Ribbon Proofs for Separation Logic

John Wickerson Technische Universität Berlin Mike Dodds University of York 🔛 Matthew Parkinson Microsoft Research Cambridge 🔛

ESOP '13, Rome

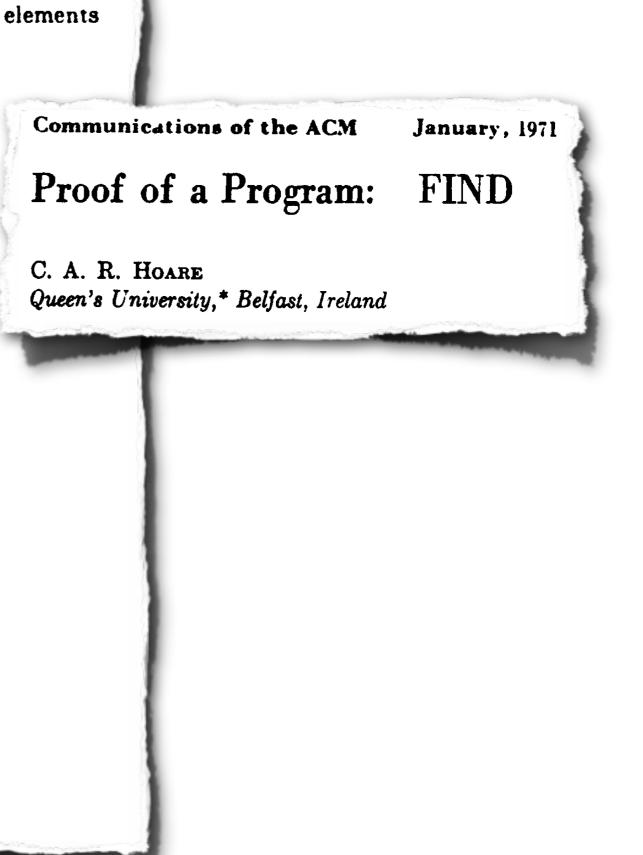
Communications of the ACM October, 1969

An Axiomatic Basis for Computer Programming

C. A. R. HOARE

Line number	Formal proof	Justification
1	true $\supset x = x + y \times 0$	Lemma 1
2	$x = x + y \times 0 \{r := x\} x = r + y \times 0$	$\mathbf{D0}$
3	$x = r + y \times 0 \{q := 0\} x = r + y \times q$	D0
4	true $\{r := x\} x = r + y \times 0$	D1 (1, 2)
5	true $\{r := x; q := 0\} x = r + y \times q$	D2 (4, 3)
6	$x = r + y \times q \land y \leqslant r \supset x =$	
	$(r-y) + y \times (1+q)$	Lemma 2
7	$x = (r-y) + y \times (1+q) \{r := r-y\} x =$	
	$r + y \times (1+q)$	D0
8	$x = r + y \times (1+q) \{q := 1+q\} x =$	
	$r + y \times q$	$\mathbf{D0}$
9	$x = (r-y) + y \times (1+q) \{r := r-y;$	
	$q := 1+q \} x = r + y \times q$	D2 (7, 8)
10	$x = r + y \times q \wedge y \leqslant r \{r := r - y;$	
	$q := 1+q \} x = r + y \times q$	D1 (6,9)
11	$x = r + y \times q \text{ {while }} y \leqslant r \text{ do}$	
	(r := r - y; q := 1 + q)	
	$\neg y \leqslant r \land x = r + y \times q$	D3 (10)
12	true {($(r := x; q := 0)$; while $y \leq r$ do	
	$(r := r - y; q := 1 + q)) \} \neg y \leq r \land x =$	
	$r + y \times q$	D2 (5, 11)

begin comment This program operates on an array A[1:N], and a value of $f(1 \le f \le N)$. Its effect is to rearrange the elements of A in such a way that: $\forall p,q(1 \leq p \leq f \leq q \leq N \supset A[p] \leq A[f] \leq A[q]);$ integer m, n; comment $m \leq f \& \forall p,q(1 \leq p < m \leq q \leq N \supset A[p] \leq A[q]),$ $f \leq n \& \forall p,q(1 \leq p \leq n < q \leq N \supset A[p] \leq A[q]);$ m := 1; n := N;while m < n do begin integer r, i, j, w; comment $m < i \& \forall p (1 \leq p \leq i \supset A[p] \leq r),$ $j \leq n \& \forall q(j \leq q \leq N \supset r \leq A[q]);$ r := A[f]; i := m; j := n;while $i \leq j$ do begin while A[i] < r do i := i + 1;while $\tau < A[j]$ do j := j - 1comment $A[j] \leq r \leq A[i];$ if $i \leq j$ then **begin** w := A[i]; A[i] := A[j]; A[j] := w;comment $A[i] \leq r \leq A[j];$ i := i + 1; j := j - 1;end end increase i and decrease j; if $f \leq j$ then n := jelse if $i \leq f$ then m := ielse go to Lend reduce middle part: L: end Find



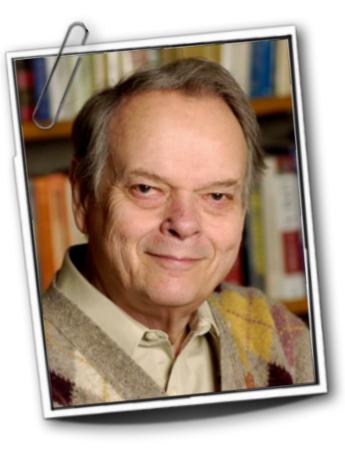
Acta Informatica 6, 319–340 (1976)
An Axiomatic Proof Technique for Parallel Programs I*
Susan Owicki and David Gries
$$\begin{cases} x=0 \\ S: \text{ cobegin } \{x=0 \} \\ S: \text{ cobegin } \{x=0 \} \\ S: \text{ cobegin } \{x=0 \\ \{x=0 \lor x=2 \} \\ S1: \text{ await true then } x:=x+1 \\ \{Q1: x=1 \lor x=3 \} \\ \{x=0 \lor x=1 \} \\ S2: \text{ await true then } x:=x+2 \\ \{Q2: x=2 \lor x=3 \} \\ \text{ coend} \\ \{(x=1 \lor x=3) \land (x=2 \lor x=3) \} \\ \{x=3 \} \end{cases}$$

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS'02)

Separation Logic: A Logic for Shared Mutable Data Structures

$$\{ \exists \alpha, \beta. \text{ (list } \alpha \text{ (i, nil) } * \text{ list } \beta \text{ (j, nil)}) \\ \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta \land i \neq \text{nil} \} \\ \{ \exists a, \alpha, \beta. \text{ (list } a \cdot \alpha \text{ (i, nil) } * \text{ list } \beta \text{ (j, nil)}) \\ \land \alpha_0^{\dagger} = (a \cdot \alpha)^{\dagger} \cdot \beta \} \\ \{ \exists a, \alpha, \beta, \textbf{k}. \text{ (i} \mapsto a, \textbf{k} * \text{ list } \alpha \text{ (k, nil) } * \text{ list } \beta \text{ (j, nil)}) \\ \land \alpha_0^{\dagger} = (a \cdot \alpha)^{\dagger} \cdot \beta \} \\ \textbf{k} := [\textbf{i} + 1]; \\ \{ \exists a, \alpha, \beta. \text{ (i} \mapsto a, \textbf{k} * \text{ list } \alpha \text{ (k, nil) } * \text{ list } \beta \text{ (j, nil)}) \\ \land \alpha_0^{\dagger} = (a \cdot \alpha)^{\dagger} \cdot \beta \} \\ [\textbf{i} + 1] := \textbf{j}; \\ \{ \exists a, \alpha, \beta. \text{ (i} \mapsto a, \textbf{j} * \text{ list } \alpha \text{ (k, nil) } * \text{ list } \beta \text{ (j, nil)}) \\ \land \alpha_0^{\dagger} = (a \cdot \alpha)^{\dagger} \cdot \beta \} \\ \{ \exists a, \alpha, \beta. \text{ (list } \alpha \text{ (k, nil) } * \text{ list } a \cdot \beta \text{ (i, nil)}) \\ \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot a \cdot \beta \} \\ \{ \exists \alpha, \beta. \text{ (list } \alpha \text{ (k, nil) } * \text{ list } \beta \text{ (i, nil)}) \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta \} \\ \{ \exists \alpha, \beta. \text{ (list } \alpha \text{ (i, nil) } * \text{ list } \beta \text{ (j, nil)}) \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta \}. \end{cases}$$

John C. Reynolds*



Ribbon proofs are...

an alternative to proof
 readable, flexible, and attractive

- applicable to separation
 logic (and descendants)
- less repetitive than proof outlines, so more scalable

Tiny example

.

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ (\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ \{\mathbf{y} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{y} \mapsto \mathbf{1} \} \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases} \text{ for heap update }$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

mchunkptr b, p; idx += ~smallbits & 1; /* Uses next bin if idx empty */ $\begin{cases} \exists \{U_i \mid i \in [0, 63)\}, n. \ arena(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}, U_i)_{\mathsf{u}}) \ \ast \ \texttt{least_addr} = 5\mathsf{w} \\ \ast \ n\mathsf{w} = \lceil \mathsf{bytes} \rceil_{\mathsf{w}} \ \ast \ \texttt{8idx} \ge (n+1)\mathsf{w} \ \ast \ 2 \le \texttt{idx} < 32 \ \ast \ \texttt{smallmap}_{[\texttt{idx}]} = 1 \\ \ast \ \ast_{i=0}^{32} \ smallbin_i(U_i) \ \ast \ \ast_{i=0}^{32} \ treebin_i(U_{i+32}) \end{cases}$ b = smallbin_at(gm, idx); $\exists \{U_i \mid i \in [0, 63)\}, n. arena(A_a \uplus (\biguplus_{i=0}^{64}, U_i)_u) * \texttt{least_addr} = 5w$ $\begin{array}{ll} * \ n \texttt{w} = \lceil \texttt{bytes} \rceil_{\texttt{w}} & * \ \texttt{8idx} \geq (n+1)\texttt{w} & * \ 2 \leq \texttt{idx} < 32 & * \ \texttt{smallmap}_{[\texttt{idx}]} = 1 \\ * \ \texttt{b} = \texttt{smallbins} + \texttt{8idx} & * \ bin(|\texttt{idx}|,\texttt{b},U_{\texttt{idx}}) & * \ U_{\texttt{idx}} \neq \{\} \end{array}$ * $*_{i \in [0..32) - idx}$. smallbin_i(U_i) * $*_{i=0}^{32}$. treebin_i(U_{i+32}) // rename U_idx to U_idx++[p+2w->8idx-1w] $\exists \{U_i \mid i \in [0, 63)\}, p, n. arena(A_a \uplus (\biguplus_{i=0}^{64}, U_i)_u \uplus \{p + 2\mathsf{w} \mapsto_{\mathsf{u}} \mathtt{Sidx} - 1\mathsf{w}\})$ $* \; \texttt{least_addr} = 5\texttt{w} \; * \; n\texttt{w} = \lceil\texttt{bytes}\rceil_\texttt{w} \; * \; \texttt{8idx} \geq (n+1)\texttt{w} \; * \; 2 \leq \texttt{idx} < 32$ * $\operatorname{smallmap}_{[\operatorname{idx}]} = 1$ * b = $\operatorname{smallbins} + 8\operatorname{idx}$ * b $\xrightarrow{\operatorname{fd}} p$ * p $\xrightarrow{\operatorname{bk}}$ b * $(\operatorname{bnode} |\operatorname{idx}|)^*(p, b, U_{\operatorname{idx}} \uplus \{p + 2w \mapsto 8\operatorname{idx} - 1w\})$ * $*_{i \in [0..32) - \operatorname{idx}}$. $\operatorname{smallbin}_i(U_i)$ * $*_{i=0}^{32}$. $\operatorname{treebin}_i(U_{i+32})$ p = b - fd; $\exists \{U_i \mid i \in [0, 63)\}, n, F. arena(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}. U_i)_{\mathsf{u}} \uplus \{\mathsf{p} + 2\mathsf{w} \mapsto_{\mathsf{u}} \mathtt{8idx} - 1\mathsf{w}\})$ * least_addr = 5w * $nw = \lceil bytes \rceil_w * 8idx \ge (n+1)w * 2 \le idx < 32$ * smallmap_[idx] = 1 * b = smallbins + 8idx $* \begin{array}{c} \mathbf{b} \xrightarrow{\mathsf{fd}} \mathbf{p} & * \begin{array}{c} \mathbf{p} \xrightarrow{\mathsf{bk}} \mathbf{b} \\ * \end{array} \mathbf{b} \xrightarrow{\mathsf{bk}} \mathbf{b} \\ * \end{array} \mathbf{b} & * \begin{array}{c} \frac{1}{2} (\mathbf{p} \xrightarrow{\mathsf{size}} 8 \operatorname{idx}) \\ * \end{array} \mathbf{b} \xrightarrow{\mathsf{fd}} F \\ * \begin{array}{c} \mathbf{p} \\ * \end{array} \mathbf{b} \xrightarrow{\mathsf{bk}} \mathbf{p} \\ * \end{array} \mathbf{b} \\ * \begin{array}{c} (bnode |\operatorname{idx}|)^* (F, \mathbf{b}, U_{\operatorname{idx}}) \\ * \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{b} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \\ * \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ * \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \\$ * $*_{i \in [0..32) - idx}$. smallbin_i(U_i) * $*_{i=0}^{32}$. treebin_i(U_{i+32}) //assert(chunksize(p) == small_index2size(idx)); unlink_first_small_chunk(gm, b, p, idx); $\exists \{U_i \mid i \in [0, 63)\}, n. \ arena(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}, U_i)_{\mathsf{u}} \uplus \{\mathsf{p} + 2\mathsf{w} \mapsto_{\mathsf{u}} 8\mathsf{idx} - 1\mathsf{w}\})$ $\begin{array}{l} * \; \texttt{least_addr} = 5\texttt{w} \; * \; n\texttt{w} = \lceil\texttt{bytes}\rceil_{\texttt{w}} \; * \; \texttt{8idx} \geq (n+1)\texttt{w} \; * \; 2 \leq \texttt{idx} < 32 \\ * \; \frac{1}{2}(\texttt{p} \stackrel{\texttt{size}}{\longmapsto} \texttt{8idx}) \; * \; \texttt{p} \stackrel{\texttt{fd}}{\longmapsto} _ \; * \; \texttt{p} \stackrel{\texttt{bk}}{\longmapsto} _ \; * \; \texttt{*}_{i=0}^{32} . \, smallbin_i(U_i) \; * \; \texttt{*}_{i=0}^{32} . \, treebin_i(U_{i+32}) \end{array}$ $\exists \{U_i \mid i \in [0, 63)\}, B_1, B_2, n. \ coallesced(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}, U_i)_{\mathsf{u}} \uplus \{\mathsf{p} + 2\mathsf{w} \mapsto_{\mathsf{u}} \mathtt{8idx} - 1\mathsf{w}\})$ * start $\xrightarrow{\text{prevfoot}}$ * start $\xrightarrow{\text{pinuse}}$ 1 * $ublock(\text{top}, \text{top} + \text{topsize}, _)$ * $block^*(\texttt{start}, p, B_1)$ * $ublock(p, p + 8idx, \{p + 2w \mapsto_u 8idx - 1w\})$ * $block^*(p+8idx, top, B_2)$ * $B_1 \uplus B_2 = A_a \uplus (\biguplus_{i=0}^{64}, U_i)_u$ * least_addr = 5w * $nw = \lceil bytes \rceil_w$ * $8idx \ge (n+1)w$ * $2 \le idx < 32$ * $\frac{1}{2}(p \xrightarrow{size} 8idx)$ * $p \xrightarrow{fd} _$ * $p \xrightarrow{bk} _$ * $\overset{32}{*_{i=0}}$. $smallbin_i(U_i)$ * $\overset{32}{*_{i=0}}$. $treebin_i(U_{i+32})$.

14

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{aligned} \mathbf{x} \mapsto \mathbf{0} \\ \mathbf{x} \mapsto \mathbf{0} \\ \mathbf{x} \mapsto \mathbf{0} \\ \mathbf{x} \mapsto \mathbf{0} \\ \mathbf{y} \mapsto \mathbf{0} \\ \mathbf{y} \mapsto \mathbf{0} \\ \mathbf{y} \mapsto \mathbf{1} \\ \mathbf{z} \mapsto \mathbf{1} \end{aligned}$$

A proof outline

A ribbon proof

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases} \qquad \mathbf{x} \mapsto \mathbf{1} \qquad \mathbf{z} \mapsto \mathbf{0} \\ \mathbf{x} \mapsto \mathbf{1} \\ \mathbf{z} \mapsto \mathbf{1} \end{cases}$$

A proof outline

A ribbon proof

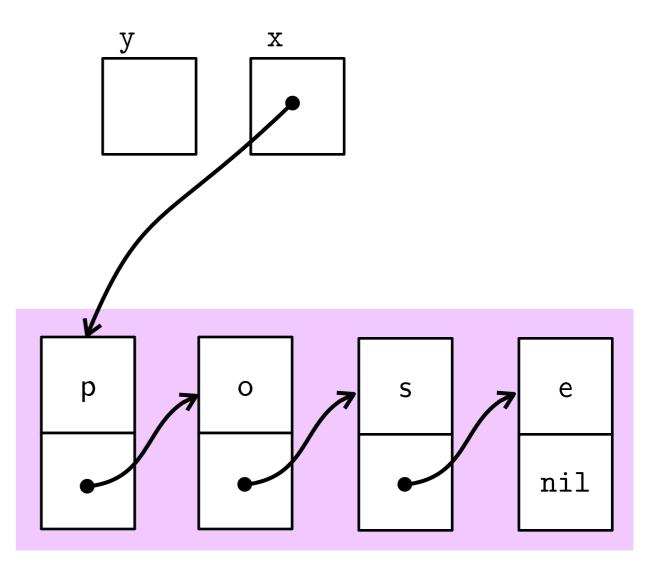
$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

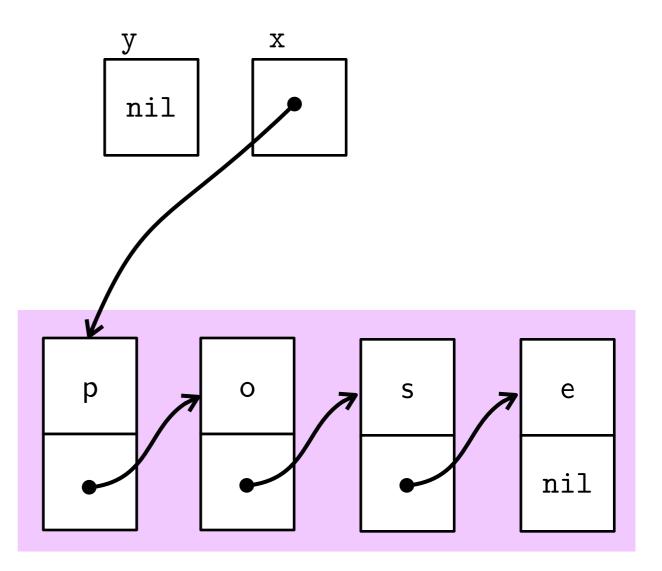
$$\begin{aligned} \mathbf{x} \mapsto \mathbf{1} \quad \mathbf{y} \mapsto \mathbf{1} \quad \mathbf{z} \mapsto \mathbf{1} \\ \mathbf{x} \mapsto \mathbf{1} \quad \mathbf{y} \mapsto \mathbf{1} \\ \mathbf{z} \mapsto \mathbf{1} \end{cases}$$

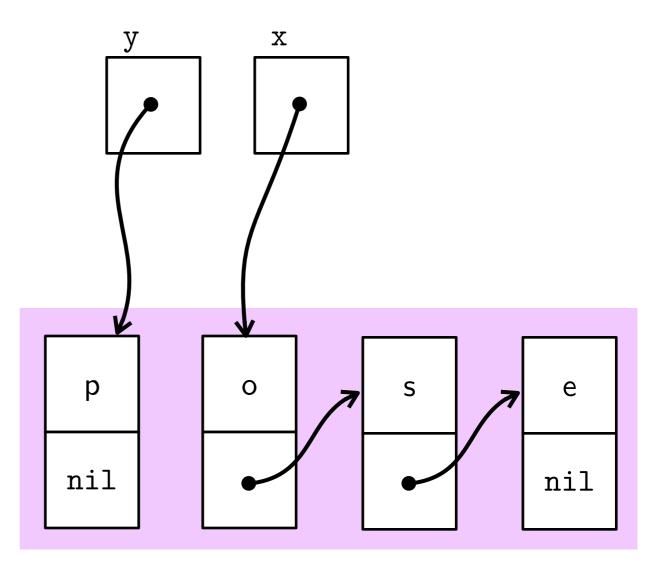
A proof outline

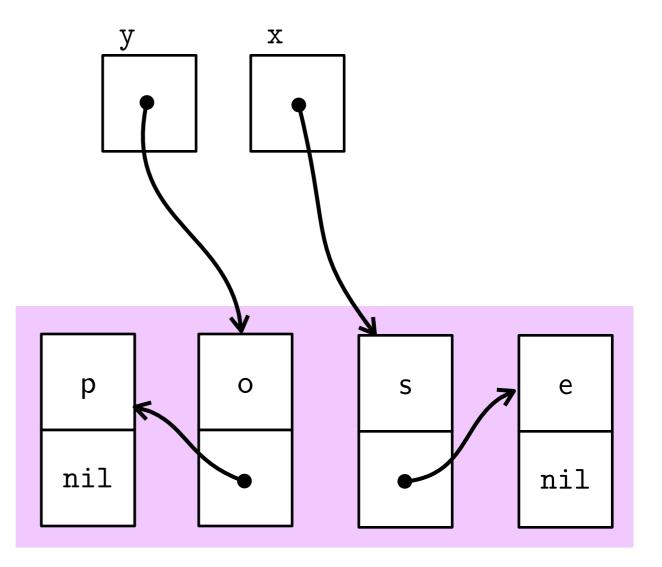
A ribbon proof

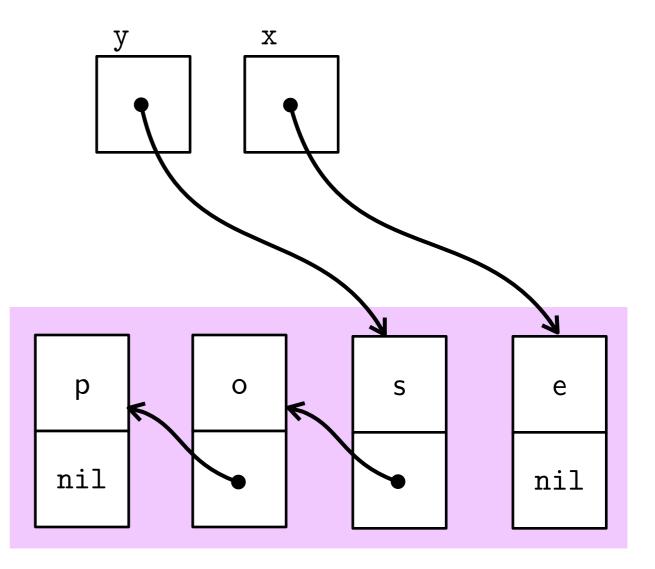
Example: in-place list reversal

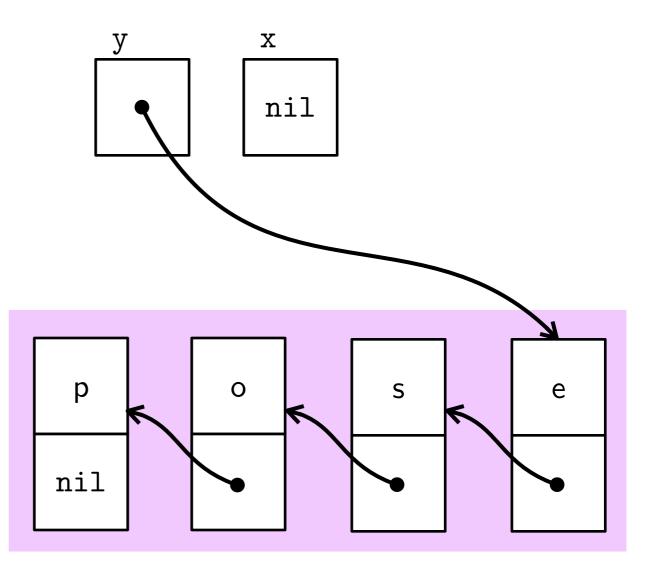


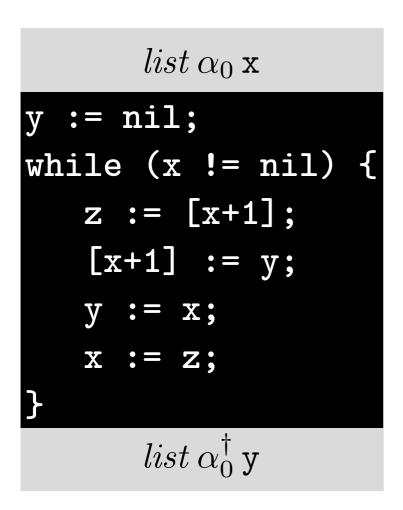












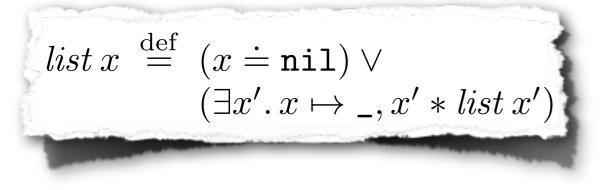
$$list \in x \stackrel{\text{def}}{=} (x \doteq \texttt{nil})$$
$$list (i \cdot \alpha') x \stackrel{\text{def}}{=} (\exists x'. x \mapsto i, x' * list \alpha' x')$$

$list lpha_0 {f x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
$\mathbf{x} := \mathbf{z};$	
}	
$list lpha_0^\dagger { t y}$	

$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x' . x \mapsto _, x' * list x')$$

$list \mathbf{x}$	
<pre>y := nil; while (x != nil)</pre>	ſ
z := [x+1];	ľ
[x+1] := y;	
y := x; $x := z;$	
}	
<i>list</i> y	

 $list \mathbf{x}$



list x
y := nil;
while (x != nil) {
z := [x+1];
[x+1] := y;
y := x;
$\mathbf{x} := \mathbf{z};$
}
<i>list</i> y

$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x' . x \mapsto _, x' * list x')$$

$list \mathbf{x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
x := z;	
J list y	
usu y	

 $\mathit{list}\, \mathtt{x}$

y:=nil *list* y

$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

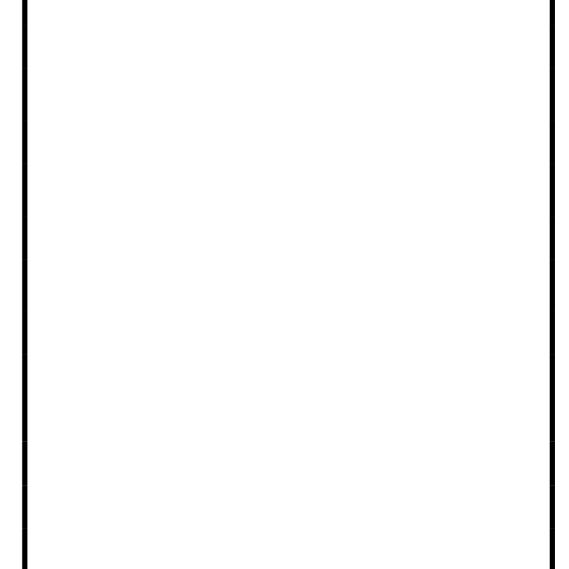
$list \mathbf{x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
$\mathbf{x} := \mathbf{z};$	
}	
<i>list</i> y	

y:=nil

list y

while (x!=nil) {

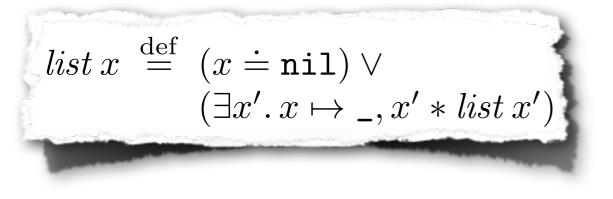
}



$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

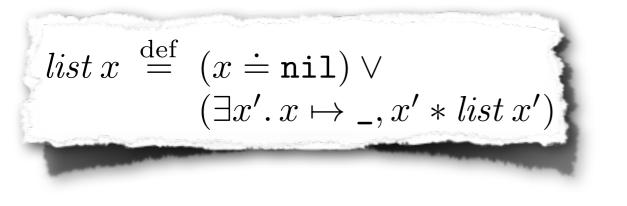
$list \mathbf{x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
x := z;	
}	
<i>list</i> y	

	list x	y:=nil <i>list</i> y
while (x!=r	nil) {	
$\dot{ ext{x} eq} ext{nil}$	list x	<i>list</i> y
}		



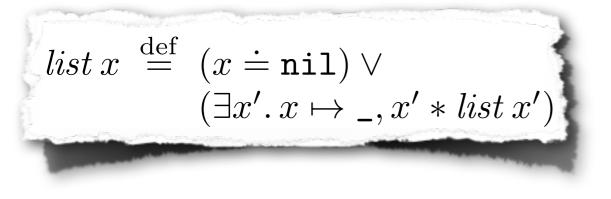
$list \ {f x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
$\mathbf{x} := \mathbf{z};$	
}	
<i>list</i> y	

	list x	y:=nil <i>list</i> y
while (x!=n	il) {	
$x \neq \texttt{nil}$	$list \mathbf{x}$	<i>list</i> y
	list x	<i>list</i> y
}		



list x		
y := nil;		
while (x != nil)	{	
z := [x+1];		
[x+1] := y;		
y := x;		
$\mathbf{x} := \mathbf{z};$		
}		
<i>list</i> y		

	list x	y:=nil <i>list</i> y
while (x!=n	il) {	
$\dot{ ext{x} eq ext{nil}}$	$list \mathbf{x}$	<i>list</i> y
	$list{f x}$	lict -
J	uusu x	<i>list</i> y
$x \doteq nil$	list x	<i>list</i> y



list x			
y := nil;			
while (x != nil)	{		
z := [x+1];			
[x+1] := y;			
y := x;			
$\mathbf{x} := \mathbf{z};$			
}			
<i>list</i> y			

 $\mathit{list}\, \mathtt{x}$ y:=nil *list* y while (x!=nil) { $\dot{x \neq nil}$ $list \mathbf{x}$ *list* y $\mathtt{x} \doteq \mathtt{nil}$

$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

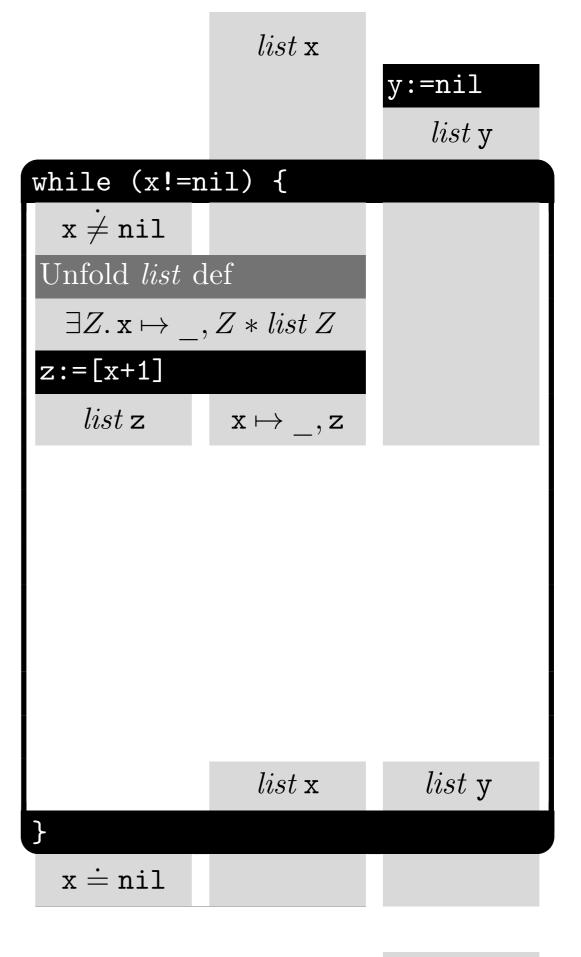
$list \ {f x}$			
y := nil;			
while (x != nil)	{		
z := [x+1];			
[x+1] := y;			
y := x;			
$\mathbf{x} := \mathbf{z};$			
}			
list y			

	$list{f x}$	
		y:=nil
		<i>list</i> y
hile (x!=n	il) {	
$\dot{ ext{x} eq ext{nil}}$		
Unfold <i>list</i> d	ef	
$\exists Z. \mathbf{x} \mapsto _,$	Z * list Z	
	$list \mathbf{x}$	<i>list</i> y
$\mathtt{x}\doteq\mathtt{nil}$		

W

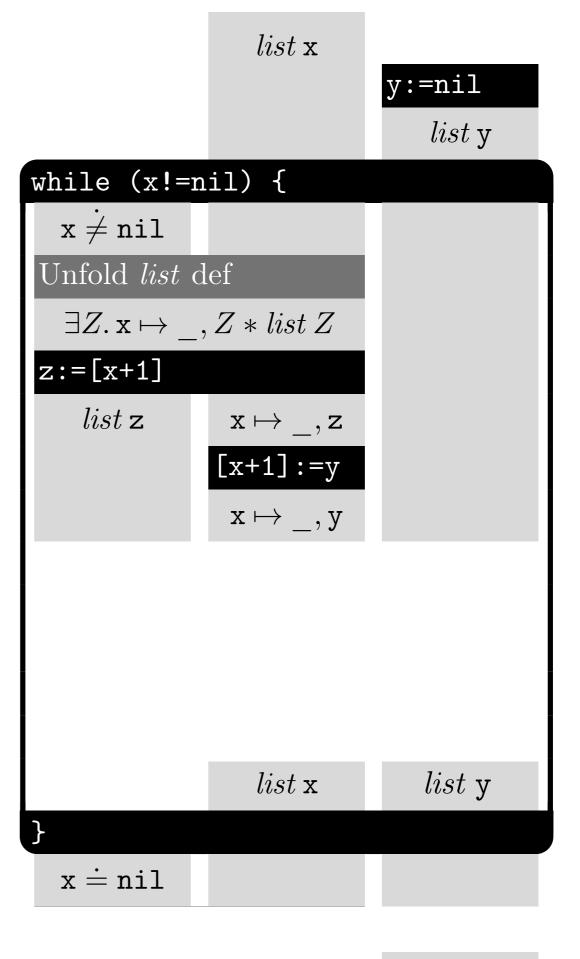
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

$list \mathbf{x}$
y := nil;
while (x != nil) {
z := [x+1];
[x+1] := y;
y := x;
$\mathbf{x} := \mathbf{z};$
}
<i>list</i> y



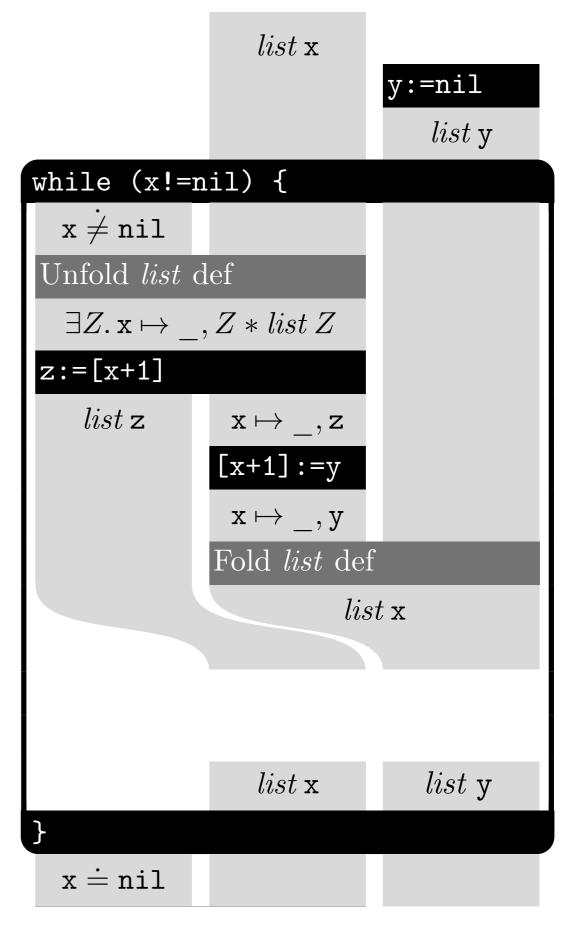
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

$list \mathbf{x}$
y := nil;
while (x != nil) {
z := [x+1];
[x+1] := y;
y := x;
x := z;
}
<i>list</i> y



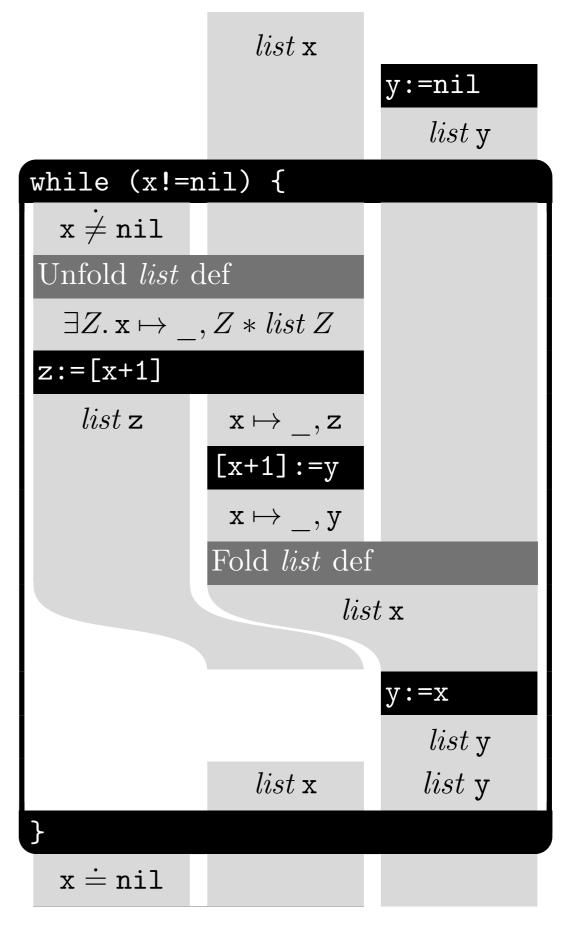
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

$list \mathbf{x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
$\mathbf{x} := \mathbf{z};$	
}	
<i>list</i> y	



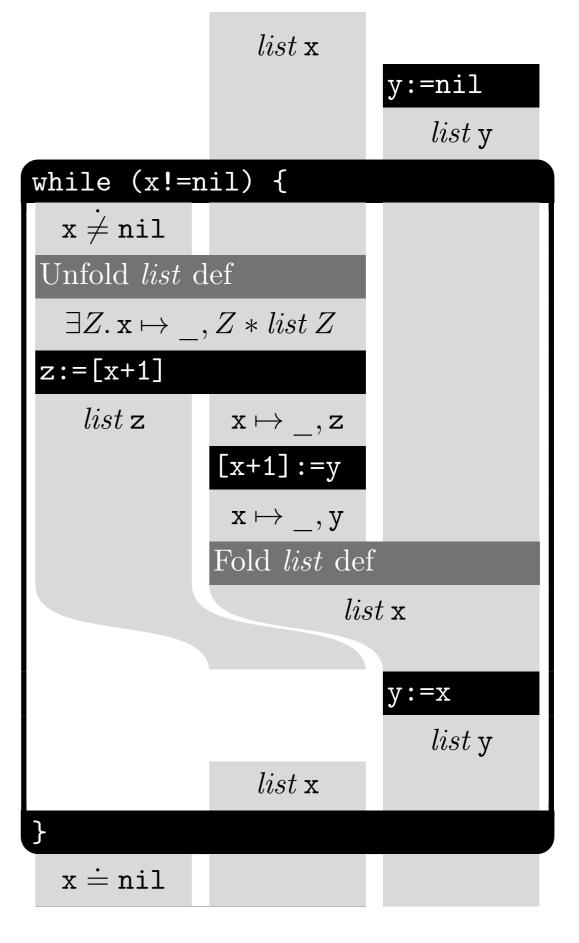
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

$list \ {f x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
x := z;	
}	
<i>list</i> y	



$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

$list \ {f x}$	
y := nil;	
while (x != nil) {	
z := [x+1];	
[x+1] := y;	
y := x;	
x := z;	
}	
<i>list</i> y	



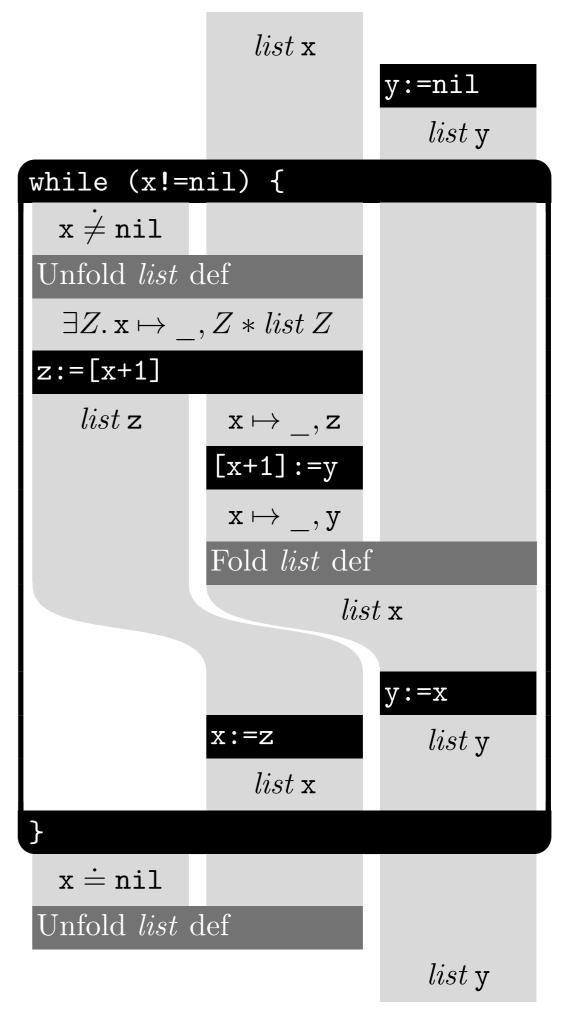
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

list x	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
$\mathbf{x} := \mathbf{z};$	
}	
<i>list</i> y	

	$list{f x}$	
		y:=nil
		list y
while (x!=r	il) {	
$\dot{ ext{x} eq} ext{nil}$		
Unfold <i>list</i> of	lef	
$\exists Z. \mathbf{x} \mapsto _$, Z * list Z	
z:=[x+1]		
$list { t z}$	$x\mapsto_,z$	
	[x+1]:=y	
	$\mathrm{x}\mapsto_,\mathrm{y}$	
	Fold <i>list</i> def	-
	lis	et x
		y:=x
	x:=z	<i>list</i> y
	$list \mathbf{x}$	
}		
$\mathtt{x}\doteq\mathtt{nil}$		

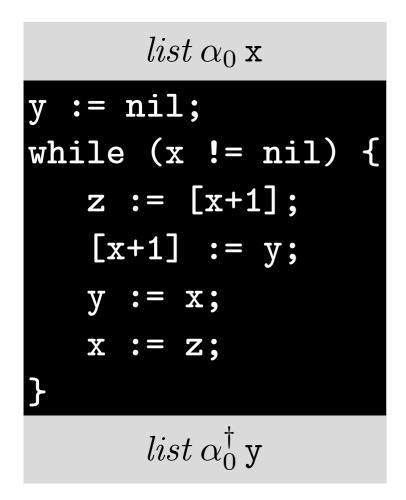
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto _, x' * list x')$$

$list \ {f x}$	
y := nil;	
while (x != nil)	{
z := [x+1];	
[x+1] := y;	
y := x;	
$\mathbf{x} := \mathbf{z};$	
}	
<i>list</i> y	



Dealing with quantifiers

$$list \in x \stackrel{\text{def}}{=} (x \doteq \texttt{nil})$$
$$list (i \cdot \alpha') x \stackrel{\text{def}}{=} (\exists x'. x \mapsto i, x' * list \alpha' x')$$



$$list \in x \stackrel{\text{def}}{=} (x \doteq \texttt{nil})$$
$$list (i \cdot \alpha') x \stackrel{\text{def}}{=} (\exists x'. x \mapsto i, x' * list \alpha' x')$$

$list lpha_0 {f x}$
y := nil;
$\exists \alpha, \beta. \ list \ \alpha \mathbf{x} * list \ \beta \mathbf{y}$
$* \alpha_0 \doteq \beta^{\dagger} \cdot \alpha$
while (x != nil) {
z := [x+1];
[x+1] := y;
y := x;
$\mathbf{x} := \mathbf{z};$
}
$list lpha_0^\dagger { t y}$

```
\{list \alpha_0 \mathbf{x}\}
  y:=nil;
  \{ list \alpha_0 \mathbf{x} * list \epsilon \mathbf{y} \}
  // Choose \alpha := \alpha_0 and \beta := \epsilon
  while \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{x} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
   (x!=nil) {
       \int \exists \alpha, \beta. \mathbf{x} \neq \mathtt{nil} * \mathit{list} \, \alpha \, \mathbf{x} * \mathit{list} \, \beta \, \mathbf{y} \Big\}
        \ast \alpha_0 \doteq \beta^{\dagger} \cdot \alpha
     // Unfold list def
       \left( \exists \alpha, \beta. \left( \exists \alpha', i, Z. \mathbf{x} \mapsto i, Z * \textit{list} \alpha' \mathbf{z} \right) \right) 
         (*\alpha \doteq i \cdot \alpha') * list \beta \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha 
     // Choose \alpha := \alpha'
       \left\{ \begin{aligned} \exists \alpha, \beta, i, Z. \mathbf{x} &\mapsto i, Z * \textit{list} \; \alpha \, Z \\ * \; \alpha_0 &\doteq \beta^{\dagger} \cdot (i \cdot \alpha) * \textit{list} \; \beta \, \mathbf{y} \end{aligned} \right\} 
     z:=[x+1];
       \begin{cases} \exists \alpha, \beta, i. \ list \ \alpha \ \mathbf{z} \ast \mathbf{x} \mapsto i, \mathbf{z} \\ \ast \ \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) \ast \ list \ \beta \ \mathbf{y} \end{cases} 
      // Reassociate i
       \int \exists \alpha, \beta, i. \ list \ \alpha \ z * x \mapsto i, z
         \mathbf{a} = (i \cdot \beta)^{\dagger} \cdot \alpha * list \beta \mathbf{y} 
      [x+1]:=y;
        \exists \alpha, \beta, i. list \alpha \mathbf{z} * \mathbf{x} \mapsto i, \mathbf{y}
        (\ast \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha \ast \textit{list } \beta \text{ y})
     // Fold list def
      \exists \alpha, \beta, i. \ list \ \alpha \ z * \ list \ (i \cdot \beta) \ x
          * \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha
     // Choose \beta := (i \cdot \beta)
\{\exists \alpha, \beta. \, list \, \alpha \, \mathbf{z} * list \, \beta \, \mathbf{x} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \}
     y := x;
     \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{z} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
     x := z;
     \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{x} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
  }
      \exists \alpha, \beta. \mathbf{x} \doteq \mathtt{nil} * \mathit{list} \, \alpha \, \mathbf{x} * \mathit{list} \, \beta \, \mathbf{y}
     \ast \alpha_0 \doteq \beta^{\dagger} \cdot \alpha
  // Unfold list def
  \left\{ \exists \alpha, \beta. \, \alpha \doteq \epsilon * \textit{list} \, \beta \, \mathtt{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \right\}
  // Concatenate empty sequence
 \{\exists \beta. \ list \ \beta \ y * \alpha_0 \doteq \beta^{\dagger}\}
  // Fold list def
  \left\{ list \, \alpha_0^{\dagger} \, \mathbf{y} \right\}
```

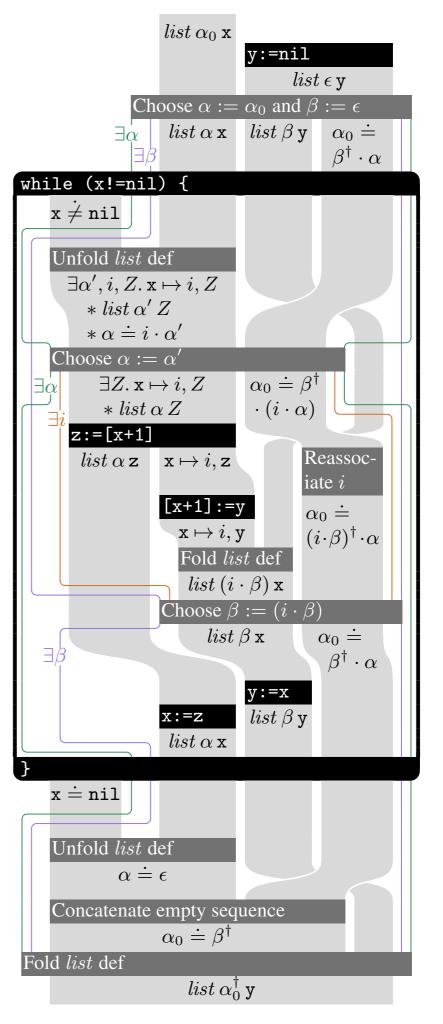
$$\begin{array}{l} \mathsf{y}:=\mathsf{nll}; \\ \{list \,\alpha_0 \, \mathsf{x} * list \, \epsilon \, \mathsf{y} \} \\ // \text{ Choose } \alpha := \alpha_0 \text{ and } \beta := \epsilon \\ \texttt{while} \left\{ \exists \alpha, \beta. \, list \, \alpha \, \mathsf{x} * list \, \beta \, \mathsf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \right\} \\ (\mathsf{x}!=\mathsf{nll}) \left\{ \\ \left\{ \exists \alpha, \beta. \, \mathsf{x} \neq \mathsf{nll} * list \, \alpha \, \mathsf{x} * list \, \beta \, \mathsf{y} \right\} \\ * \, \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \end{array} \right\} \\ // \text{ Unfold } list \, \mathsf{def} \\ \left\{ \exists \alpha, \beta. \, (\exists \alpha', i, Z. \, \mathsf{x} \mapsto i, Z * list \, \alpha' \, \mathsf{z} \\ * \, \alpha \doteq i \cdot \alpha') * list \, \beta \, \mathsf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \right\} \\ // \text{ Choose } \alpha := \alpha' \\ \left\{ \exists \alpha, \beta, i, Z. \, \mathsf{x} \mapsto i, Z * list \, \alpha \, Z \\ * \, \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) * list \, \beta \, \mathsf{y} \right\} \\ \mathsf{z}:= [\mathsf{x}+1]; \\ \left\{ \exists \alpha, \beta, i. \, list \, \alpha \, \mathsf{z} * \mathsf{x} \mapsto i, \mathsf{z} \\ * \, \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) * list \, \beta \, \mathsf{y} \right\} \\ // \text{ Reassociate } i \\ \left\{ \exists \alpha, \beta, i. \, list \, \alpha \, \mathsf{z} * \mathsf{x} \mapsto i, \mathsf{z} \\ * \, \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha * list \, \beta \, \mathsf{y} \right\} \\ [\mathsf{x}+1] := \mathsf{y}; \\ \left\{ \exists \alpha, \beta, i. \, list \, \alpha \, \mathsf{z} * \mathsf{x} \mapsto i, \mathsf{y} \\ * \, \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha * list \, \beta \, \mathsf{y} \right\} \\ // \text{ Fold } list \, \mathsf{def} \\ \left\{ \exists \alpha, \beta, i. \, list \, \alpha \, \mathsf{z} * list \, (i \cdot \beta) \, \mathsf{x} \\ * \, \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha \\ \ast \, \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha \end{cases} \right\}$$

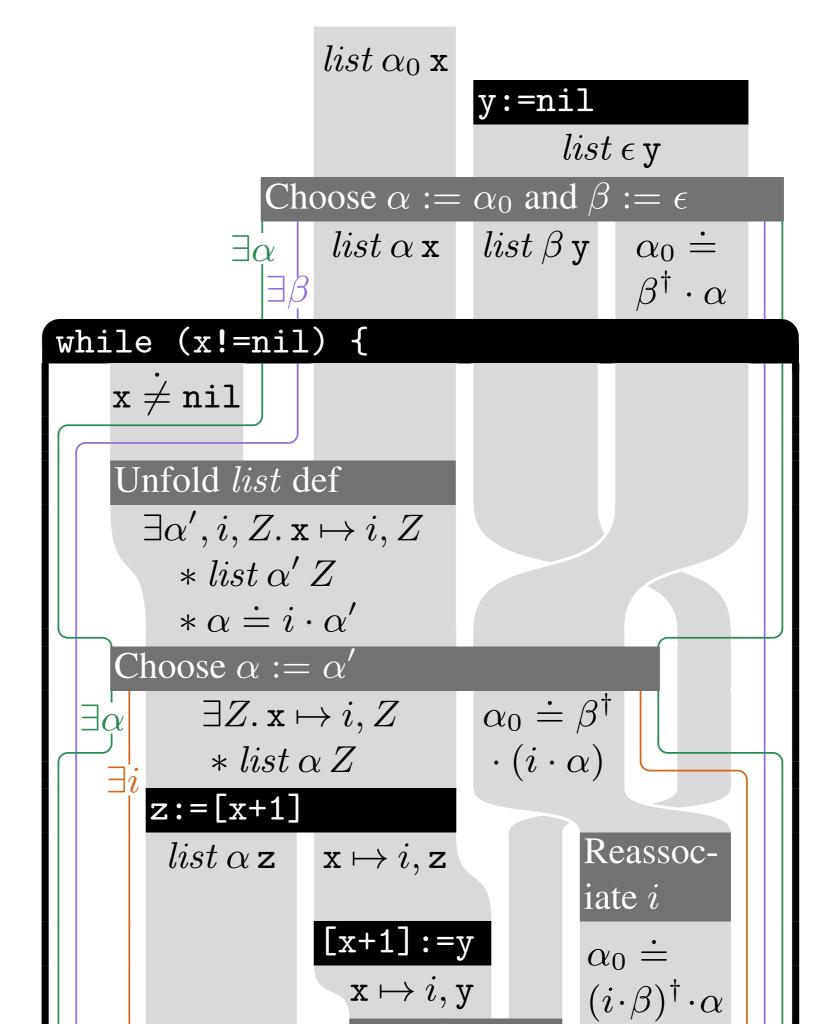
$$\begin{aligned} y:=n11; \\ \{list \alpha_0 \mathbf{x} * list \epsilon \mathbf{y} \} \\ // \text{ Choose } \alpha := \alpha_0 \text{ and } \beta := \epsilon \\ \text{while } \{\exists \alpha, \beta. \text{ list } \alpha \mathbf{x} * \text{ list } \beta \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \} \\ (\mathbf{x}!=n\mathbf{i}\mathbf{l}) \{ \\ \begin{cases} \exists \alpha, \beta. \mathbf{x} \neq n\mathbf{i}\mathbf{l} * \text{ list } \alpha \mathbf{x} * \text{ list } \beta \mathbf{y} \\ * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \end{cases} \\ // \text{ Unfold } \text{ list def} \\ \begin{cases} \exists \alpha, \beta. \exists \alpha', i, Z. \mathbf{x} \mapsto i, Z * \text{ list } \alpha' \mathbf{z} \\ * \alpha = i \cdot \alpha' \end{pmatrix} * \text{ list } \beta \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \end{cases} \\ // \text{ Choose } \alpha := \alpha' \\ \begin{cases} \exists \alpha, \beta, i, Z. \mathbf{x} \mapsto i, Z * \text{ list } \alpha Z \\ * \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) * \text{ list } \beta \mathbf{y} \end{cases} \\ \mathbf{z}:= [\mathbf{x}+1]; \\ \begin{cases} \exists \alpha, \beta, i. \text{ list } \alpha \mathbf{z} * \mathbf{x} \mapsto i, \mathbf{z} \\ * \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) * \text{ list } \beta \mathbf{y} \end{cases} \\ // \text{ Reassociate } i \\ \begin{cases} \exists \alpha, \beta, i. \text{ list } \alpha \mathbf{z} * \mathbf{x} \mapsto i, \mathbf{z} \\ * \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha * \text{ list } \beta \mathbf{y} \end{cases} \\ \text{ Ix+1]:= \mathbf{y}; \\ \begin{cases} \exists \alpha, \beta, i. \text{ list } \alpha \mathbf{z} * \mathbf{x} \mapsto i, \mathbf{y} \\ * \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha * \text{ list } \beta \mathbf{y} \end{cases} \\ // \text{ Fold } \text{ list } \alpha \mathbf{z} * \text{ list } \beta \mathbf{y} \end{cases} \end{aligned}$$

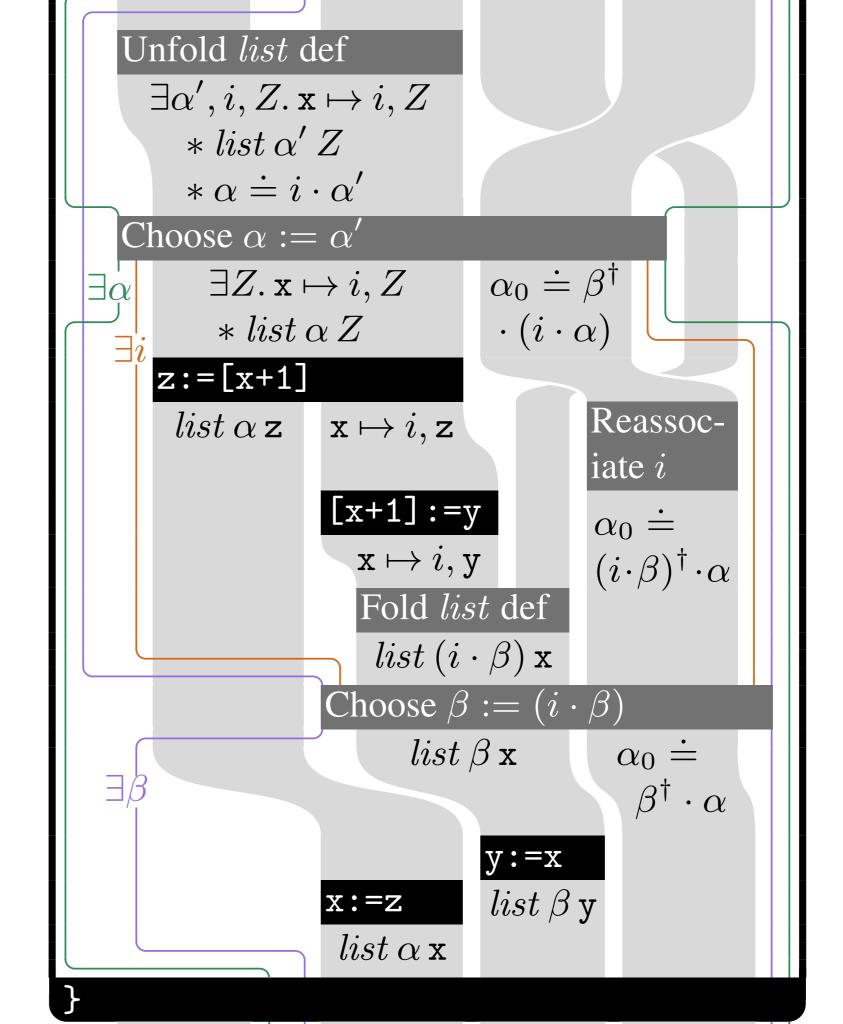
$$1/\alpha_{1}$$

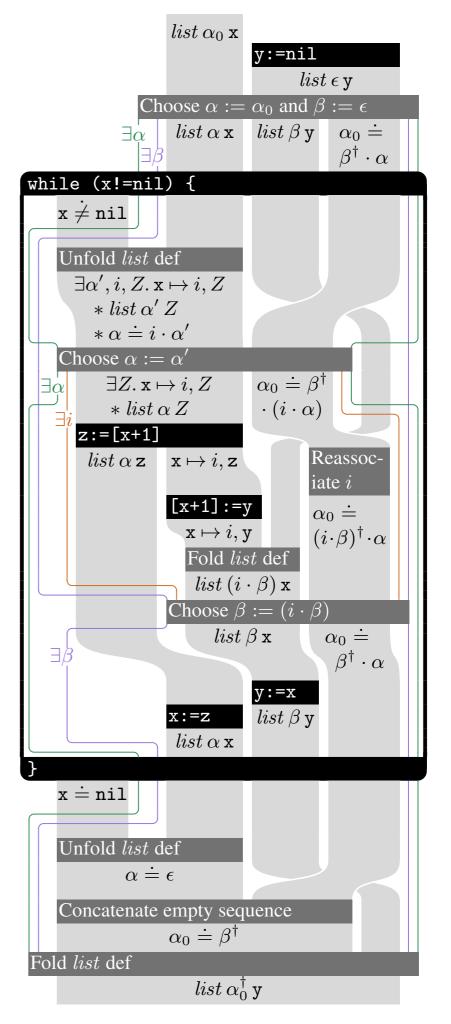
```
\{list \alpha_0 \mathbf{x}\}
  y:=nil;
  \{ list \alpha_0 \mathbf{x} * list \epsilon \mathbf{y} \}
  // Choose \alpha := \alpha_0 and \beta := \epsilon
  while \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{x} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
   (x!=nil) {
       \int \exists \alpha, \beta. \mathbf{x} \neq \mathtt{nil} * \mathit{list} \, \alpha \, \mathbf{x} * \mathit{list} \, \beta \, \mathbf{y} \Big\}
       \ast \alpha_0 \doteq \beta^{\dagger} \cdot \alpha
     // Unfold list def
      \int \exists \alpha, \beta. (\exists \alpha', i, Z. \mathbf{x} \mapsto i, Z * list \alpha' \mathbf{z})
        (*\alpha \doteq i \cdot \alpha') * list \beta y * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha
     // Choose \alpha := \alpha'
       \left\{ \begin{aligned} \exists \alpha, \beta, i, Z. \mathbf{x} &\mapsto i, Z * \textit{list} \; \alpha \, Z \\ * \; \alpha_0 &\doteq \beta^{\dagger} \cdot (i \cdot \alpha) * \textit{list} \; \beta \, \mathbf{y} \end{aligned} \right\} 
     z:=[x+1];
       \begin{cases} \exists \alpha, \beta, i. \ list \ \alpha \ \mathbf{z} \ast \mathbf{x} \mapsto i, \mathbf{z} \\ \ast \ \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) \ast \ list \ \beta \ \mathbf{y} \end{cases} 
      // Reassociate i
       \int \exists \alpha, \beta, i. \ list \ \alpha \ z * x \mapsto i, z
        \mathbf{a} = (i \cdot \beta)^{\dagger} \cdot \alpha * list \beta \mathbf{y} 
      [x+1]:=y;
       \exists \alpha, \beta, i. list \alpha \mathbf{z} * \mathbf{x} \mapsto i, \mathbf{y}
        (\ast \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha \ast \textit{list } \beta \text{ y})
     // Fold list def
      \exists \alpha, \beta, i. \ list \ \alpha \ z * \ list \ (i \cdot \beta) \ x
          * \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha
     // Choose \beta := (i \cdot \beta)
\{\exists \alpha, \beta. \, list \, \alpha \, \mathbf{z} * list \, \beta \, \mathbf{x} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \}
     y := x;
     \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{z} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
     x := z;
     \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{x} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
  }
      \exists \alpha, \beta. \mathtt{x} \doteq \mathtt{nil} * \mathit{list} \, \alpha \, \mathtt{x} * \mathit{list} \, \beta \, \mathtt{y}
     \ast \alpha_0 \doteq \beta^{\dagger} \cdot \alpha
  // Unfold list def
  \left\{ \exists \alpha, \beta. \, \alpha \doteq \epsilon * \textit{list} \, \beta \, \mathtt{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \right\}
  // Concatenate empty sequence
 \{\exists \beta. \ list \ \beta \ y * \alpha_0 \doteq \beta^{\dagger}\}
  // Fold list def
  \left\{ list \, \alpha_0^{\dagger} \, \mathbf{y} \right\}
```

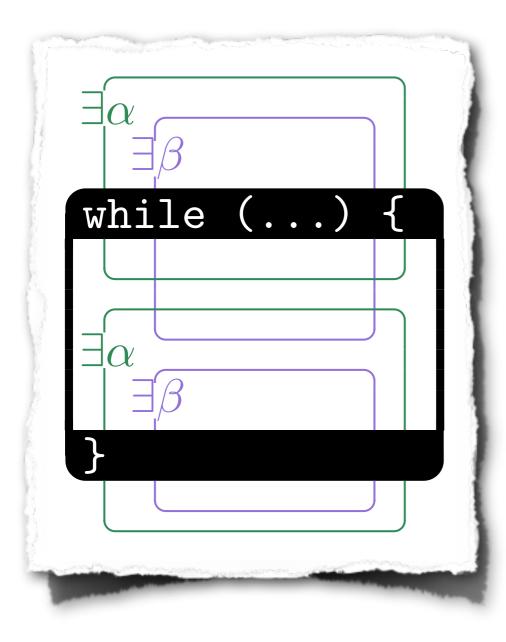
```
\{list \alpha_0 \mathbf{x}\}
 y:=nil;
  \{ list \alpha_0 \mathbf{x} * list \epsilon \mathbf{y} \}
 // Choose \alpha := \alpha_0 and \beta := \epsilon
 while \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{x} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \}
  (x!=nil) \{
      \int \exists \alpha, \beta. \mathbf{x} \neq \mathtt{nil} * \mathit{list} \, \alpha \, \mathbf{x} * \mathit{list} \, \beta \, \mathbf{y} \Big\}
       \ast \alpha_0 \doteq \beta^{\dagger} \cdot \alpha 
    // Unfold list def
     \exists \alpha, \beta. (\exists \alpha', i, Z. \mathbf{x} \mapsto i, Z * list \alpha' \mathbf{z})
       (*\alpha \doteq i \cdot \alpha') * list \beta y * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha
    // Choose \alpha := \alpha'
      \exists \alpha, \beta, i, Z. \mathbf{x} \mapsto i, Z * list \alpha Z
       \ast \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) \ast list \beta y 
    z := [x+1];
      \int \exists \alpha, \beta, i. \ list \ \alpha \ \mathbf{z} \ast \mathbf{x} \mapsto i, \mathbf{z}
        * \alpha_0 \doteq \beta^{\dagger} \cdot (i \cdot \alpha) * list \beta y
     // Reassociate i
      \exists \alpha, \beta, i. list \alpha \mathbf{z} * \mathbf{x} \mapsto i, \mathbf{z}
       \mathbf{k} * \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha * list \beta \mathbf{y}
     [x+1]:=y;
       \exists \alpha, \beta, i. list \alpha \mathbf{z} * \mathbf{x} \mapsto i, \mathbf{y}
       (\mathbf{x} + \alpha_0 \doteq (\mathbf{x} \cdot \beta)^{\dagger} \cdot \alpha * \text{list } \beta \mathbf{y})
    // Fold list def
      \exists \alpha, \beta, i. \ list \ \alpha \ z * \ list \ (i \cdot \beta) \ x
        * \alpha_0 \doteq (i \cdot \beta)^{\dagger} \cdot \alpha
    // Choose \beta := (i \cdot \beta)
\{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{z} * list \ \beta \ \mathbf{x} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \}
    y := x;
    \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{z} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha \}
    x := z;
    \{\exists \alpha, \beta. \ list \ \alpha \ \mathbf{x} * list \ \beta \ \mathbf{y} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
 ľ
     \exists \alpha, \beta. \mathbf{x} \doteq \mathtt{nil} * \mathit{list} \, \alpha \, \mathtt{x} * \mathit{list} \, \beta \, \mathtt{y}
    \dot{\mathbf{b}} * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha
 // Unfold list def
  \{\exists \alpha, \beta, \alpha \doteq \epsilon * list \beta y * \alpha_0 \doteq \beta^{\dagger} \cdot \alpha\}
 // Concatenate empty sequence
\{\exists \beta. \ list \ \beta \ y * \alpha_0 \doteq \beta^\dagger\}
 // Fold list def
  \left\{ list \, \alpha_0^{\dagger} \, \mathbf{y} \right\}
```

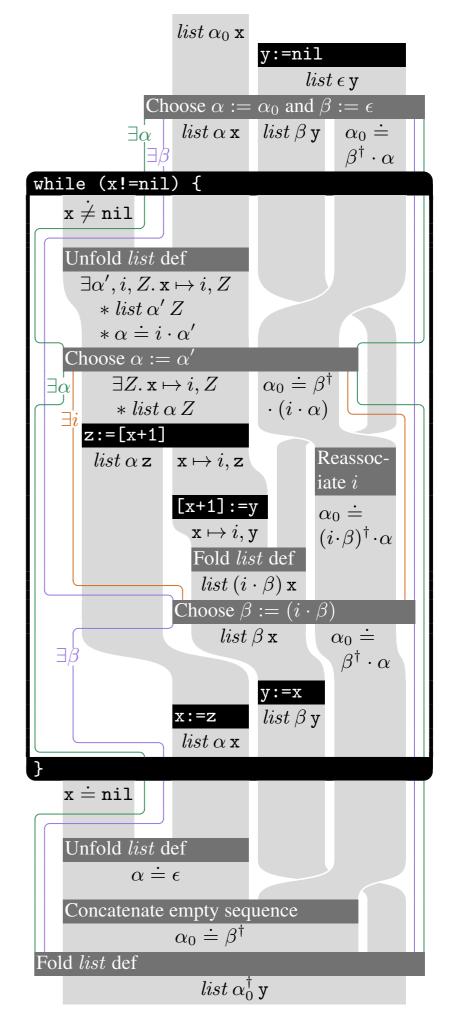




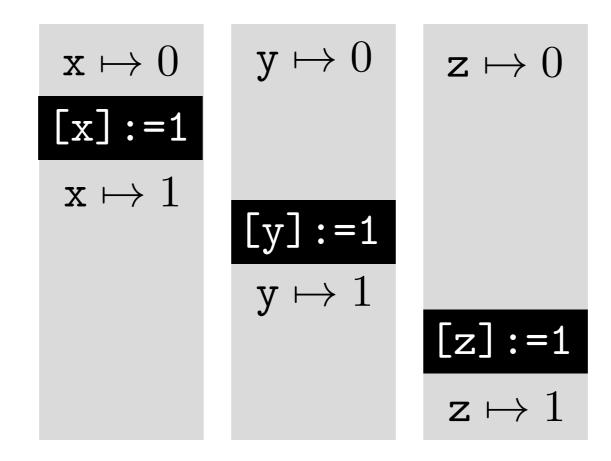


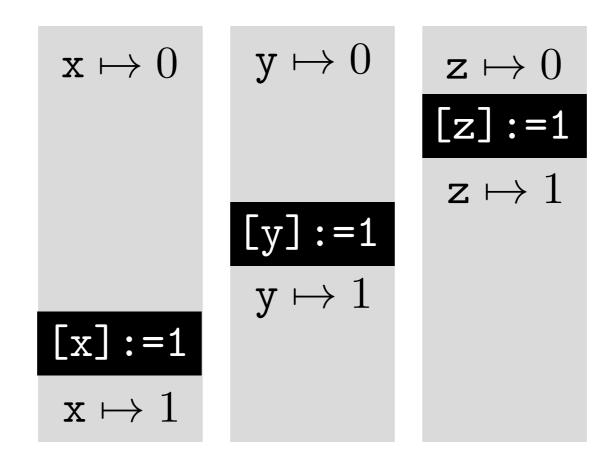






Dealing with program variables





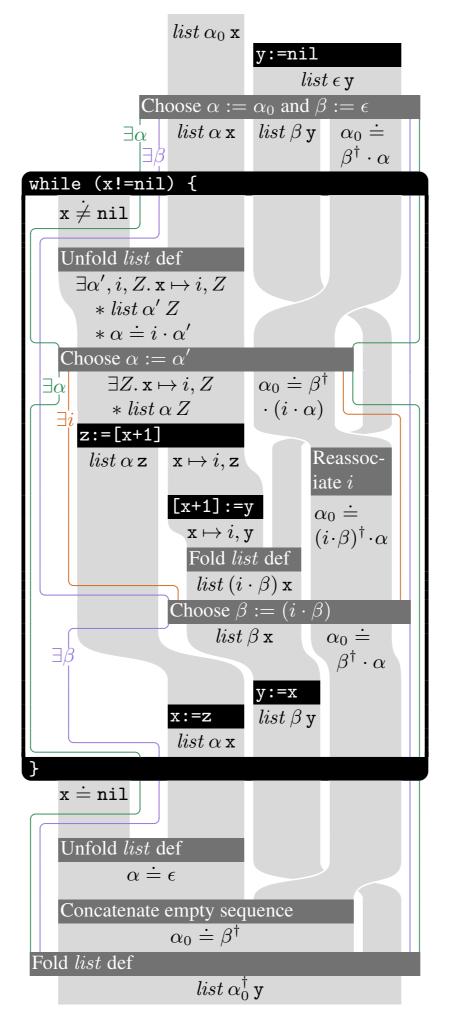
$$b = 1$$
 $c = 2$
 $a := b$
 $a = 1$ $b := c$
 $b = 2$

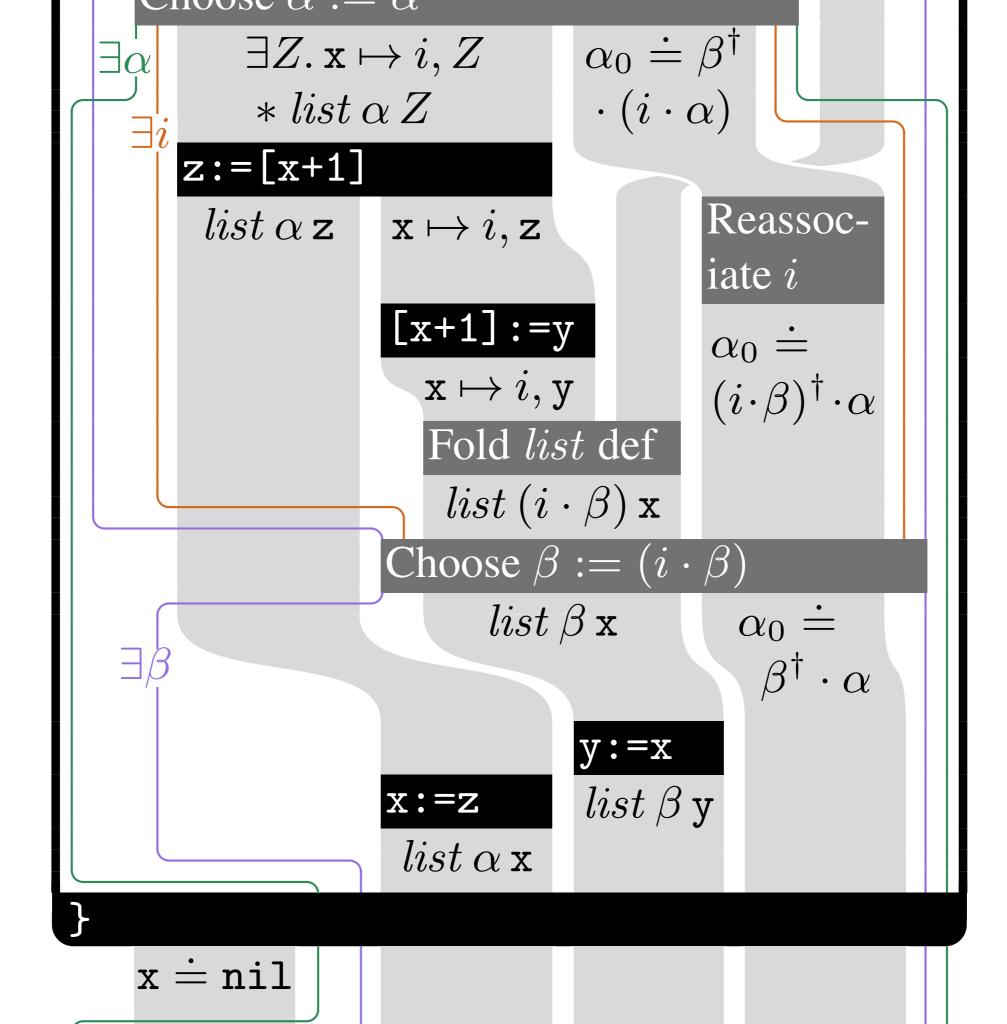
$$b = 1$$
 $c = 2$
 $b:=c$
 $b:=c$
 $b = 2$
 $a = 1$

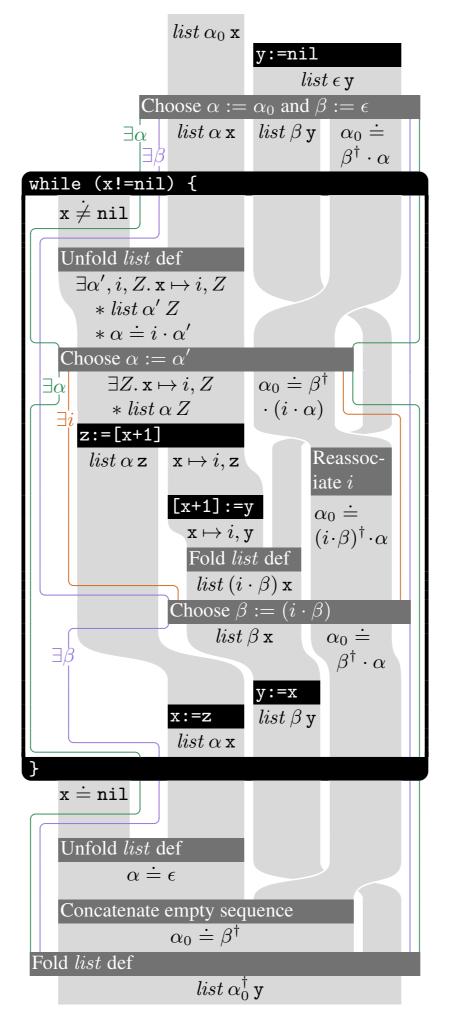
$$\frac{\{P\} C \{Q\}}{\{P * R\} C \{Q * R\}}$$
providing $fv(R) \cap modified(C) = \{\}$

$$b = 1$$
 $c = 2$
 $a:=b$
 $a = 1$
 $b:=c$
 $b = 2$

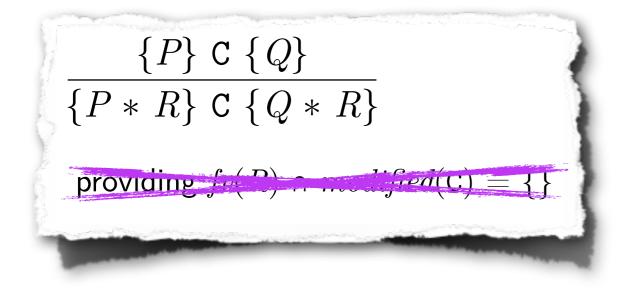
$$b = 1$$
 $c = 2$
 $b:=c$
 $b:=c$
 $b = 2$
 $a = 1$





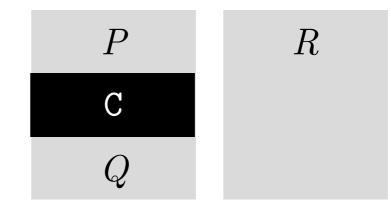


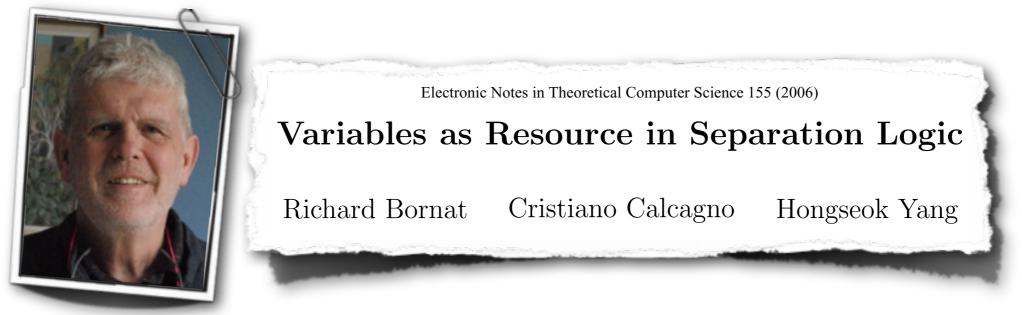
$$\frac{\{P\} C \{Q\}}{\{P * R\} C \{Q * R\}}$$
providing $fv(R) \cap modified(C) = \{\}$



PRС Q

 $\frac{\{P\} \ \mathsf{C} \ \{Q\}}{\{P \ast R\} \ \mathsf{C} \ \{Q \ast R\}}$ providing fr(D) Cent(C)





$$b = 1$$
 $c = 2$
 $a := b$
 $a = 1$ $b := c$
 $b = 2$

$$b = 1$$

 $a:=b$
 $a = 1$
 $b:=c$
 $b = 2$

a
 b = 1
 b
 c = 2

$$\frac{1}{2}$$
 c

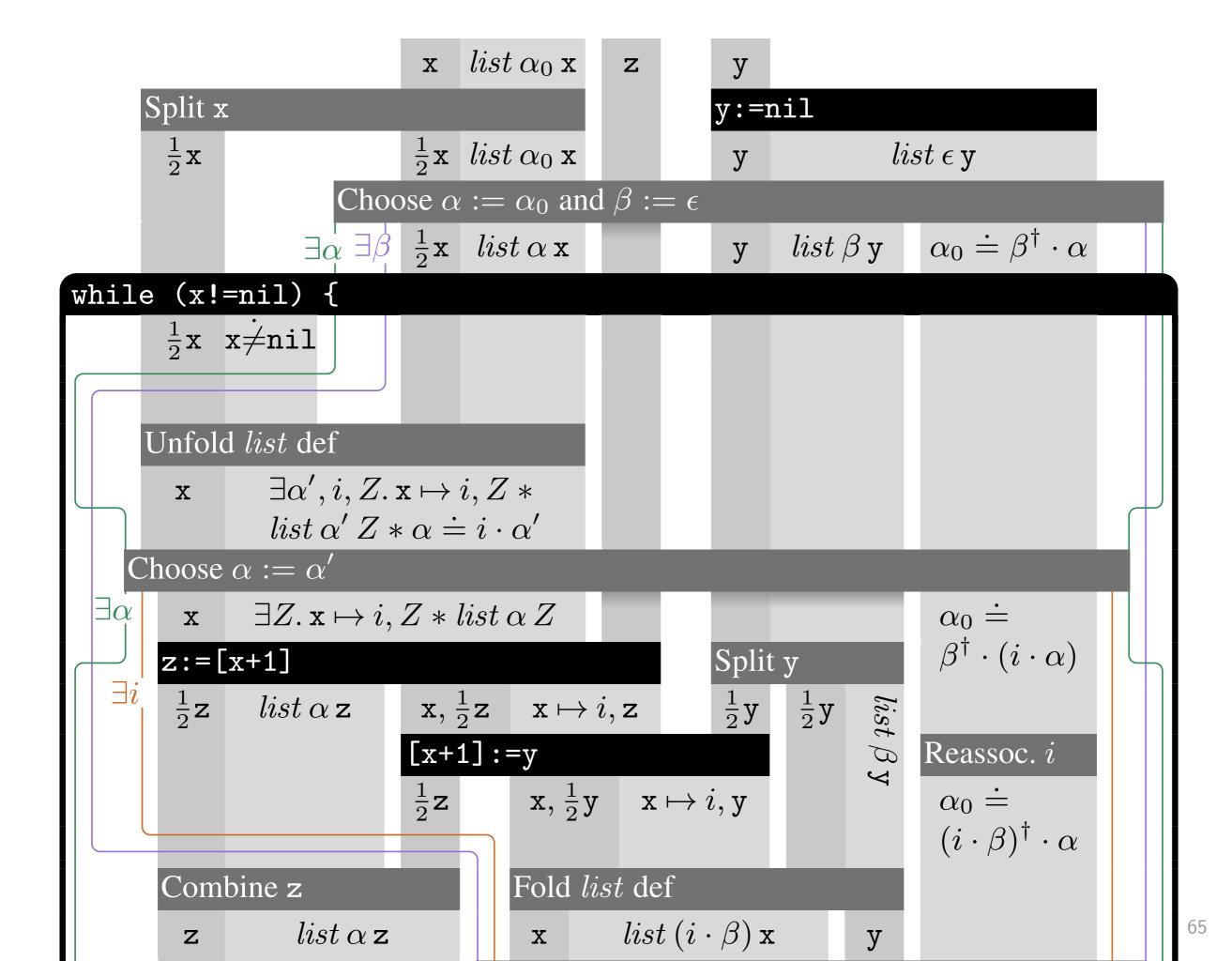
 a:=b
 ...
 b
 ...
 ...

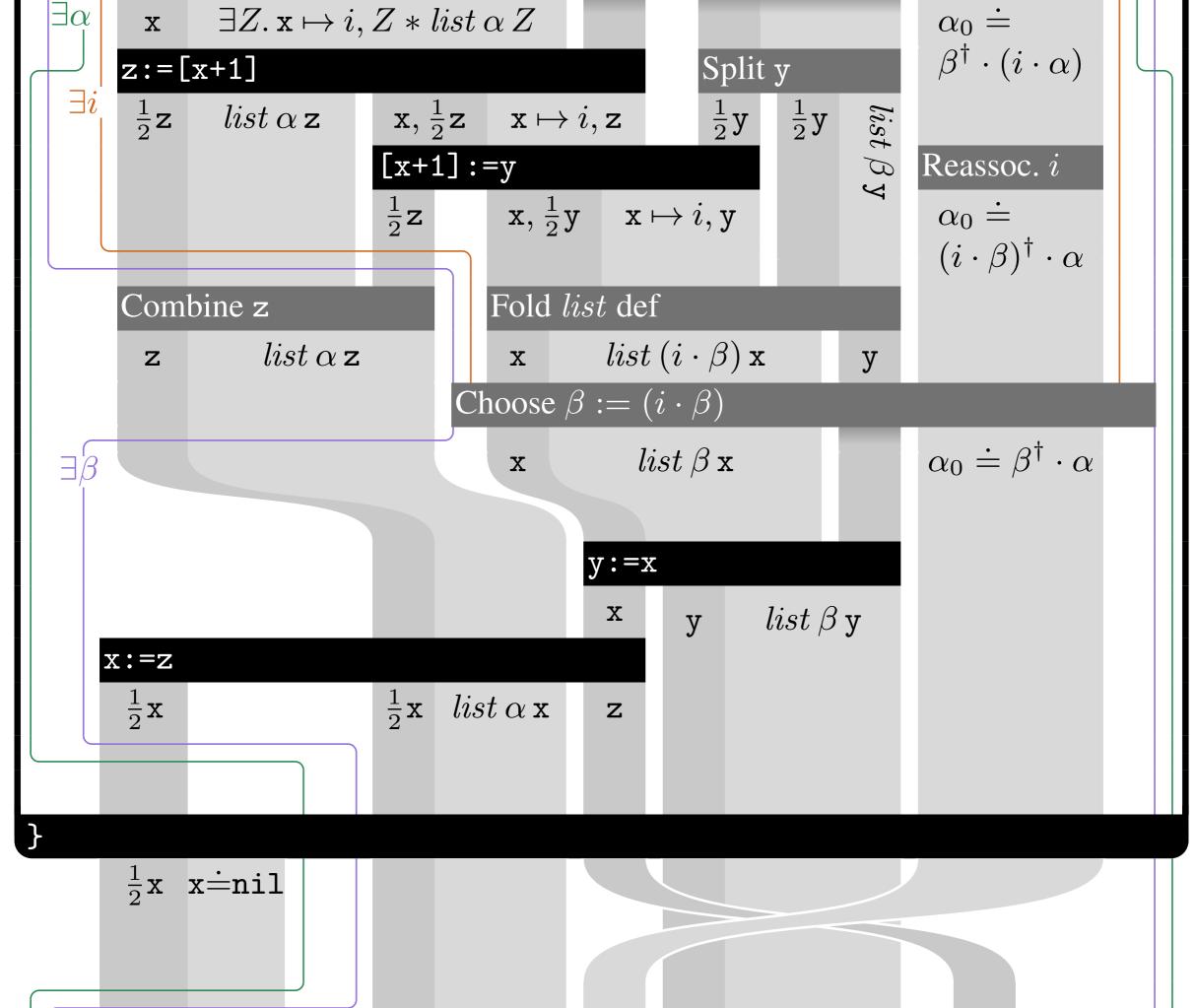
 a
 a = 1
 b
 ...
 b:=c

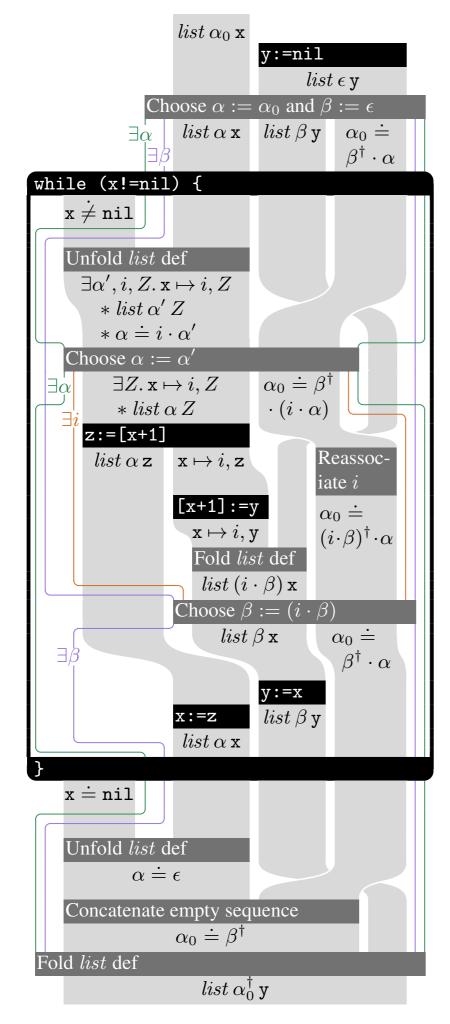
 b
 b=2
 $\frac{1}{2}$ c

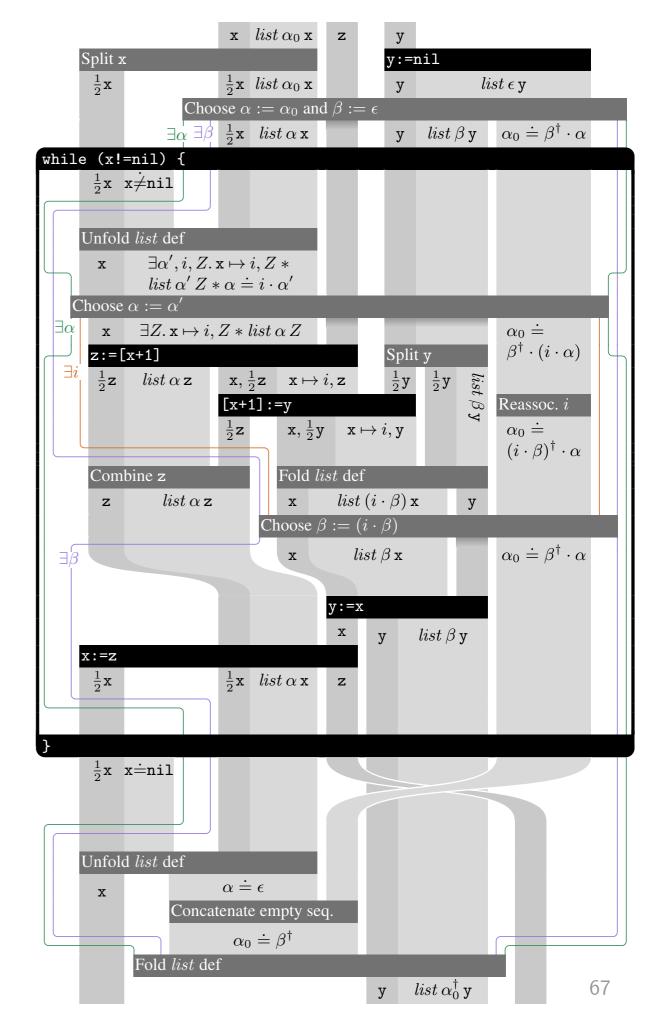
$$\frac{1}{2}c \ c > 1$$
a $b = 1$ b $c = 2$ $\frac{1}{2}c$
a $a = 1$ b
a $a = 1$ b
b $b = c$
b $b = 2$











Future directions

Where now?

- Define two-dimensional syntax of ribbon proofs, a formal semantics, and a collection of proof rules
- Graphical user interface for constructing and checking ribbon proofs
- Application to more exotic program logics
- Connections to bigraphs, string diagrams, proof nets

Ribbon proofs are...

an alternative to proof
 readable, flexible, and attractive

- applicable to separation
 logic (and descendants)
- less repetitive than proof outlines, so more scalable