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We’re interested in proving the safety of imperative 
programs, both concurrent and sequential. The 
‘Explicit Stabilisation’ technique that I’m going to 
propose isn’t intended to help you prove more 
programs. But it will help you prove programs more 
*modularly*.



Talk outline

‣ Background: Rely-Guarantee

‣ Two challenges:

‣ Modular specifications for concurrent libraries

‣ Modular specification for a memory manager

‣ The solution: Explicit Stabilisation
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I’ll begin with an introduction to the Rely-Guarantee 
method, and what stability means. Then we’ll look at 
two problems with the modularity of Rely-Guarantee, 
that will appear to you quite disparate. 
Then we’ll introduce our new approach to stability, 
called Explicit Stabilisation, and see how it tackles 
both of these problems.



Rely-Guarantee
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⟨c2⟩

Thread 1
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⟨c4⟩

Thread 2
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⟨c5⟩

⟨c6⟩

Thread 3

As a gentle introduction consider a concurrent 
program with three threads, each executing two 
atomic instructions. This tiny program can be 
sequentialised in 90 different ways!



Rely-Guarantee
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The rely-guarantee method tames this combinatorial 
explosion through abstraction. We treat each thread 
as being of the following form...



‣ G = set of all the state 
transitions the thread can do

‣ R = set of all the state 
transitions other threads can 
do (i.e. union of all their Gs)

Rely-Guarantee

⟨c1⟩

⟨c2⟩

Thread 1

R*

R*

R*
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... insert between each command an instruction that 
represents an arbitrary sequence of instructions by 
other threads.

More formally, G is the set of all state transitions a 
thread can do, then form R by combining all the 
other threads’ guarantees. This gives the set of all 
state transitions the other threads can do, and we 
insert the reflexive transitive closure of that between 
each command. 

The postcondition of c1, if it is to be used as the 
precondition for c2, must be “stable” under R, that 
is, the transitions in R must preserve its validity. This 
is manifested in the following proof rule...



‣ Axiom for basic commands:

‣ Operational Semantics:

Rely-Guarantee
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(σ,σ�) ∈ R

�C, σ� R−→ �C, σ��

� {p} c {q} c ⊆ G

p stable R q stable R

R,G � {p} c {q}

This is a rule for these basic, atomic instructions (like 
assignment). Start with a sequential spec for c. Ensure that 
any state transition c can do is within its guarantee (so its 
guarantee is valid). Ensure that the pre and postcondition 
are stable under R. The meaning of this judgement is the 
same as the usual Hoare triple, {p} C {q}, plus, the 
environment may do any state transition in R, and we may 
do any state transition in G.

Just a brief comment on how RG manifests in the 
operational semantics: the small-step transition relation is 
now parameterised by the rely, and we have this rule that 
simulates environmental interference, whereby the 
environment can change the state under our feet while 
we’re evaluating command C.



Challenge 1:
Specifications for concurrent libraries

that can be used for any client

Going to use RG to specify a concurrent library. 
Traditionally, this is something the Rely-Guarantee 
method can’t do. We want a *single* specification for 
our library that can be used to verify all of its clients.



A library function        .
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A client:

Another client:

Yet another client:

foo() ≝ ⟨x++⟩

Library:

assume(x = 3)
foo()

assert(x = 4)

rely: ∅, guar: x++
� {x = n} foo() {x = n + 1}

rely: x++, guar: x++
� {x ≥ n} foo() {x ≥ n + 1}

rely: x--, guar: x++
� {x ≤ n} foo() {x ≤ n + 1}

assume(x = 3)
(foo() || �x++�)
assert(x ≥ 4)

assume(x = 3)
(foo() || �x--�)
assert(x ≤ 4)

Explain the stabilisation: start with postcondition 
x=n+1, but need to weaken it until it’s stable under 
the rely that might increment x.



Most general spec?
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B Rely-Guarantee specifications and proof rules

The following definitions provide a formal semantics for RG specifications. Sect. 2 contains

further information.

Definition 13 (Meeting the guarantee). (C, σ, R) guarn G expresses that no execution

of command C, starting in state σ, under environmental interference R, will violate its

guarantee G in fewer than n steps.

(C, σ, R) guar0 G
def⇐⇒ true

(C, σ, R) guarn+1 G
def⇐⇒ ∀C �, σ�, λ. if �C, σ� R−−→λ �C �, σ��

then (C �, σ�, R) guarn G
and (λ = p =⇒ G(σ,σ�))

Definition 14 (Semantics of RG specifications).

R, G |= {p}C {q} def⇐⇒ ∀σ,σ�. if σ |= p
then ∀n ≥ 0. (C, σ, R) guarn G
and (�C, σ� R−→∗�skip, σ�� =⇒ σ� |= q)

Here is a complete set of rules for proving RG specifications.

Disj
R, G � {p1}C {q}
R, G � {p2}C {q}

R, G � {p1 ∨ p2}C {q}

Conj
R, G � {p}C {q1}
R, G � {p}C {q2}

R, G � {p}C {q1 ∧ q2}

Weaken
R�, G� � {p�}C {q�}
p ⇒ p� q� ⇒ q

R ⊆ R� G� ⊆ G

R, G � {p}C {q}

Basic
� {p} c {q} �p ∩ c ⊆ G

p stab R q stab R

R, G � {p} c {q}

Skip
p stab R

R, G � {p} skip {p}

Choice
R, G � {p}C1 {q}
R, G � {p}C2 {q}

R, G � {p}C1 + C2 {q}

Seq
R, G � {p}C1 {r} R, G � {r}C2 {q}

R, G � {p}C1 ; C2 {q}

Loop
R, G � {p}C {p}
R, G � {p}C+ {p}

Par
R ∪G2, G1 � {p1}C1 {q1} R ∪G1, G2 � {p2}C2 {q2}

R, G1 ∪G2 � {p1 ∧ p2}C1 ll C2 {q1 ∧ q2}

C Proof rules for parametric specifications

Here is a complete set of rules for proving parametric specifications. Sect. 4 contains

further information.
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rely: ∅, guar: x++
� {x = n} foo() {x = n + 1}

rely: x++, guar: x++
� {x ≥ n} foo() {x ≥ n + 1}

rely: x--, guar: x++
� {x ≤ n} foo() {x ≤ n + 1}

Which of these should be stored as the specification 
for foo? We need the biggest rely (because the 
Weaken rule only makes that smaller) but also the 
strongest postcondition (which the Weaken rule only 
makes weaker). But as the rely gets bigger, the 
postcondition has to get *WEAKER*. Oh dear. This is 
why R/G cannot verify library code!



Challenge 2:
Specifying a module while hiding 
“internal interference” from clients

This time a sequential module, so forget about 
concurrency. Tackling the other component of 
modularity, which is information hiding.

Up until now we’ve looked at some very simple 
programs, just manipulating global variables. Now 
we’re going to concentrate on programs that 
manipulate the heap, so we’re going to be calling on 
some more modern verification techniques, 
including Separation Logic.



A memory manager

‣ Case study: memory manager from 
Version 7 Unix (1979)

‣ First formal safety proof...

‣ ... and we discovered a bug!
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You get the bug if malloc fails, which leaves a 
pointer pointing into the middle of a block, and then 
do a successful call to malloc, which follows that 
pointer, which could give a segfault.
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The malloc(nb) function 
allocates nb bytes of 
memory and returns a 

pointer to the allocated 
memory.

The free(ptr) function 
deallocates the memory 

allocation pointed to by ptr. 
If ptr is a NULL pointer, no 

operation is performed.

1. VERBALLY

Specifying the manager

Assume malloc accepts a number of words.



{emp}
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2. UNSOUNDLY

Specifying the manager

{x�→ ∗ . . . ∗ x+n−1 �→ }

{x�→ ∗ . . . ∗ x+n−1�→ }

x := malloc(n)

free(x) {emp}

Just for the purposes of this talk, we’ll keep things 
simple and pretend all calls to malloc are successful 
- just include an extra disjunction in the 
postcondition to model failure.

Problem: free’s precondition is too weak. Only works 
when the block was allocated by malloc, not just on 
any old sequence of memory locations.
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{emp}

3. USING A ‘TOKEN’

Specifying the manager

�
token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

�

�
token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

�

x := malloc(n)

free(x)

{emp}

Malloc returns a conceptual token, stating the 
address and size of the block. We arrange that these 
tokens only come from malloc and can’t be 
duplicated -- details of how that’s done are in the 
paper, plus a concrete definition for token. This is 
then used to prove to the free routine that the block 
is valid.
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{ arena }

{ arena }

4. INCLUDING INTERNAL STATE

Specifying the manager

x := malloc(n)

free(x)






arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→











arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→






It currently looks like the blocks are created out of 
thin air. In fact, what happens is that the block’s 
ownership transfers between the memory manager 
and the caller. Let’s make that explicit.

The boxes are part of the syntax of RGSep. They 
allow you to conjoin several of these boxes together 
to describe one arena with several gaps in it.

Now, the thing about describing the internal state of 
the memory manager is: how do we know that the 
arena will still have a gap (in the right place, and of 
the right size) when we come to call free? That is...



Crux of the proof
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x := malloc(n) free(x)
y:= 

mall
oc(5

)

z:= m
alloc

(34)

free(y)

free(w)

...will the gap survive? 

This is a matter of stability (even in this sequential 
setting): Is arena-with-gap *stable* under the 
actions of malloc and free?

Cloud contains calls to malloc and free - other calls 
won’t change the internal state.



Malloc specification
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x := malloc(n)

unstable

{ arena }






arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→






Perhaps someone might free the block?



Malloc specification
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x := malloc(n)

stable

{ arena }






arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→






However, the presence of the token in our local state means that no other 
client can free our block, because one of the preconditions of the free 
routine is the relevant token!

So when accompanied by a token, the arena-with-gap predicate *is* stable. 
This is interesting - we have a piece of the module’s internal state, and a 
piece of my local state, and only together are they stable.

Problem: we don’t want the client to have to do this reasoning. And they will 
have to: if they change the block, is the assertion still stable? Well yes, but 
that’s only because we’ve just worked out that stability only depends on the 
first two parts. The client shouldn’t have to do this reasoning. And, by the 
principle of information hiding, they shouldn’t even be *able* to. Can we 
capture this stability argument *in* the assertion: state that this bit is crucial 
for stability, so don’t mess with it, but you can do whatever you like with this 
other bit?



Explicit Stabilisation



Explicit Stabilisation
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� {p} c {q} c ⊆ G

R,G � {
p stable R q stable R

} c {q}p

What do we do if p is not stable under R? We stabilise 
it. Make it stronger until it’s stable under R. Make q 
weaker until it’s stable under R.



Explicit Stabilisation
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� {p} c {q} c ⊆ G

R,G � { } c { }� �R� �R qp

This rule encodes that. Make p stronger until it’s stable 
under R. Make q weaker until it’s stable under R.

We make these stabilisations first-class operators; part 
of the syntax of assertions. We call it explicit 
stabilisation.

One immediate benefit: fewer side conditions.

Also: allows lazy evaluation of stability, just as an 
efficient implementation of these rules would do. We 
can stack up stabilisations and collapse them together 
using the equational properties that we’ll look at 
shortly.



Explicit Stabilisation

‣ Syntax:
   

‣ Semantics:

all reachable states 
also satisfy p

is reachable from some 
state that satisfies p
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p ::= . . . | �p�R | �p�R

σ |= �p�R ⇔ ∀σ�. (σ,σ�) ∈ R∗ ⇒ σ� |= p

σ |= �p�R ⇔ ∃σ�. σ� |= p ∧ (σ�, σ) ∈ R∗



�x = 0�R ⇔ x ≥ 0

�x �= 0�R ⇔ true

�x = 0�R ⇔ false

�x �= 0�R ⇔ x > 0

Stabilisation

‣ Quiz. Stabilise the assertions x=0 and x≠0 
under the rely R that can increment x.
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?

?

?

?



‣  

‣  

‣  

‣  

A few properties
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if p stable R then �p�R ⇔ �p�R ⇔ p

��p�R�R� ⇔ ��p�R��R ⇔ ��p�R��R ⇔ �p�R�

��p�R�R� ⇔ ��p�R��R ⇔ ��p�R��R ⇔ �p�R�

if R ⊆ R� then:

1: If assertion is already stable, stabilisation has no 
effect. *In fact this one’s an if-and-only-if.

2. Stacked-up stabilisations. Behaves like floor and 
ceiling in arithmetic.



Solution to 
Challenge 1:

Specifications for concurrent libraries
that can be used for any client



Most general spec?

26

rely: ∅, guar: x++
� {x = n} foo() {x = n + 1}

rely: x++, guar: x++
� {x ≥ n} foo() {x ≥ n + 1}

rely: x--, guar: x++
� {x ≤ n} foo() {x ≤ n + 1}

rely: R, guar: x++
� {�x = n�R} foo() {�x = n + 1�R}

Using explicit stabilisation, we can use an arbitrary 
rely (subject to a few constraints detailed in the 
paper), which we then refer to (using ceiling) in the 
pre- and postcondition. When R is empty, the 
stabilisation has no effect, and we get the first spec. 
When R is x++ or x--, the other two specs can be 
derived.

Note the separation of the effect of foo() from the 
effect of the environment.



Solution to 
Challenge 2:
Specifying a module while hiding 
“internal interference” from clients



Malloc specification
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x := malloc(n)

{ arena }






arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→






Let G be all the actions that malloc and free can do. 
It is the relation under which these assertions must 
be stable. We’ve worked out that these assertions are 
stable under G, and that the stability depended only 
upon the arena-with-gap and the token. But how do 
we tell the client this?



Malloc specification
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x := malloc(n) Treat G like an 
abstract relation

��
arena

�
G

�






�
arena-with-gap(x, n)
∗ token(x, n)

�

G
∗ x �→ ∗ . . . ∗ x+n−1�→






We can encode this fact using explicit stabilisation.

We wrap the assertion in the stabilisation brackets. We’re identifying that 
part of the assertion that is crucial to the stability of the overall assertion.

We’re using the strengthening stabiliser in the postcondition -- this is 
only sound when it has no effect, i.e. when its operand is already stable! 

Note that the contents of the block lies outside the stabilisation, so the 
client can fiddle with that however it likes, but it shouldn’t go inside the 
stabilisation brackets, otherwise it would have to recalculate stability.

Note that G can now be treated as an abstract relation, just like arena and 
token are abstract predicates. The client doesn’t need to know its value; 
just that G represents the actions of malloc and free, and that this 
assertion is stable under G. 



x := malloc(n) free(x)

∗ token(x,n) G

 arena-with-gap(x,n)  

Crux of the proof

y:= 
mall

oc(5
)

z:= m
alloc

(34)

free(y)

free(w)

So in answer to our earlier question - how to get the 
postcondition of malloc safely to reach the 
precondition of free - we need to partner the arena-
with-gap predicate with a token, and then wrap it in 
the explicit stabilisation operator (which tells the 
client, don’t touch inside here!), and it will be safe 
for the journey.



Summary

‣ We have extended RG reasoning with ‘explicit 
stabilisation’, which lets us...

‣ Verify libraries without knowing clients’ 
environments

‣ Verify a module’s clients without revealing the 
module’s ‘internal interference’
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So: two forms of modularity, which we’ve teased 
apart and tackled separately. Perhaps in future work 
we might be able to blend the two solutions 
together.



Extra slides
‣ The bug

‣ E.S. as fixed points / weakest pre

‣ The arena, graphically

‣ Definition of token

‣ Actions

‣ Deny-Guarantee
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The bug
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0 10

malloc(40287);

p

This bug was discovered as a direct consequence of 
the verification process - an invariant that we wanted 
didn’t hold, and upon investigation as to why, we 
found this bug.

To illustrate, consider a very small arena comprising 
two free blocks. Then attempt a malloc that fails. 
The free blocks are coalesced, but the victim pointer, 
p, is neglected.



The bug
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0 10

p

x := malloc(1);

Then do a successful malloc, which corrects the 
victim pointer.



The bug
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0 11

px

y := malloc(3);

Do another successful malloc.



The bug
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1 11

pxy

Now the block at y includes the pointer of the block 
at x. So you can modify that pointer, then free x, and 
you’ll get a segfault.



‣ Can be thought of as fixed-points:

‣ Or as predicate transformers:

Explicit Stabilisation
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{p} R∗ {�p�R} {�p�R} R∗ {p}

�p�R =
�

{q | q ⇒ p ∧ q stab R}

�p�R =
�

{q | p ⇒ q ∧ q stab R}

Floor is big OR-ing of all the stronger, stable 
assertions.

Ceiling is big AND-ing of all the weaker, stable 
assertions.



The arena
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Lorem ipsum dolor sit amet, consectetur 
adipiscing elit. Nam viverra scelerisque 
imperdiet. Suspendisse ac arcu sem. Integer 
venenatis posuere nunc. Proin vulputate, nulla 
placerat aliquam pulvinar, massa dolor 
scelerisque velit, porta ullamcorper lorem est id 
nunc. Proin interdum, lacus ac aliquam aliquet, 
neque justo fermentum massa, in iaculis nulla 
tortor vel purus. Vestibulum vel nisl quis urna 
euismod malesuada. Lorem ipsum dolor sit 
amet, consectetur adipiscing elit. Nam viverra 
scelerisque imperdiet. Suspendisse ac arcu sem. 
Integer venenatis posuere nu0 1 0 1

Let’s have a look at it pictorially: here’s the arena: a 
contiguous linked-list. The lowest bits of the 
pointers are used as status bits: 0 means the next 
block is free and 1 means it’s allocated.



The arena
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0 1 0 1

token(x, n) = (x− 1) .5�→(x + n)

We can implement the token as half-permission on a 
block’s pointer (the memory manager needs to keep 
the other half for later traversals of the list). This 
implementation is not exposed to the client.



Malloc precondition
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1

Here’s malloc’s precondition, pictorially. The 
double-headed arrow means a sequence of pointers, 
and the zigzag abbreviates a sequence of blocks.



Malloc postcondition
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1

x

1

n
1

local 
state

Afterwards, one block has been transferred into the 
client’s local state. We also transfer half permission 
on the block’s pointer (as the token). We leave 
behind an “arena-with-gap” predicate, which we 
need to show to be stable under the actions of other 
calls to malloc and free.



Actions
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Coalesce:

AllocatePart:

AllocateWhole:

Free:

⇝

⇝

⇝

⇝

These actions are:
1. Coalescing adjacent free blocks.
2. Allocating part or the whole of a block.
3. Freeing a block.

Problem: the arena-with-gap predicate is not stable 
under the Free action, which is potentially able to fill 
in the gap.



‣ Dodds et al. (ESOP 2009)

‣ Fork rule, originally:

Deny-Guarantee
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� {pgive} C {q}
pkeep ⇒ canwrite(x)

thread(x, q) ∗ pkeep ⇒ q�

� {pgive ∗ pkeep} x := fork(C) {q�}

In DG, assertions both describe the state and contain 
permissions to perform reads and writes. I have 
p_give and p_keep. I spawn off a thread, and give it 
p_give. I write its thread identifier into x (provided 
p_keep contains sufficient permission to do so). 
Later I’ll call join(x), and get back the assertion q. 
The q’ assertion is simply a weaker, stable assertion  
(stability is an implicit side condition on all 
assertions). We could use the ceiling operator to 
neaten this up...



Deny-Guarantee
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� {pgive} C {q}
pkeep ⇒ canwrite(x)

� {pgive ∗ pkeep} x := fork(C) {�thread(x, q) ∗ pkeep�}

‣ Fork rule with explicit stabilisation:

... like so.


