(x)))>>;; let p60 = time resolution < exists y. (forall z. P(z,y) ==> P(z,f(x))) /\ P(x,y)>>;; (* ------------------------------------------------------------------------- *) (* From Gilmore's classic paper. *) (* ------------------------------------------------------------------------- *) let gilmore_1 = time resolution < G(y)) <=> F(x)) /\ ((F(y) ==> H(y)) <=> G(x)) /\ (((F(y) ==> G(y)) ==> H(y)) <=> H(x)) ==> F(z) /\ G(z) /\ H(z)>>;; (*** This is not valid, according to Gilmore let gilmore_2 = time resolution < F(z,y)) /\ (F(z,y) <=> F(z,z)) /\ (F(x,y) <=> F(y,x)) ==> (F(x,y) <=> F(x,z))>>;; ***) let gilmore_3 = time resolution < (G(y) ==> H(x))) ==> F(x,x)) /\ ((F(z,x) ==> G(x)) ==> H(z)) /\ F(x,y) ==> F(z,z)>>;; let gilmore_4 = time resolution < F(y,z) /\ F(z,z)) /\ (F(x,y) /\ G(x,y) ==> G(x,z) /\ G(z,z))>>;; let gilmore_5 = time resolution <<(forall x. exists y. F(x,y) \/ F(y,x)) /\ (forall x y. F(y,x) ==> F(y,y)) ==> exists z. F(z,z)>>;; let gilmore_6 = time resolution < G(v,u) /\ G(u,x)) ==> (exists u. forall v. F(u,y) ==> G(v,u) /\ G(u,y)) \/ (forall u v. exists w. G(v,u) \/ H(w,y,u) ==> G(u,w))>>;; let gilmore_7 = time resolution <<(forall x. K(x) ==> exists y. L(y) /\ (F(x,y) ==> G(x,y))) /\ (exists z. K(z) /\ forall u. L(u) ==> F(z,u)) ==> exists v w. K(v) /\ L(w) /\ G(v,w)>>;; let gilmore_8 = time resolution < (G(y) ==> (forall u. exists v. H(u,v,x)))) ==> F(x,x)) /\ ((F(z,x) ==> G(x)) ==> (forall u. exists v. H(u,v,z))) /\ F(x,y) ==> F(z,z)>>;; (*** This one still isn't easy! let gilmore_9 = time resolution < (forall u. exists v. F(x,u,v) /\ G(z,u) /\ ~H(x,z)) ==> (forall u. exists v. F(x,u,v) /\ G(y,u) /\ ~H(x,y))) /\ ((forall u. exists v. F(x,u,v) /\ G(y,u) /\ ~H(x,y)) ==> ~(forall u. exists v. F(x,u,v) /\ G(z,u) /\ ~H(x,z)) ==> (forall u. exists v. F(y,u,v) /\ G(y,u) /\ ~H(y,x)) /\ (forall u. exists v. F(z,u,v) /\ G(y,u) /\ ~H(z,y)))>>;; ***) (* ------------------------------------------------------------------------- *) (* Example from Davis-Putnam papers where Gilmore procedure is poor. *) (* ------------------------------------------------------------------------- *) let davis_putnam_example = time resolution < (F(y,z) /\ F(z,z))) /\ ((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;; (* ------------------------------------------------------------------------- *) (* The (in)famous Los problem. *) (* ------------------------------------------------------------------------- *) let los = time resolution <<(forall x y z. P(x,y) ==> P(y,z) ==> P(x,z)) /\ (forall x y z. Q(x,y) ==> Q(y,z) ==> Q(x,z)) /\ (forall x y. Q(x,y) ==> Q(y,x)) /\ (forall x y. P(x,y) \/ Q(x,y)) ==> (forall x y. P(x,y)) \/ (forall x y. Q(x,y))>>;; **************) END_INTERACTIVE;;