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In this paper an attempt is made to explore the logical founda- 
tions of computer programming by use of techniques which 
were first applied in the study of geometry and have later 
been extended to other branches of mathematics. This in- 
volves the elucidation of sets of axioms and rules of inference 
which can be used in proofs of the properties of computer 
programs. Examples are given of such axioms and rules, and 
a formal proof of  a simple theorem is displayed. Finally, it is 
argued that important advantages, both theoretical and prac- 
tical, may follow f rom a pursuance of  these topics. 
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1. Introduction 
Computer  programming is an exact science in tha t  all 

the properties of a program and all the consequences of 
executing it  in any given environment can, in principle, 
be found out from the text of the program itself by means 
of purely deductive reasoning. Deductive reasoning in- 
volves the application of valid rules of inference to sets of 
valid axioms. I t  is therefore desirable and interesting to 
elucidate the axioms and rules of inference which underlie 
our reasoning about computer programs. The exact choice 
of axioms will to some extent depend on the choice of 
programming language. For illustrative purposes, this 
paper is confined to a very simple language, which is effec- 
tively a subset of all eurrent procedure-oriented languages. 

2. Computer Arithmetic  
The first requirement in valid reasoning about a pro- 

gram is to know the properties of the elementary operations 
which it  invokes, for example, addition and multiplication 
of integers. Unfortunately, in several respects computer 
arithmetic is not the same as the arithmetic familiar to 
mathematicians, and it  is necessary to exercise some care 
in selecting an appropriate set of axioms. For example, the 
axioms displayed in Table I are rather a small selection 
of axioms relevant to integers. From this incomplete set 

* Depurtment of Computer Science 

of axioms it is possible to deduce such simple theorems as: 

x = x + y X O  

y < r  ~ r  + y  X q = ( r -  y) + y  X (1 + q )  

The proof of the second of these is: 

A5 ( r - - y )  + y X ( l + q )  

= ( r - - y ) +  ( y X l + y X q )  

A9 = ( r - -  y) + (y + y  X q) 

A3 = ( ( r - - y ) + y ) + y X q  

A6 = r + y X q p rov idedy  < r 

The axioms A1 to A9 are, of course, true of the tradi- 
tional infinite set of integers in mathematics. However, 
they are also true of the finite sets of "integers" which are 
manipulated by computers provided that  they are con- 
fined to nonnegative numbers. Their  t ru th  is independent 
of the size of the set; furthermore, it is largely independent 
of the choice of technique applied in the event of "over- 
flow"; for example: 

(1) Strict interpretation: the result of an overflowing 
operation does not exist; when overflow occurs, the offend- 
ing program never completes its operation. Note that  in 
this case, the equalities of A1 to A9 are strict, in the sense 
that  both sides exist or fail to exist together. 

(2) Firm boundary:  the result of an overflowing opera- 
tion is taken as the maximum value represented. 

(3) Modulo arithmetic: the result of an overflowing 
operation is computed modulo the size of the set of integers 
represented. 

These three techniques are illustrated in Table I I  by 
addition and multiplication tables for a trivially small 
model in which 0, 1, 2, and 3 are the only integers repre- 
sented. 

I t  is interesting to note that  the different systems satisfy- 
ing axioms A1 to A9 may be rigorously distinguished from 
each other by choosing a particular one of a set of mutually 
exclusive supplementary axioms. For  example, infinite 
arithmetic satisfies the axiom: 

A10z ~ 3 x V y  (y < x), 

where all finite arithmetics satisfy: 

A10~ Vx (x < max) 

where "max" denotes the largest integer represented. 
Similarly, the three treatments of overflow may be 

distinguished by a choice of one of the following aMoms 
relating to the value of max + 1: 

A l l s  ~ 3 x  (x = max + 1) (strict interpretation) 

A l l ,  max + 1 = max (firm boundary)  

AllM max + 1 = 0 (modulo arithmetic) 

Having selected one of these axioms, it  is possible to 
use it  in deducing the properties of programs; however, 
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is that  they give no basis for a proof that  a program suc- 
cessfully terminates. Failure to terminate may be due to an 
infinite loop; or it  may be due to violation of an imple- 
mentation-defined limit, for example, the range of numeric 
operands, the size of storage, or an operating system time 
limit. Thus the notation "PIQ}R" should be interpreted 
"provided tha t  the program successfully terminates, the 
properties of its results are described by R." I t  is fairly 
easy to adapt the axioms so that  they cannot be used to 
predict the "results" of nonterminating programs; but  the 
actual use of the axioms would now depend on knowledge 
of many implementation-dependent features, for example, 
the size and speed of the computer, the range of numbers, 
and the choice of overflow technique. Apart  from proofs of 
the avoidance of infinite loops, it is probably better  to 
prove the "conditional" correctness of a program and rely 
on an implementation to give a warning if it has had to 

TABLE III 

Line 
number Formal proof Justification 

1 t r u e  ~ x  = x ~ y X 0 L e m m a l  
2 x = x - { - y X  O{r := x } x =  r . - t - y X O  DO 
3 x = r ~ y X O { q : =  O } x =  r . - b y X  q DO 
4 t r u e  {r :=  x} x = r ~ y X 0 D1 (1, 2) 
5 t r u e  {r := x; q := 0} x = r -t- y X q D2 (4, 3) 
6 x = r ~ y X  q A y ~ r ~ x  = 

( r - y )  ~ y X (1-t-q) L e m m a  2 
7 x = ( r - - y )  .-{- y X (1-t-q){r := r - y } x  = 

r + y X ( l + q )  DO 
8 x = r + y X ( l + q ) [ q  :=  1.-bq}x = 

r - t - y  X q DO 
9 x = ( r - - y )  -~ y X ( l + q ) { r  :=  r - - y ;  

q :=  1+q} x = r + y X q D2 (7, 8) 
10 x = r + y X q A y ~ r {r := r - - y ;  

, q : =  l + q }  x = r + y X q D1  (6, 9) 
11 x = r -b y X q [ w h i l e  y ~ r  d o  

(r := r - - y ;  q := 1--bq)} 
~- -Ty < r /~ x = r ~ y X q D3 (10) 

12 t r u e  {((r := x; q := 0); w h i l e  y ~ r d o  
(r := r - - y ;  q :=  l + q ) ) }  -~y ~ r A x  = 
r + y X q D2 (5,11) 

NOTES 
i. The left hand column is used to number the lines, and the 

right hand column to justify each line, by appealing to an axiom, 
a lemma or a rule of inference applied to one or two previous 
lines, indicated in brackets. Neither of these columns is part 
of the formal proof. For example, line 2 is an instance of the 
axiom of assignment (DO); line 12 is obtained from lines 5 and 11 
by application of the rule of composition (D2). 

2. Lemma 1 may be proved from axioms A7 and AS. 
3. Lemma 2 follows directly from the theorem proved in See. 2. 

abandon execution of the program as a result of violation 
of an implementation limit. 

Finally it is necessary to list some of the areas which have 
not been covered: for example, real arithmetic, bit and 
character manipulation, complex arithmetic, fractional 
arithmetic, arrays, records, overlay definition, files, input /  
output,  declarations, subroutines, parameters, recursion, 
and parallel execution. Even the characterization of integer 
arithmetic is far from complete. There does not appear to 
be any great difficulty in dealing with these points, pro- 
vided that  the programming language is kept simple. 
Areas which do present real difficulty are labels and jumps, 
pointers, and name parameters. Proofs of programs which 
made use of these features are likely to be elaborate, and 
it  is not surprising that  this should be reflected in the 
complexity of the underlying axioms. 

5. P r o o f s  o f  P r o g r a m  C o r r e c t n e s s  

The most important  property of a program is whether it  
accomplishes the intentions of its user. If  these intentions 
can be described rigorously by making assertions about the 
values of variables at  the end (or at  intermediate points) of 
the execution of the program, then the techniques described 
in this paper may be used to prove the correctness of the 
program, provided that  the implementation of the pro- 
gramming language conforms to the axioms and rules which 
have been used in the proof. This fact itself might also be 
established by deductive reasoning, using an axiom set 
which describes the logical properties of the hardware 
circuits. When the correctness of a program, its compiler, 
and the hardware of the computer have all been established 
with mathematical certainty, it  will be possible to place 
great reliance on the results of the program, and predict 
their properties with a confidence limited only by the 
reliability of the electronics. 

The practice of supplying proofs for nontrivial programs 
will not become widespread until considerably more power- 
ful proof techniques become available, and even then will 
not be easy. But  the practical advantages of program prov- 
ing will eventually outweigh the difficulties, in view of the 
increasing costs of programming error. At present, the 
method which a programmer uses to convince himself of 
the correctness of his program is to t ry  it  out in particular 
cases and to modify it  if the results produced do not cor- 
respond to his intentions. After he has found a reasonably 
wide variety of example cases on which the program seems 
to work, he believes that  it  will always work. The time 
spent in this program testing is often more than half the 
time spent on the entire programming project; and with a 
realistic costing of machine time, two thirds (or more) of 
the cost of the project is involved in removing errors during 
this phase. 

The cost of removing errors discovered after a program 
has gone into use is often greater, particularly in the case 
of items of computer manufacturer 's software for which a 
large part  of the expense is borne by the user. And finally, 
the cost of error in certain types of program may be almost 
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until S?" no longer interferes with them. In any case, the possibility of the pro- 
grammer  missing a particular case is quite low as long as he is careful and persists; 
this is not the case with earlier informal reasoning. 

4. Examples of Proof Outlines of Partial Correctness 
Example t .  A proof outline for a very simple program is given in (4.t). I t  is 

obvious tha t  the program "works",  as long as $t  and $2 are interference-free. 
This requires verification of 4 formulas: 

t. {pre(Sl) ^ pre(S2)} S2 {pre(S1)}: 
{ ( x = o  v x=2) ^ ( x = o  v x = 1 ) }  
{x=0) 
a w a i t  t rue then { x = O }  

x : =  x + 2  
{~=2} 

{x=2} 
{x=o v ~=2} 

2. {Qt a pre(S2)} $2 {Qt} (verification left to the reader) 
3. {pre (S2) ^ pre ($t)} S1 {pre (S2)} (left to the reader) 
4. {Q2 ^ pre(Sl)} St {{)2} (left to the reader) 

(4.t) {x=O} 
S : cobegin {x = O} 

{x=0 ~ x=2} 
Sl :  awa i t  t rue  then x : =  x + l  
{QI: x = l  v x=3} 

// 
{x ~ 0} 
{x=o v x= 1} 
$2: a w a i t  t rue  then x : =  x + 2  
{Q2:x=2 v x=3} 

coend 
{(x=t v x=3) ^ (x---2 v x=3)} 
{x=3} 

Suppose we replace $t  by the single assignment statement x : =  x +  1. Then the 
program does not follow convention (3.t). Hence the proof method could not be 
used to prove this program correct for execution in an environment where the 
grain of interleaving is finer than the assignment statement.  In fact, execution 
of the program (with this change) could result in the value 2 or 3 for x. 

Example g. Consider the more realistic problem of finding the first component 
x(k) of an array x(l  :M), if there is one, which is greater than zero. Program 
Findpos (4.2), given by  Rosen [t 7], does this using two parallel processes to check 
the even and odd subscripted array elements separately. In (4.3) we present a 
proof outline, except for the interference-free check. Note that  Findpos uses no 
a w a i t  statement.  
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fluential. Not only has Hoare shown us how to prove programs correct, his de- 
ductive system has shown us how to understand programs in an informal manner,  
and has given us insight into how to write bet ter  programs. 

The need for correctness proofs for parallel programs is even greater. When 
several processes can be executed in parallel, the results can depend on the un- 
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Abstract

In joint work with Peter O’Hearn and others, based on
early ideas of Burstall, we have developed an extension of
Hoare logic that permits reasoning about low-level impera-
tive programs that use shared mutable data structure.

The simple imperative programming language is ex-
tended with commands (not expressions) for accessing and
modifying shared structures, and for explicit allocation and
deallocation of storage. Assertions are extended by intro-
ducing a “separating conjunction” that asserts that its sub-
formulas hold for disjoint parts of the heap, and a closely
related “separating implication”. Coupled with the induc-
tive definition of predicates on abstract data structures, this
extension permits the concise and flexible description of
structures with controlled sharing.

In this paper, we will survey the current development of
this program logic, including extensions that permit unre-
stricted address arithmetic, dynamically allocated arrays,
and recursive procedures. We will also discuss promising
future directions.

1. Introduction

The use of shared mutable data structures, i.e., of struc-
tures where an updatable field can be referenced from more
than one point, is widespread in areas as diverse as systems
programming and artificial intelligence. Approaches to rea-
soning about this technique have been studied for three
decades, but the result has been methods that suffer from ei-
ther limited applicability or extreme complexity, and scale
poorly to programs of even moderate size. (A partial bibli-
ography is given in Reference [28].)

The problem faced by these approaches is that the cor-
rectness of a program that mutates data structures usually
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the Basic Research in Computer Science (http://www.brics.dk/)
Centre of the Danish National Research Foundation.

depends upon complex restrictions on the sharing in these
structures. To illustrate this problem, and our approach to
its solution, consider a simple example. The following pro-
gram performs an in-place reversal of a list:

j := nil ; while i != nil do

(k := [i + 1] ; [i + 1] := j ; j := i ; i := k).

(Here the notation [e] denotes the contents of the storage at
address e.)

The invariant of this program must state that i and j are
lists representing two sequences α and β such that the re-
flection of the initial value α0 can be obtained by concate-
nating the reflection of α onto β:

∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β,

where the predicate list α i is defined by induction on the
length of α:

list ε i
def= i = nil list(a·α) i

def= ∃j. i ↪→ a, j ∧ list α j

(and ↪→ can be read as “points to”).
Unfortunately, however, this is not enough, since the pro-

gram will malfunction if there is any sharing between the
lists i and j. To prohibit this we must extend the invariant to
assert that only nil is reachable from both i and j:

(∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β)

∧ (∀k. reach(i, k) ∧ reach(j, k) ⇒ k = nil),
(1)

where

reach(i, j) def= ∃n ≥ 0. reachn(i, j)

reach0(i, j)
def= i = j

reachn+1(i, j)
def= ∃a, k. i ↪→ a, k ∧ reachn(k, j).

Even worse, suppose there is some other list x, repre-
senting a sequence γ, that is not supposed to be affected by
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list α (i, j) ∗ j ↪→ − ⇒ (i = j ⇔ α = ε)

list α (i, j) ∗ list β (j,nil) ⇒ (i = j ⇔ α = ε).

On the other hand, sometimes i = j simply does not de-
termine emptiness. For example, a cyclic buffer containing
α in its active segment and β in its inactive segment is de-
scribed by list α (i, j) ∗ list β (j, i). Here, the buffer may be
either empty or full when i = j.

The use of list is illustrated by a proof outline for a com-
mand that deletes the first element of a list:

{list a·α (i, k)}
{∃j. i '→ a, j ∗ list α (j, k)}
{i '→ a ∗ ∃j. i + 1 '→ j ∗ list α (j, k)}
j := [i + 1] ;
{i '→ a ∗ i + 1 '→ j ∗ list α (j, k)}
dispose i ;
{i + 1 '→ j ∗ list α (j, k)}
dispose i + 1 ;

{list α (j, k)}
i := j

{list α (i, k)}

A more complex example is the body of the while command
in the list-reversing program in the Introduction; here the
final assertion is the invariant of the while command:

{∃α, β. (list α (i,nil) ∗ list β (j,nil))

∧ α†
0 = α†·β ∧ i )= nil}

{∃a, α, β. (list a·α (i,nil) ∗ list β (j,nil))

∧ α†
0 = (a·α)†·β}

{∃a, α, β, k. (i '→ a, k ∗ list α (k,nil) ∗ list β (j,nil))

∧ α†
0 = (a·α)†·β}

k := [i + 1] ;

{∃a, α, β. (i '→ a, k ∗ list α (k,nil) ∗ list β (j,nil))

∧ α†
0 = (a·α)†·β}

[i + 1] := j ;

{∃a, α, β. (i '→ a, j ∗ list α (k,nil) ∗ list β (j,nil))

∧ α†
0 = (a·α)†·β}

{∃a, α, β. (list α (k,nil) ∗ list a·β (i,nil))

∧ α†
0 = α†·a·β}

{∃α, β. (list α (k,nil) ∗ list β (i,nil)) ∧ α†
0 = α†·β}

j := i ; i := k

{∃α, β. (list α (i,nil) ∗ list β (j,nil)) ∧ α†
0 = α†·β}.

A more elaborate representation of sequences is
provided by doubly-linked lists. Here, we write
dlist α (i, i′, j, j′) when α is represented by a doubly-linked
list segment with a forward linkage (via second fields) from
i to j, and a backward linkage (via third fields) from j′ to i′:

i′

◦
α1i

◦
◦
α2

◦
j

αn j′
· · ·
· · ·

The inductive definition is

dlist ε (i, i′, j, j′) def= emp ∧ i = j ∧ i′ = j′

dlist a·α (i, i′, k, k′) def= ∃j. i '→ a, j, i′ ∗ dlist α (j, i, k, k′),

from which one can prove the basic properties:

dlist a (i, i′, j, j′) ⇔ i '→ a, j, i′ ∧ i = j′

dlist α·β (i, i′, k, k′) ⇔
∃j, j′. dlist α (i, i′, j, j′) ∗ dlist β (j, j′, k, k′)

dlist α·b (i, i′, k, k′) ⇔
∃j′. dlist α (i, i′, k′, j′) ∗ k′ '→ b, k, j′.

The utility of unrestricted address arithmetic is illus-
trated by a variation of the doubly-linked list, in which the
second and third fields of each record are replaced by a sin-
gle field giving the exclusive or of their contents. If we
write xlist α (i, i′, j, j′) when α is represented by such an xor-
linked list:

⊕
i′

◦
α1i

⊕
◦
◦
α2

⊕
◦

j

αn j′
· · ·
· · ·

we can define this predicate by

xlist ε (i, i′, j, j′) def= emp ∧ i = j ∧ i′ = j′

xlist a·α (i, i′, k, k′) def=

∃j. i '→ a, (j ⊕ i′) ∗ xlist α (j, i, k, k′).

The basic properties are analogous to those for dlist [24].
Finally, we mention an idea of Richard Bornat’s [1], that

instead of denoting a sequence of data items, a list (or other
structure) should denote the sequence (or other collection)
of addresses at which the data items are stored. In the case
of simply linked lists, we write listN σ (i, j) when there is
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Ribbon proofs are...
‣ an alternative to proof 

outlines

‣ applicable to separation 
logic (and descendants)

‣ readable, flexible, and 
attractive

‣ less repetitive than proof 
outlines, so more scalable
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[y]:=1

y 7! 1
[z]:=1

z 7! 1

(b) A ribbon proof

Fig. 1. A simple example

The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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x 7! 1 ⇤ z 7! 0

-

2
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x 7! 1 ⇤ y 7! 0 ⇤ z 7! 0

 
�
y 7! 0

 

[y]:=1;
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y 7! 1
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75-
small axiom
for heap update

�
x 7! 1 ⇤ y 7! 1 ⇤ z 7! 0

 

Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare
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ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare
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little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.
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framed assertions (which must not mention variables written by the instruction) pass
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
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effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare
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ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare

2 John Wickerson, Mike Dodds, and Matthew Parkinson

1
�
x 7! 0 ⇤ y 7! 0 ⇤ z 7! 0

 

2 [x]:=1;

3
�
x 7! 1 ⇤ y 7! 0 ⇤ z 7! 0

 

4 [y]:=1;

5
�
x 7! 1 ⇤ y 7! 1 ⇤ z 7! 0

 

6 [z]:=1;

7
�
x 7! 1 ⇤ y 7! 1 ⇤ z 7! 1

 

(a) A proof outline

x 7! 0 y 7! 0 z 7! 0

[x]:=1

x 7! 1
[y]:=1

y 7! 1
[z]:=1

z 7! 1

(b) A ribbon proof

Fig. 1. A simple example
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
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framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
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gram by simply sliding the left-hand column downward and the right-hand column up-
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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The crux of the problem is what might be called resource locality. Separation
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
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A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
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leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.
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tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
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The crux of the problem is what might be called resource locality. Separation
logic [18, 27] specialises in this second dimension of locality. One can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state
containing only the resources (i.e. memory cells) that it needs, and immediately deduce
its effect on the entire state using the frame rule. The proof outline below depicts this
mechanism for line 4 of Fig. 1a.
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Showing such detail throughout a proof outline would clarify the effect of each instruc-
tion, but escalate the repetition. Cleverer use of the frame rule can help, but only a
little – see Sect. 6. Essentially, we need a new proof representation to harness the new
technology separation logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared, and each instruction’s
effect is now clear: it affects exactly those assertions directly above and below it, while
framed assertions (which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we are still invoking the frame rule at
each instruction, but crucially in a ribbon proof, such invocations are implicit and do
not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assign-
ments update different memory cells. They are thus independent, and amenable to re-
ordering or parallelisation. One can imagine obtaining a proof of the transformed pro-
gram by simply sliding the left-hand column downward and the right-hand column up-
ward. The corresponding proof outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instruc-
tions, our system produces geometric objects that can be navigated and modified by
leveraging human visual intuition, and whose basic steps correspond exactly to sepa-
ration logic’s small axioms. A ribbon proof de-emphasises the program’s shallow syn-
tax, such as the order of independent instructions, and illuminates instead the deeper
structure, such as the flow of resources through the code. Proof outlines focus on Hoare
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Example: in-place list reversal
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y := nil;
while (x != nil) {
   z := [x+1];
   [x+1] := y;
   y := x;
   x := z;
}
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while (x != nil) {
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y := nil;
while (x != nil) {
   z := [x+1];
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Ribbon Proofs for Separation Logic 3

triples {p} c {q}, and often neglect the details of entailments between assertions, p ) q,
even though such entailments often encode important insights about the program being
verified. Ribbon proofs treat both types of judgement equally, within the same system.

There are many recent extensions of separation logic (e.g. [7–11, 14, 17, 20, 23, 31])
to which our ribbon proof technology can usefully be applied; indeed, ribbons have
already aided the development of a separation logic for relaxed memory [5]. All of
these program logics are based on increasingly complex reasoning principles, of which
clear explanations are increasingly vital. We propose ribbon proofs as the ideal device
for providing them.

Comparison with Bean’s system Bean [2] introduced ribbon proofs as an extension
of Fitch’s box proofs [12] to handle the propositional fragment of bunched implications
logic (BI) [24]. BI being the basis of separation logic’s assertion language [18], his sys-
tem can be used to prove entailments between propositional separation logic assertions.
Our system expands Bean’s into a full-blown program logic by adding support for com-
mands and existentially-quantified variables. It is further distinguished by its treatment
of ribbon proofs as graphs, which gives our diagrams an appealing degree of flexibility.

Contributions and paper outline We describe a diagrammatic proof system that en-
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y := nil;
while (x != nil) {
   z := [x+1];
   [x+1] := y;
   y := x;
   x := z;
}
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triples {p} c {q}, and often neglect the details of entailments between assertions, p ) q,
even though such entailments often encode important insights about the program being
verified. Ribbon proofs treat both types of judgement equally, within the same system.

There are many recent extensions of separation logic (e.g. [7–11, 14, 17, 20, 23, 31])
to which our ribbon proof technology can usefully be applied; indeed, ribbons have
already aided the development of a separation logic for relaxed memory [5]. All of
these program logics are based on increasingly complex reasoning principles, of which
clear explanations are increasingly vital. We propose ribbon proofs as the ideal device
for providing them.

Comparison with Bean’s system Bean [2] introduced ribbon proofs as an extension
of Fitch’s box proofs [12] to handle the propositional fragment of bunched implications
logic (BI) [24]. BI being the basis of separation logic’s assertion language [18], his sys-
tem can be used to prove entailments between propositional separation logic assertions.
Our system expands Bean’s into a full-blown program logic by adding support for com-
mands and existentially-quantified variables. It is further distinguished by its treatment
of ribbon proofs as graphs, which gives our diagrams an appealing degree of flexibility.

Contributions and paper outline We describe a diagrammatic proof system that en-
ables a natural presentation of separation logic proofs. We prove it sound and complete
with respect to separation logic (Sect. 3). We also give an alternative, graphical formal-
isation (Sect. 4), which is sound in the absence of the frame rule’s side-condition.

We describe a prototype tool (Sect. 5) for mechanically checking ribbon proofs
with the Isabelle proof assistant. Given a small proof script for each basic step, our tool
assembles a script that verifies the entire diagram. Such tediums as the associativity and
commutativity of ⇤ are handled in the graphical structure, leaving the user to focus on
the interesting parts of the proof.

We discuss (Sect. 6) extensions to handle concurrent separation logic, possible ap-
plications to parallelisation, and connections to proof nets, bigraphs and string dia-
grams.

We begin by introducing our ribbon proof system with the aid of an example. Fur-
ther examples can be found in Wickerson’s PhD dissertation [33]. Of those, our ribbon
proof of the Version 7 Unix memory manager demonstrates that our system can present
readable proofs of more complex programs than those considered in this paper.

2 An example

Let us consider a simple program for in-place reversal of a linked list.
Figure 3a presents a proof of this program as a proof outline (adapted from [27]).

For a binary relation r, we write x ṙ y for x r y ^ emp, where emp describes an empty
heap. We write ✏ for the empty sequence, (�)† for sequence reversal, and · for cons
and concatenation. We define the list ↵ x predicate by induction on the length of the
sequence ↵:
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0 y

while (x != nil) {
   z := [x+1];
   [x+1] := y;
   y := x;
   x := z;
}

y := nil;         
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isation (Sect. 4), which is sound in the absence of the frame rule’s side-condition.

We describe a prototype tool (Sect. 5) for mechanically checking ribbon proofs
with the Isabelle proof assistant. Given a small proof script for each basic step, our tool
assembles a script that verifies the entire diagram. Such tediums as the associativity and
commutativity of ⇤ are handled in the graphical structure, leaving the user to focus on
the interesting parts of the proof.

We discuss (Sect. 6) extensions to handle concurrent separation logic, possible ap-
plications to parallelisation, and connections to proof nets, bigraphs and string dia-
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We begin by introducing our ribbon proof system with the aid of an example. Fur-
ther examples can be found in Wickerson’s PhD dissertation [33]. Of those, our ribbon
proof of the Version 7 Unix memory manager demonstrates that our system can present
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2 An example

Let us consider a simple program for in-place reversal of a linked list.
Figure 3a presents a proof of this program as a proof outline (adapted from [27]).

For a binary relation r, we write x ṙ y for x r y ^ emp, where emp describes an empty
heap. We write ✏ for the empty sequence, (�)† for sequence reversal, and · for cons
and concatenation. We define the list ↵ x predicate by induction on the length of the
sequence ↵:

list ✏ x

def

= (x
.

= nil) list (i · ↵

0) x

def

= (9x

0
. x 7! i, x

0 ⇤ list ↵

0
x

0),

list ↵0 x

list ↵†
0 y

9↵,�. list ↵ x ⇤ list � y

⇤ ↵0
.
= �† · ↵

while (x != nil) {
   z := [x+1];
   [x+1] := y;
   y := x;
   x := z;
}

y := nil;         
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plication of the frame rule or, as is done in Fig. 3a, redundantly repeated at every in-
termediate point. In the ribbon proof, it slides discreetly down the left-hand side. This
indicates that the assertion is inactive without suggesting that it has been removed.

The proof outline obscures the usage of the logical variables ↵ and �. The witness
for ↵ changes after line 8, then stays the same until line 24; meanwhile, �’s witness is
constant through lines 5 to 18 before becoming the previous witness prepended with
i. This structure can only be spotted through careful examination of the proof outline
(aided by the textual hints on lines 9 and 19). The scoping of logical variables in the
ribbon proof, through the use of existential boxes, is far more satisfactory. Boxes extend
horizontally across several ribbons, but also vertically to indicate the range of steps over
which the same witness is used. Horizontally, existential boxes must be well-nested;

while (...) {

}

9↵

9�

9↵

9�

Fig. 4. Existential boxes,
vertically overlapping

this corresponds to the static scoping of existential quan-
tifiers in assertions. Vertically, however, boxes may over-
lap. Figure 4 depicts how the boxes for ↵ and � overlap in
Fig. 3b. As explained in Sect. 3.1, such ‘overlaps’ are for-
mally treated as entailment steps of the form 9x. 9y. p )
9y. 9x. p. Similarly, boxes may be stretched horizontally
(see, for instance, immediately below the loop in Fig. 3b)
in accordance with the entailment p ⇤ (9x. q) ) 9x. p ⇤ q

(for x not in p). We thus obtain an intriguing proof struc-
ture – present in neither the proof outline nor the underlying
derivation tree – in which the scopes of logical variables do
not follow the program’s syntactic structure, but are instead
dynamically scoped. Section 6 contains further discussion.

We close this section by explaining a shortcoming in the proof system as currently
presented. One nicety of Fig. 3b is that the ‘Reassociate i’ entailment, being horizon-
tally separated from its neighbouring proof steps, can clearly be moved a little earlier
or later. (Close inspection is necessary to discover this from the proof outline.) But
similar reasoning allows the assignments ‘y:=x’ and ‘x:=z’ to be swapped, unsoundly.
We ensure our proof system is sound either by forbidding such manoeuvres altogether
(Sect. 3) or by encoding variable dependencies into the ribbons themselves (Sect. 4).

3 Formalisation

Let us now formalise the concepts introduced in the previous section. We introduce in
Sect. 3.1 a two-dimensional syntax for diagrams, and explain how it can generate the
pictures we have already seen. We present the rules of our diagrammatic proof system
in Sect. 3.2. We relate ribbon proofs to separation logic in Sect. 3.3.

Proofs performed by hand are annotated with ut, while those mechanically verified
using the Isabelle proof assistant are annotated with , and can be viewed online at:
http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Definition 1 (Assertions). Let p range over a set of ordinary separation logic asser-
tions, containing at least the following constructions:

Assertion

def

= {p ::= emp | p ⇤ p | 9x. p | . . .}.
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Separation logic [20,21,14] began life as an extended formalisation of Burstall’s treatment of list-
mutating programs [8]. It rapidly became clear that there was more that it could say: O’Hearn’s
discovery [13] of ownership transfer of buffers between threads and Boyland’s suggestion [5] of
permissions to deal with variable and heap sharing pointed the way to a treatment of safe resource
management in concurrent programs. That treatment has so far been incomplete because it deals
only with heap cells and not with with (stack) variables as resource.
Adding ‘variable contexts’ — in the simplest case, lists of owned variables — to assertions in Hoare
logic allows a resource treatment of variables. It seems that a formal treatment of aliasing is
possible too. It gives a complete formal treatment of critical sections (for the first time, so far as I
am aware).
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the store are separated, we can reason about mutations to each list separately.
Reynolds, in [20], extended that idea to mutations of all kinds of heap data
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logic which is a model of BI [17,19] and an extension of Hoare logic. The

Electronic Notes in Theoretical Computer Science 155 (2006) 247–276

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.059

Variables as Resource in Separation Logic

Richard Bornat
School of Computing Science, Middlesex University, London, UK. R.Bornat@mdx.ac.uk

Cristiano Calcagno

Department of Computing, Imperial College London, London, UK. ccris@doc.ic.ac.uk

Hongseok Yang

ERC-ACI, Seoul National University, Seoul, Korea. hyang@ropas.snu.ac.kr

Abstract

Separation logic [20,21,14] began life as an extended formalisation of Burstall’s treatment of list-
mutating programs [8]. It rapidly became clear that there was more that it could say: O’Hearn’s
discovery [13] of ownership transfer of buffers between threads and Boyland’s suggestion [5] of
permissions to deal with variable and heap sharing pointed the way to a treatment of safe resource
management in concurrent programs. That treatment has so far been incomplete because it deals
only with heap cells and not with with (stack) variables as resource.
Adding ‘variable contexts’ — in the simplest case, lists of owned variables — to assertions in Hoare
logic allows a resource treatment of variables. It seems that a formal treatment of aliasing is
possible too. It gives a complete formal treatment of critical sections (for the first time, so far as I
am aware).

Keywords: separation, variables, verification, proof

1 Background

Separation logic, pre permissions, is described in [21,14]. It began as an ex-
pansion of Burstall’s treatment of lists [8]. Burstall recognised that if lists in
the store are separated, we can reason about mutations to each list separately.
Reynolds, in [20], extended that idea to mutations of all kinds of heap data
structure. He, O’Hearn and others made the idea of separation central to a
logic which is a model of BI [17,19] and an extension of Hoare logic. The

Electronic Notes in Theoretical Computer Science 155 (2006) 247–276

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.059

Variables as Resource in Separation Logic

Richard Bornat
School of Computing Science, Middlesex University, London, UK. R.Bornat@mdx.ac.uk

Cristiano Calcagno

Department of Computing, Imperial College London, London, UK. ccris@doc.ic.ac.uk

Hongseok Yang

ERC-ACI, Seoul National University, Seoul, Korea. hyang@ropas.snu.ac.kr

Abstract

Separation logic [20,21,14] began life as an extended formalisation of Burstall’s treatment of list-
mutating programs [8]. It rapidly became clear that there was more that it could say: O’Hearn’s
discovery [13] of ownership transfer of buffers between threads and Boyland’s suggestion [5] of
permissions to deal with variable and heap sharing pointed the way to a treatment of safe resource
management in concurrent programs. That treatment has so far been incomplete because it deals
only with heap cells and not with with (stack) variables as resource.
Adding ‘variable contexts’ — in the simplest case, lists of owned variables — to assertions in Hoare
logic allows a resource treatment of variables. It seems that a formal treatment of aliasing is
possible too. It gives a complete formal treatment of critical sections (for the first time, so far as I
am aware).

Keywords: separation, variables, verification, proof

1 Background

Separation logic, pre permissions, is described in [21,14]. It began as an ex-
pansion of Burstall’s treatment of lists [8]. Burstall recognised that if lists in
the store are separated, we can reason about mutations to each list separately.
Reynolds, in [20], extended that idea to mutations of all kinds of heap data
structure. He, O’Hearn and others made the idea of separation central to a
logic which is a model of BI [17,19] and an extension of Hoare logic. The

Electronic Notes in Theoretical Computer Science 155 (2006) 247–276

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.059

Variables as Resource in Separation Logic

Richard Bornat
School of Computing Science, Middlesex University, London, UK. R.Bornat@mdx.ac.uk

Cristiano Calcagno

Department of Computing, Imperial College London, London, UK. ccris@doc.ic.ac.uk

Hongseok Yang

ERC-ACI, Seoul National University, Seoul, Korea. hyang@ropas.snu.ac.kr

Abstract

Separation logic [20,21,14] began life as an extended formalisation of Burstall’s treatment of list-
mutating programs [8]. It rapidly became clear that there was more that it could say: O’Hearn’s
discovery [13] of ownership transfer of buffers between threads and Boyland’s suggestion [5] of
permissions to deal with variable and heap sharing pointed the way to a treatment of safe resource
management in concurrent programs. That treatment has so far been incomplete because it deals
only with heap cells and not with with (stack) variables as resource.
Adding ‘variable contexts’ — in the simplest case, lists of owned variables — to assertions in Hoare
logic allows a resource treatment of variables. It seems that a formal treatment of aliasing is
possible too. It gives a complete formal treatment of critical sections (for the first time, so far as I
am aware).

Keywords: separation, variables, verification, proof

1 Background

Separation logic, pre permissions, is described in [21,14]. It began as an ex-
pansion of Burstall’s treatment of lists [8]. Burstall recognised that if lists in
the store are separated, we can reason about mutations to each list separately.
Reynolds, in [20], extended that idea to mutations of all kinds of heap data
structure. He, O’Hearn and others made the idea of separation central to a
logic which is a model of BI [17,19] and an extension of Hoare logic. The

Electronic Notes in Theoretical Computer Science 155 (2006) 247–276

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.059

Variables as Resource in Separation Logic

Richard Bornat
School of Computing Science, Middlesex University, London, UK. R.Bornat@mdx.ac.uk

Cristiano Calcagno

Department of Computing, Imperial College London, London, UK. ccris@doc.ic.ac.uk

Hongseok Yang

ERC-ACI, Seoul National University, Seoul, Korea. hyang@ropas.snu.ac.kr

Abstract

Separation logic [20,21,14] began life as an extended formalisation of Burstall’s treatment of list-
mutating programs [8]. It rapidly became clear that there was more that it could say: O’Hearn’s
discovery [13] of ownership transfer of buffers between threads and Boyland’s suggestion [5] of
permissions to deal with variable and heap sharing pointed the way to a treatment of safe resource
management in concurrent programs. That treatment has so far been incomplete because it deals
only with heap cells and not with with (stack) variables as resource.
Adding ‘variable contexts’ — in the simplest case, lists of owned variables — to assertions in Hoare
logic allows a resource treatment of variables. It seems that a formal treatment of aliasing is
possible too. It gives a complete formal treatment of critical sections (for the first time, so far as I
am aware).

Keywords: separation, variables, verification, proof

1 Background

Separation logic, pre permissions, is described in [21,14]. It began as an ex-
pansion of Burstall’s treatment of lists [8]. Burstall recognised that if lists in
the store are separated, we can reason about mutations to each list separately.
Reynolds, in [20], extended that idea to mutations of all kinds of heap data
structure. He, O’Hearn and others made the idea of separation central to a
logic which is a model of BI [17,19] and an extension of Hoare logic. The

Electronic Notes in Theoretical Computer Science 155 (2006) 247–276

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.059

60



a = 1

b = 1 c = 2

b = 2

a:=b

b:=c

61



a = 1

b = 1 c = 2

b = 2

a:=b

b:=c

62



b

ba

a = 1

b = 1 c = 2

b = 2

a:=b

b:=c

c

c

a

b

62



b

ba

a = 1

b = 1 c = 2

b = 2

a:=b

b:=c

a

b

1
2c

1
2c

63



b

ba

a = 1

b = 1 c = 2

b = 2

a:=b

b:=c

a

b

1
2c

1
2c

1
2c c > 1

63



Ribbon Proofs for Separation Logic 15

while (x!=nil) {

}

list ↵

0

xx yz

Split x y:=nil

1

2

x list ↵

0

x

1

2

x list ✏ yy

Choose ↵ := ↵

0

and � := ✏

9↵ 9�
list ↵ x

1

2

x list � yy ↵

0

.

= �

† · ↵

x

˙6=nil

1

2

x

Unfold list def
9↵0

, i, Z. x 7! i, Z ⇤
list ↵

0
Z ⇤ ↵ .

= i · ↵0
x

Choose ↵ := ↵

0

9Z. x 7! i, Z ⇤ list ↵Zx ↵

0

.

=
�

† · (i · ↵)
9↵

9i
z:=[x+1] Split y

list ↵ z

1

2

z x 7! i, zx,

1

2

z

1

2

y

l
i
s
t
�
y

1

2

y

[x+1]:=y Reassoc. i
x 7! i, yx,

1

2

y

1

2

z ↵

0

.

=
(i · �)† · ↵

Combine z Fold list def
list ↵ zz list (i · �) xx y

Choose � := (i · �)
list � xx ↵

0

.

= �

† · ↵9�

y:=x

list � yy

x

x:=z

list ↵ x

1

2

x z

1

2

x

x

.

=nil

1

2

x

Unfold list def

x

↵

.

= ✏

Concatenate empty seq.

↵

0

.

= �

†

Fold list def
list ↵

†
0

yy
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Fig. 11. A ribbon proof of list reverse using variables-as-resource
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Future directions
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Where now?
Define two-dimensional syntax of ribbon proofs, a 
formal semantics, and a collection of proof rules

Graphical user interface for constructing and checking 
ribbon proofs

Application to more exotic program logics

Connections to bigraphs, string diagrams, proof nets

✓
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Ribbon proofs are...
‣ an alternative to proof 

outlines

‣ applicable to separation 
logic (and descendants)

‣ readable, flexible, and 
attractive

‣ less repetitive than proof 
outlines, so more scalable
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