=]

Towards Verified
Hardware Compilation

John Wickerson

Imperial College London

FMATS Workshop, Microsoft Research Cambridge, 24 Sep 2018

John Wickerson Towards Verified Hardware Compilation

Collaborators

Nadesh Ramanathan George Constantinides

Towards Verified Hardware Compilation

Hardware Compilation?

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?

e Also called "high-level synthesis".

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?

e Also called "high-level synthesis".

e Basic idea: translate C (or OpenCL, or ...) to Verilog.

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?

e Also called "high-level synthesis".
e Basic idea: translate C (or OpenCL, or ...) to Verilog.

e Custom hardware can be 10x faster and 10x more power-

efficient than running software on a processor.

3000 100
3 2250 o+t 75
e c (©
2 1500 2= 50
O O o
o
£ 750 re 25
0 0
CPU GPU FPGA CPU GPU FPGA

(1) S.O. Settle, "High-performance Dynamic Programming on FPGAs with OpenCL", in High
Performance Extreme Computing (HPEC), 2013.

Towards Verified Hardware Compilation

Hardware Compilation?

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?

e Use of hardware compilers has grown ~20x since 2011.(

(2) S. Raje, "Extending the power of FPGAs to software developers", in Field-Programmable Logic and
Applications (FPL), 2015. Keynote.

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?

e Use of hardware compilers has grown ~20x since 2011.(

e There are ~19x more software engineers than hardware

engineers.(®

(2) S. Raje, "Extending the power of FPGAs to software developers", in Field-Programmable Logic and
Applications (FPL), 2015. Keynote.
(3) United States Bureau of Labor Statistics, "Occupational Outlook Handbook, 201617 Edition", 2015.

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?

e Use of hardware compilers has grown ~20x since 2011.(

e There are ~19x more so
engineers.(®

'ware engineers than hardware

e A user survey found "Lack of C-to-RTL formal verification" to
be the biggest problem with hardware compilation.(

(2) S. Raje, "Extending the power of FPGAs to software developers", in Field-Programmable Logic and
Applications (FPL), 2015. Keynote.

(3) United States Bureau of Labor Statistics, "Occupational Outlook Handbook, 201617 Edition", 2015.

(4) Deep Chip, “Survey on HLS verification issues and power reduction”, 2014.
http://www.deepchip.com/items/0544-03.html

Towards Verified Hardware Compilation

Hardware Compilation of
Concurrency

John Wickerson Towards Verified Hardware Compilation

Atomic operations

John Wickerson Towards Verified Hardware Compilation

Atomic operations

e Atomics must appear to execute instantaneously to
other threads

John Wickerson Towards Verified Hardware Compilation

Atomic operations

e Atomics must appear to execute instantaneously to
other threads

e Atomics provide a variety of ordering guarantees

John Wickerson Towards Verified Hardware Compilation

Atomic operations

e Atomics must appear to execute instantaneously to
other threads

e Atomics provide a variety of ordering guarantees

x = 1; r = atomic_load(&y,
atomic_store(&y, 1, memory order acquire);
memory order release); if (r==1) { print(x); }

John Wickerson Towards Verified Hardware Compilation

Atomic operations

e Atomics must appear to execute instantaneously to
other threads

e Atomics provide a variety of ordering guarantees

x = 1; r = atomic_load(&y,
atomic_store(&y, 1, memory order acquire);
memory order release); if (r==1) { print(x); }

rl = atomic load(&x, atomic_store(&x, 1,
memory order relaxed); memory order relaxed);
r2 = atomic load(é&x,
memory order relaxed);

Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

e x86 proved tricky to formalise correctly.(5.6)

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

e x86 proved tricky to formalise correctly.(5.6)

e Bug found in deployed "IBM Power 5" processors.(?)

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.
(7) Alglave et al., CAV, 2010.

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

e x86 proved tricky to formalise correctly.(5.6)
e Bug found in deployed "IBM Power 5" processors.(?)

e C++ specification did not guarantee its own key property.®

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.
(7) Alglave et al., CAV, 2010.

(8) Batty et al., POPL, 2011.

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

e x86 proved tricky to formalise correctly.(:6)
e Bug found in deployed "IBM Power 5" processors.(?)
e C++ specification did not guarantee its own key property.®

e Behaviour of NVIDIA's graphics processors contradicted their
own programming guide.(®

Sarkar et al., POPL, 20009.
Owens et al., TPHOLs, 2009.
Alglave et al., CAV, 2010.
Batty et al., POPL, 2011.
Alglave et al., ASPLOS, 2015.

John Wickerson Towards Verified Hardware Compilation

Compiling atomics

John Wickerson

Towards Verified Hardware Compilation

Compiling atomics

r = atomic load(&y,
memory order acquire);

John Wickerson Towards Verified Hardware Compilation

Compiling atomics

r = atomic load(&y,

. **not supported**
memory order acqulre);

John Wickerson

Towards Verified Hardware Compilation

Compiling atomics

r = atomic load(&y,
memory order acquire);

John Wickerson Towards Verified Hardware Compilation

Compiling atomics

r = atomic load(&y,
memory order acquire);

lock();

r =Yy
unlock();

John Wickerson

Towards Verified Hardware Compilation

Compiling atomics

r = atomic load(&y,
memory order acquire);

John Wickerson

Towards Verified Hardware Compilation

Compiling atomics

r = atomic load(&y,
memory order acquire);

John Wickerson Towards Verified Hardware Compilation

Thread 1 -

»

Thread 2 Thread 3

John Wickerson Towards Verified Hardware Compilation

Atomic operations

e Atomics must appear to execute instantaneously to
other threads

e Atomics provide a variety of ordering guarantees

John Wickerson Towards Verified Hardware Compilation

Atomic operations

e Atomics must appear to execute instantaneously,to
other threads

e Atomics provide a variety of ordering guarantees

John Wickerson Towards Verified Hardware Compilation

Atomic operations

e Atomics must appear to execute instantaneously,to
other threads

e Atomics provide a variety of ordering guarantees

?

John Wickerson Towards Verified Hardware Compilation

John Wickerson Towards Verified Hardware Compilation

rl = atomic load(é&x, atomic_store(&x, 1,
memory order relaxed); memory order relaxed);

r2 = atomic load(é&x, - B
memory order relaxed);

John Wickerson

rl

r2

r2

Towards Verified Hardware Compilation

atomic_ load (&x,

memory order relaxed);

atomic_ load (&x,

memory order relaxed);

atomic_store(&x, 1,
memory order relaxed);

John Wickerson

rl

r2

= atomic_load(&x,
memory order relaxed);

= atomic load(é&x,
memory order relaxed);

Towards Verified Hardware Compilation

rl = x;
r2 = x;
1| 2| 3| 4
rl = x; |OadX
r2 = x; ‘ load x

atomic_store(&x, 1,
memory order relaxed);

John Wickerson Towards Verified Hardware Compilation

rl = atomic load(é&x, atomic_store(&x, 1,
memory order relaxed); memory order relaxed);

r2 = atomic load(é&x,
memory order relaxed);

rl = x; x = 1;
r2 = x;
1| 2| 3| 4 1
rl = x; load x X = 1; store x
r2 = x; ‘ load x

John Wickerson

rl

r2

Towards Verified Hardware Compilation

= atomic_load(&x,
memory order relaxed);

= atomic load(é&x,
memory order relaxed);

rl = x;

r2 = x;
11 2
rl = x; load x
r2 = Xx; load x

atomic_store(&x, 1,

memory order relaxed);

1

store X

John Wickerson

rl

r2

r2

Towards Verified Hardware Compilation

atomic_ load (&x,

memory order relaxed);

atomic_ load (&x,

memory order relaxed);

atomic_store(&x, 1,

memory order relaxed);

1

store X

John Wickerson Towards Verified Hardware Compilation

rl = atomic load(é&x, atomic_store(&x, 1,
memory order relaxed); memory order relaxed);

r2 = atomic load(é&x, - B
memory order relaxed);

r2

Il
i
~
V)

1

X = 1; store x

John Wickerson Towards Verified Hardware Compilation

rl = atomic load(é&x, atomic_store(&x, 1,
memory order relaxed); memory order relaxed);

r2 = atomic load(é&x, - B
memory order relaxed);

r0 = y+ytyty+y+y;
rl = x; x = 1;
r2 = x/a;

1

X = 1; store x

John Wickerson

rl = atomic load(é&x,
memory order relaxed);

r2 = atomic load(é&x,
memory order relaxed);

r0 = y+tyty+y+yty;

Towards Verified Hardware Compilation

atomic_store(&x, 1,

memory order relaxed);

rl = x; x = 1;
r2 = x/a;
11 21 3| 4| 5]...] 36 1
load y x = 1; |store x
load y
ro = load y
yt+ty+y+
y+y+y; oady
oad y
oad y
rl = x; oad X
load x
r2 = x/a; .
divide

Towards Verified Hardware Compilation

Constraints on scheduling

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling

e Two atomic accesses to the same location cannot be reordered.

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling

e Two atomic accesses to the same location cannot be reordered.

e An atomic acquire load cannot be reordered with accesses that
come later in program order

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling

e Two atomic accesses to the same location cannot be reordered.

e An atomic acquire load cannot be reordered with accesses that
come later in program order

e An atomic release store cannot be reordered with accesses that
come earlier in program order

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling

e Two atomic accesses to the same location cannot be reordered.

e An atomic acquire load cannot be reordered with accesses that
come later in program order

e An atomic release store cannot be reordered with accesses that
come earlier in program order

e An atomic SC access cannot be reordered with any other
access.

John Wickerson Towards Verified Hardware Compilation

Results

o
(-
§ n Design points
>~ Unsound
o B —&— Weak atomics
S >— SC atomics
S SC
- | Mutexes
5 5 OMP~—criticals
o O OMP-atomics
n O
v
Q
Q pa—
N
58
1Y) 8 e—,
(73] V=
N TV .
o O T
S Q-
o
w0
o
Q]
| 1 | |
0 5 10 15 20
Threads

(10) Ramanathan et al., "Hardware Synthesis of Weakly Consistent C Concurrency"”, FPGA, 2017

Towards Verified Hardware Compilation

Checking correctness

John Wickerson Towards Verified Hardware Compilation

Checking correctness

e Ask Memalloy(" for an execution that is forbidden

according to the C++ standard but is allowed by our
scheduling constraints.

(11) Wickerson et al., "Automatically Comparing Memory Consistency Models", POPL, 2017

John Wickerson Towards Verified Hardware Compilation

Checking correctness

e Ask Memalloy(" for an execution that is forbidden

according to the C++ standard but is allowed by our
scheduling constraints.

1 week
1 day

1 hour

1 min.

Solve time

1 sec.

ot

|
50

Event count: 3 4 6 9

(11) Wickerson et al., "Automatically Comparing Memory Consistency Models", POPL, 2017

John Wickerson Towards Verified Hardware Compilation

Checking correctness

e Ask Memalloy(" for an execution that is forbidden

according to the C++ standard but is allowed by our
scheduling constraints.

1 week
1 day

1 hour

1 min.

Solve time

1 sec.

Event count: 3 4 5 6 7 o) 9

e Memalloy uses the Alloy model checker, which in turn uses a
SAT-solving backend.

(11) Wickerson et al., "Automatically Comparing Memory Consistency Models", POPL, 2017

John Wickerson Towards Verified Hardware Compilation

Can we do better?

John Wickerson Towards Verified Hardware Compilation

rl = atomic load(é&x, atomic_store(&x, 1,
memory_ order_ relaxed); memory order relaxed);

r2 = atomic_ load(&x,
memory order relaxed);

11 2 1
rl = x; load x X = 1; store X

r2 = x; |load x

John Wickerson Towards Verified Hardware Compilation

rl = atomic load(é&x,
memory order relaxed);

r2 = atomic_ load(&x,
memory order relaxed);

1] 2
rl = x; |load x

r2 = x; |load x

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling

x = 1; r = atomic_load(&xr, s = atomic_load(&yr,
memory order acquire); memory order acquire);
atomic_store(&xr, 1,
memory order release); if (r==1) { print(x); } if (s==1) { print(y); }
y = 1;

atomic_store(&yr, 1,
memory order release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling

X = 1; r = atomic_load(&xr, s = atomic_load(&yr,
memory order acduire); memory order acduire);
atom\¢c storel&xr, 1,

release); || if (r==1) { print(x); } if (s==1) { print(y); }

v
a;:;;::EIZEE?&yr, 1,

memory order release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling

x = 1; r = atomic_load(&xr, s = atomic_load(&yr,
memory order acquire); memory order acquire);
atomic_store(&xr, 1,
memory order release); if (r==1) { print(x); } if (s==1) { print(y); }
y = 1;

atomic_store(&yr, 1,
memory order release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling

X = 1; ";7= atomic_load(&xr, s = atomic_load(&yr,
‘-\\\\\\ﬁ? memory order acquire); memory order acquire);
atomic_store(&xr, 1,
memory order release); if (r==1) { print(x); } if (s==1) { print(y); }
y = 1;

atomic_store(&yr, 1,
memory order release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling

X = 1; r = atomic_load(&xr, s = atomic_load(&yr,
‘-\\\\\\ﬁ? memory order acquire); memory order acquire);
atomic_storef&xr, 1,
memory order release); if (r==1) { print(x); } if (s==1) { print(y); }
y = 1;

atomic_store(&yr, 1,
memory order release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
ceataxr,)= = atomic_loadti,

y_order_ac%tire); memory_order_acﬁtire);

X = 1;

atm&xr, 1,
memory order_release) ;4 if (r==1) { print(x); } if (s==1) { print(y); }
Yﬂ;\% /

atomic store(&yr, 1,
memory order release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling

X = 1; r = atomic_load(&xr, s = atomic_load(&yr,
memory order acduire); memory order acduire);
atomic_storef&xr, 1,

memory_order_release); (| if (r==1) { print(x); } if (s==1) { print(y); }

y = 1;
a;:;;::EIZEE?&yr, 1,

memory order release);

John Wickerson Towards Verified Hardware Compilation

Longer paths too

P
X = 1; r = atom;;:I;;a7&y, s = atomic_load(&z,
memory order ag¢quire); memory orde c%:ire);
atomic_store(&y, 1,

memory order release); || if (r==1) { { print(x); }
atomic_store(&z, 1,
memory order (release);

} o

John Wickerson Towards Verified Hardware Compilation

. .

3 ’

3 25 o . *
P o vl g
)

Qoo T e e e L H e LT
345 6(23 4523451345 6(23 45|23 45|/3456|2345(2345]|%
chaining | reduction |distribution| chaining | reduction |distribution| chaining | reduction |distribution | =

Treiber stack SPSC buffer Michael-Scott queue 2

(12) Ramanathan et al., "Concurrency-Aware Thread Scheduling for High-Level Synthesis", FCCM, 2018

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

X = 1; r = atomic_load(&y, s = atomic_load(&z,
memory order acquire); memory order acquire);
atomic_store(&y, 1,
memory order release); (| 1f (r==1) { if (s==1) { print(x); }
atomic_store(&z, 1,
memory order release);

}

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

X = 1;

atomic_store(&y, 1,
memory order release);

atomic_store(&y, 1,
memory order release);

r

r

}

if

= atomic_load(&y,
memory order acquire);
= atomic_load(&y,
memory order acquire);

(r==1) {
atomic_store(&z, 1,
memory order release);
atomic_store(&z, 1,
memory order release);

s = atomic_load(&z,
memory order acquire);

s = atomic_load(&z,
memory order acquire);

if (s==1) { print(x); }

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

X = 1;
atm &y, 1,

memory order release);
atomic_store(&y, 1,
memory order release);

r

r

}

if (r==1)
atomic_store(&z; 1,

atomic_store(&z,

— &Y,
memory order acgjire);
atomic_load(&y,

memory order acquilre);

{ 1/

memory order release);
1,
memory order release);

S atomic_ load(

if (s==1) { print(x); }

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

X = 1;
atm &y, 1,

memory order release);
atomic_store(&y, 1,
memory order release);

r

r

}

if (r==1)
atomic_store(&z

atomic_store(&z,

— &Y,
memory order acgjire);
atomic_load(&y,

memory order acquilre);

{
—

memory order release);
1,
memory order release);

atomic load(&z,
memory order acquilre);

S

atomic_load(&z
memory or _acqééfe);

}

S

s==1) { print(x);

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r = — &Y, s = atomic_load(&z,
{ memory order acguyire); memory order/dcqulre) ;
r = atomic_load(&y, S

X = 1;
memory order acqulre); rder acquife);
atomic_store(&y, 1,

memory order release); (| 1f (r==1) { s==1) { print(x); }
atomic_store(&y, 1, atomic_store(&z, A, .
memory order release); memory_order_r"ggséfjl
atomic_store(&z; 1,

memory order release);

}

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

X = 1;
atm &y, 1,

memory order release);
atomic_store(&y, 1,
memory order release);

r = _ &Y,
{ memory order ac
r = atomic_load(&y,

memory order acquire);

ire);

if (r==1) {
atomic_ store(&z,
memory order r
atomic_store(&z; 1,
memory order release);

}

s = atomic_load(&z,
memory order acquilre);

s = atomic_load(&z
memory orde chETE);

) { print(x); }

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

X = 1;

memory order release);
atomic_store(&y, 1,
memory order release);

atm &y, 1,

r

i

}

atomic load(&y,

I3

_order acquire);

memory order acquire);
£ (r==1) {
atomic_store(&z, 1,
memory order release);
atomic_store(&z, 1,
memory order release);

s = atomic_load(&z,

if (s==1) { print(x); }

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r atomic load(&y, s = atomic_load(&z,
_order acquire); memory order acquire);
X = 1; '—;—_ggiiizizizaai&y, s = atomic_load(&z
i\“~\\\\7?(///’///”— memory order acquire); memory or _acqééfe);
atomic_store(&y, 1,

memory order release); (| 1f (r==1) { 1 s==1) { print(x); }
atomic_store(&y, 1, atomic_store(&z;—TT"———

memory order release); memory order release);
atomic_store(&z, 1,
memory order release);

I3

}

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

x = 1:

memory order release);
atomic_store(&y, 1,
memory order release);

atm &y, 1,

r

i

}

_order acquire);

atomic load(&y,

I3

memory order acqwire);

£ (r==1) {

atomic_store(&z, Y,
memory_order_r"ggséfjl
atomic_store(&z; 1,
memory order release);

S

atomic_ load(

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

X = 1;

memory order release);
atomic_store(&y, 1,
memory order release);

atm &y, 1,

r atomic load(&y,

_order acquire);

memory order acgyire);

I3

if (r==1) {
atomic_store(&z, Y,
memory order relfease);
atomic_store(&z; 1,
memory order release);

}

s = atomic_load(&z,
memory order acquilre);

s = atomic_load(&z
memory orde chETE);

) { print(x); }

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r = atomic_ &y, s = atomic_load(&z,
ory order acqhire); '

r = atomic_load(&y,
memory order acquilre);

lease); if (r==1) { /’ if (s==1) { print(x); }
1

atomic_store(&y, 1, atomic_store(&z; 1,
memory order release); memory order release);

atomic_store(&z, 1,
memory order release);

}

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r = atomic_ &y, s = atomic_load(&z,
//)mem65§:§;é:?jécq ire); memory order acquire);
1r = atomic_load(&y, s = atomic_load(&z

_vau\lre) ;

memory order acquire); memory or

lease); || if (r==1) { | s==1) { print(x); }
atomic_store(&y, 1, atomic_store(&zr—TT"———
memory order release); memory order release);

atomic_store(&z, 1,
memory order release);

}

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

lease);
atomic _store(&y, 1,
memory order release);

r

i

}

r = atomic_ &Yy,
ory order acquire);

= atomic_load(&y,
memory order acquilre);

£ (r==1) {
atomic_ store(&z,
memory order r
atomic_store(&z; 1,
memory order release);

s = atomic_load(&z,
memory order acquilre);

s = atomic_load(&z
memory orde chETE);

) { print(x); }

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

tore(&y, 1

er release);

atomic_store(&y, 1,
memory order release);

r

r

= atomic_load(&y,
memory order acquilre);
= &Y,

memory order acquire);

if (r==1) {
atomic_store(&z, 1,

memory order release);

atomic_store(&z, 1,

}

memory order release);

s = atomic_load(&z,

if (s==1) { print(x); }

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

tore(&y, 1

er release);

atomic_store(&y, 1,
memory order release);

r

r

if (r==1) {

atomic store(s&z ~—t— |

atomic_store(&z,

}

= atomic_load(&y,
memory order acquilre);
= &Y,

memory order acquire);

memory order release);
1,
memory order release);

s = atomic_load(&z,
memory order acquilre);

s = atomic_load(&z
memory or _acqééfe);

s==1) { print(x); }

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r = atomic_load(&y, s = atomic_load(&z,
memory order acquire); memory order/dcqulre) ;

X = 1; r = — &Yy, S &z,
{ memory order acqwire); rder acquife);

atomicstore(&y, 1

er release); || 1f (r==1) { ' s==1) { print(x); }
atomic_store(&y, 1, atomic_store(&z, Y, .
memory order release); memory_order_r"ggséfjl
atomic_store(&z; 1,

memory order release);

}

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

tore(&y, 1

er release);

atomic_store(&y, 1,
memory order release);

r

r

}

atomic load(&y,
memory order acquilre);

&Y
memory order acgyire);

if (r==1) {
atomic_store(&z, Y,

memory order relfease);

atomic_store(&z; 1,

memory order release);

s = atomic_load(&z,
memory order acquilre);
s = atomic_load(

memory orde

&z
chEFE);

) { print(x); }

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

tore(&y, 1

er release);

atomic_store(&y, 1,
memory order release);

r = atomic_load(&y,
memory order acquilre);
r = &Y,

memory order acgyire);

if (r==1) {
atomic_store(&z, Y,
memory order relfease);
atomic_store(&z; 1,
memory order release);

}

s = atomic_load(&z,
memory order acquilre);

s = atomic_load(&z
memory orde cqsffe);

) { print(x); }

e Our solution: enumerate only the "primary" paths.

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r = atomic_ &y, s = atomic_load(&z,
ory order acquire); memory order/dcqulre) ;

r = atomic_load(&y, S
memory order acquilre); rder acquife);

lease); || if (r==1) { s==1) { print(x); }
atomic_store(&y, 1, atomic_store(&z, A, ’
memory order release); memory_order_r"ggséfjl
atomic_store(&z; 1,

memory order release);

}

John Wickerson Towards Verified Hardware Compilation

scaling analysis

atomic _store(&y, 1,
memory order release);

John Wickerson Towards Verified Hardware Compilation

scaling analysis

atomic _store(&y, 1,
memory order release);

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r = atomic_load(&y,
memory order acagyire);

r = atomic_load(&y,
memory order acquire);

if (r==1) {
atomic_store(&z, A,
memory order rglease);
atomic_store(&z, 1,
memory order release);

}

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

r = atomic_load(&y,
memory order: acqyi
r = atomic_ld%d(&y,

memory ordér-'acquire);
X :

if (r==1) {{ q
atomic_store(&z,
memory_ordeég r
atomic_store(&z, 1,
memory order release);

}

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

s = atomic_load(&z,
memory order acquilre);

s = atomic_load(&z,
memory order acquife);

if (s==1) { print(x); }

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis

s = atomic_load(&z,
memory order acquilre);

s = atomic_load(&z,
memory order_ acguife);

<
if (s==1) { print(x); }

John Wickerson

Towards Verified Hardware Compilation

Poorly scaling analysis

atomic _store(&y, 1,
memory order release);

r = atomic_load(&y,
memory_orderiéc '
r = atomic_lodd(&y,
memory_ordd?&éc@u re);

-,’
3

if (r==1) { {q)
atomic_storée(&z,
memory_ordeg r
atomic_store(&z, 1,
memory order release);

}

s = atomic_load(&z,

memory order acq

s = atomic_load(&z,

memory order_ acguife);
<

if (s==1) { print(x); }

Lre);

John Wickerson Towards Verified Hardware Compilation

Checking correctness

e As before, we use Memalloy to check that our constraints are
strong enough to guarantee C++ semantics.

John Wickerson Towards Verified Hardware Compilation

Where next?

e

PROGRAMMING LANGUAGE

£ XILINX |

John Wickerson Towards Verified Hardware Compilation

Where next?

C++

PROG RAMMING LANGUAGE

£ XILINX |

e Heavyweight: a fully verified hardware compiler (e.g. a
Verilog backend for CompCert).

John Wickerson Towards Verified Hardware Compilation

Where next?

C++

PROGRAMMING LANGUAGE

£ XILINX |

e Heavyweight: a fully verified hardware compiler (e.g. a
Verilog backend for CompCert).

e Lightweight: automatically generate and verify
SystemVerilog assertions, a la RTLCheck.(13)

(13) Manerkar et al., "RTLCheck: Verifying the Memory Consistency of RTL Designs", MICRO, 2017.

Towards Verified
Hardware Compilation

John Wickerson

Imperial College London

FMATS Workshop, Microsoft Research Cambridge, 24 Sep 2018

