
Explicit Stabilisation
for modular Rely-Guarantee reasoning

John Wickerson, Mike Dodds and Matthew Parkinson

We’re interested in proving the safety of imperative
programs, both concurrent and sequential. The
‘Explicit Stabilisation’ technique that I’m going to
propose isn’t intended to help you prove more
programs. But it will help you prove programs more
modularly.

Talk outline

‣ Background: Rely-Guarantee

‣ Two challenges:

‣ Modular specifications for concurrent libraries

‣ Modular specification for a memory manager

‣ The solution: Explicit Stabilisation

2

I’ll begin with an introduction to the Rely-Guarantee
method, and what stability means. Then we’ll look at
two problems with the modularity of Rely-Guarantee,
that will appear to you quite disparate.
Then we’ll introduce our new approach to stability,
called Explicit Stabilisation, and see how it tackles
both of these problems.

Rely-Guarantee

⟨c1⟩

⟨c2⟩

Thread 1

⟨c3⟩

⟨c4⟩

Thread 2

3

⟨c5⟩

⟨c6⟩

Thread 3

As a gentle introduction consider a concurrent
program with three threads, each executing two
atomic instructions. This tiny program can be
sequentialised in 90 different ways!

Rely-Guarantee

4

The rely-guarantee method tames this combinatorial
explosion through abstraction. We treat each thread
as being of the following form...

‣ G = set of all the state
transitions the thread can do

‣ R = set of all the state
transitions other threads can
do (i.e. union of all their Gs)

Rely-Guarantee

⟨c1⟩

⟨c2⟩

Thread 1

R*

R*

R*

5

... insert between each command an instruction that
represents an arbitrary sequence of instructions by
other threads.

More formally, G is the set of all state transitions a
thread can do, then form R by combining all the
other threads’ guarantees. This gives the set of all
state transitions the other threads can do, and we
insert the reflexive transitive closure of that between
each command.

The postcondition of c1, if it is to be used as the
precondition for c2, must be “stable” under R, that
is, the transitions in R must preserve its validity. This
is manifested in the following proof rule...

‣ Axiom for basic commands:

‣ Operational Semantics:

Rely-Guarantee

6

(σ,σ�) ∈ R

�C, σ� R−→ �C, σ��

� {p} c {q} c ⊆ G

p stable R q stable R

R,G � {p} c {q}

This is a rule for these basic, atomic instructions (like
assignment). Start with a sequential spec for c. Ensure that
any state transition c can do is within its guarantee (so its
guarantee is valid). Ensure that the pre and postcondition
are stable under R. The meaning of this judgement is the
same as the usual Hoare triple, {p} C {q}, plus, the
environment may do any state transition in R, and we may
do any state transition in G.

Just a brief comment on how RG manifests in the
operational semantics: the small-step transition relation is
now parameterised by the rely, and we have this rule that
simulates environmental interference, whereby the
environment can change the state under our feet while
we’re evaluating command C.

Challenge 1:
Specifications for concurrent libraries

that can be used for any client

Going to use RG to specify a concurrent library.
Traditionally, this is something the Rely-Guarantee
method can’t do. We want a *single* specification for
our library that can be used to verify all of its clients.

A library function .

8

A client:

Another client:

Yet another client:

foo() ≝ ⟨x++⟩

Library:

assume(x = 3)
foo()

assert(x = 4)

rely: ∅, guar: x++
� {x = n} foo() {x = n + 1}

rely: x++, guar: x++
� {x ≥ n} foo() {x ≥ n + 1}

rely: x--, guar: x++
� {x ≤ n} foo() {x ≤ n + 1}

assume(x = 3)
(foo() || �x++�)
assert(x ≥ 4)

assume(x = 3)
(foo() || �x--�)
assert(x ≤ 4)

Explain the stabilisation: start with postcondition
x=n+1, but need to weaken it until it’s stable under
the rely that might increment x.

Most general spec?

9

B Rely-Guarantee specifications and proof rules

The following definitions provide a formal semantics for RG specifications. Sect. 2 contains

further information.

Definition 13 (Meeting the guarantee). (C, σ, R) guarn G expresses that no execution

of command C, starting in state σ, under environmental interference R, will violate its

guarantee G in fewer than n steps.

(C, σ, R) guar0 G
def⇐⇒ true

(C, σ, R) guarn+1 G
def⇐⇒ ∀C �, σ�, λ. if �C, σ� R−−→λ �C �, σ��

then (C �, σ�, R) guarn G
and (λ = p =⇒ G(σ,σ�))

Definition 14 (Semantics of RG specifications).

R, G |= {p}C {q} def⇐⇒ ∀σ,σ�. if σ |= p
then ∀n ≥ 0. (C, σ, R) guarn G
and (�C, σ� R−→∗�skip, σ�� =⇒ σ� |= q)

Here is a complete set of rules for proving RG specifications.

Disj
R, G � {p1}C {q}
R, G � {p2}C {q}

R, G � {p1 ∨ p2}C {q}

Conj
R, G � {p}C {q1}
R, G � {p}C {q2}

R, G � {p}C {q1 ∧ q2}

Weaken
R�, G� � {p�}C {q�}
p ⇒ p� q� ⇒ q

R ⊆ R� G� ⊆ G

R, G � {p}C {q}

Basic
� {p} c {q} �p ∩ c ⊆ G

p stab R q stab R

R, G � {p} c {q}

Skip
p stab R

R, G � {p} skip {p}

Choice
R, G � {p}C1 {q}
R, G � {p}C2 {q}

R, G � {p}C1 + C2 {q}

Seq
R, G � {p}C1 {r} R, G � {r}C2 {q}

R, G � {p}C1 ; C2 {q}

Loop
R, G � {p}C {p}
R, G � {p}C+ {p}

Par
R ∪G2, G1 � {p1}C1 {q1} R ∪G1, G2 � {p2}C2 {q2}

R, G1 ∪G2 � {p1 ∧ p2}C1 ll C2 {q1 ∧ q2}

C Proof rules for parametric specifications

Here is a complete set of rules for proving parametric specifications. Sect. 4 contains

further information.

24

rely: ∅, guar: x++
� {x = n} foo() {x = n + 1}

rely: x++, guar: x++
� {x ≥ n} foo() {x ≥ n + 1}

rely: x--, guar: x++
� {x ≤ n} foo() {x ≤ n + 1}

Which of these should be stored as the specification
for foo? We need the biggest rely (because the
Weaken rule only makes that smaller) but also the
strongest postcondition (which the Weaken rule only
makes weaker). But as the rely gets bigger, the
postcondition has to get *WEAKER*. Oh dear. This is
why R/G cannot verify library code!

Challenge 2:
Specifying a module while hiding
“internal interference” from clients

This time a sequential module, so forget about
concurrency. Tackling the other component of
modularity, which is information hiding.

Up until now we’ve looked at some very simple
programs, just manipulating global variables. Now
we’re going to concentrate on programs that
manipulate the heap, so we’re going to be calling on
some more modern verification techniques,
including Separation Logic.

A memory manager

‣ Case study: memory manager from
Version 7 Unix (1979)

‣ First formal safety proof...

‣ ... and we discovered a bug!

11

You get the bug if malloc fails, which leaves a
pointer pointing into the middle of a block, and then
do a successful call to malloc, which follows that
pointer, which could give a segfault.

12

The malloc(nb) function
allocates nb bytes of
memory and returns a

pointer to the allocated
memory.

The free(ptr) function
deallocates the memory

allocation pointed to by ptr.
If ptr is a NULL pointer, no

operation is performed.

1. VERBALLY

Specifying the manager

Assume malloc accepts a number of words.

{emp}

13

2. UNSOUNDLY

Specifying the manager

{x�→ ∗ . . . ∗ x+n−1 �→ }

{x�→ ∗ . . . ∗ x+n−1�→ }

x := malloc(n)

free(x) {emp}

Just for the purposes of this talk, we’ll keep things
simple and pretend all calls to malloc are successful
- just include an extra disjunction in the
postcondition to model failure.

Problem: free’s precondition is too weak. Only works
when the block was allocated by malloc, not just on
any old sequence of memory locations.

14

{emp}

3. USING A ‘TOKEN’

Specifying the manager

�
token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

�

�
token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

�

x := malloc(n)

free(x)

{emp}

Malloc returns a conceptual token, stating the
address and size of the block. We arrange that these
tokens only come from malloc and can’t be
duplicated -- details of how that’s done are in the
paper, plus a concrete definition for token. This is
then used to prove to the free routine that the block
is valid.

15

{ arena }

{ arena }

4. INCLUDING INTERNAL STATE

Specifying the manager

x := malloc(n)

free(x)

arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

It currently looks like the blocks are created out of
thin air. In fact, what happens is that the block’s
ownership transfers between the memory manager
and the caller. Let’s make that explicit.

The boxes are part of the syntax of RGSep. They
allow you to conjoin several of these boxes together
to describe one arena with several gaps in it.

Now, the thing about describing the internal state of
the memory manager is: how do we know that the
arena will still have a gap (in the right place, and of
the right size) when we come to call free? That is...

Crux of the proof

16

x := malloc(n) free(x)
y:=

mall
oc(5

)

z:= m
alloc

(34)

free(y)

free(w)

...will the gap survive?

This is a matter of stability (even in this sequential
setting): Is arena-with-gap *stable* under the
actions of malloc and free?

Cloud contains calls to malloc and free - other calls
won’t change the internal state.

Malloc specification

17

x := malloc(n)

unstable

{ arena }

arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

Perhaps someone might free the block?

Malloc specification

18

x := malloc(n)

stable

{ arena }

arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

However, the presence of the token in our local state means that no other
client can free our block, because one of the preconditions of the free
routine is the relevant token!

So when accompanied by a token, the arena-with-gap predicate *is* stable.
This is interesting - we have a piece of the module’s internal state, and a
piece of my local state, and only together are they stable.

Problem: we don’t want the client to have to do this reasoning. And they will
have to: if they change the block, is the assertion still stable? Well yes, but
that’s only because we’ve just worked out that stability only depends on the
first two parts. The client shouldn’t have to do this reasoning. And, by the
principle of information hiding, they shouldn’t even be *able* to. Can we
capture this stability argument *in* the assertion: state that this bit is crucial
for stability, so don’t mess with it, but you can do whatever you like with this
other bit?

Explicit Stabilisation

Explicit Stabilisation

20

� {p} c {q} c ⊆ G

R,G � {
p stable R q stable R

} c {q}p

What do we do if p is not stable under R? We stabilise
it. Make it stronger until it’s stable under R. Make q
weaker until it’s stable under R.

Explicit Stabilisation

21

� {p} c {q} c ⊆ G

R,G � { } c { }� �R� �R qp

This rule encodes that. Make p stronger until it’s stable
under R. Make q weaker until it’s stable under R.

We make these stabilisations first-class operators; part
of the syntax of assertions. We call it explicit
stabilisation.

One immediate benefit: fewer side conditions.

Also: allows lazy evaluation of stability, just as an
efficient implementation of these rules would do. We
can stack up stabilisations and collapse them together
using the equational properties that we’ll look at
shortly.

Explicit Stabilisation

‣ Syntax:

‣ Semantics:

all reachable states
also satisfy p

is reachable from some
state that satisfies p

22

p ::= . . . | �p�R | �p�R

σ |= �p�R ⇔ ∀σ�. (σ,σ�) ∈ R∗ ⇒ σ� |= p

σ |= �p�R ⇔ ∃σ�. σ� |= p ∧ (σ�, σ) ∈ R∗

�x = 0�R ⇔ x ≥ 0

�x �= 0�R ⇔ true

�x = 0�R ⇔ false

�x �= 0�R ⇔ x > 0

Stabilisation

‣ Quiz. Stabilise the assertions x=0 and x≠0
under the rely R that can increment x.

23

?

?

?

?

‣

‣

‣

‣

A few properties

24

if p stable R then �p�R ⇔ �p�R ⇔ p

��p�R�R� ⇔ ��p�R��R ⇔ ��p�R��R ⇔ �p�R�

��p�R�R� ⇔ ��p�R��R ⇔ ��p�R��R ⇔ �p�R�

if R ⊆ R� then:

1: If assertion is already stable, stabilisation has no
effect. *In fact this one’s an if-and-only-if.

2. Stacked-up stabilisations. Behaves like floor and
ceiling in arithmetic.

Solution to
Challenge 1:

Specifications for concurrent libraries
that can be used for any client

Most general spec?

26

rely: ∅, guar: x++
� {x = n} foo() {x = n + 1}

rely: x++, guar: x++
� {x ≥ n} foo() {x ≥ n + 1}

rely: x--, guar: x++
� {x ≤ n} foo() {x ≤ n + 1}

rely: R, guar: x++
� {�x = n�R} foo() {�x = n + 1�R}

Using explicit stabilisation, we can use an arbitrary
rely (subject to a few constraints detailed in the
paper), which we then refer to (using ceiling) in the
pre- and postcondition. When R is empty, the
stabilisation has no effect, and we get the first spec.
When R is x++ or x--, the other two specs can be
derived.

Note the separation of the effect of foo() from the
effect of the environment.

Solution to
Challenge 2:
Specifying a module while hiding
“internal interference” from clients

Malloc specification

28

x := malloc(n)

{ arena }

arena-with-gap(x, n)
∗ token(x, n)
∗ x �→ ∗ . . . ∗ x+n−1�→

Let G be all the actions that malloc and free can do.
It is the relation under which these assertions must
be stable. We’ve worked out that these assertions are
stable under G, and that the stability depended only
upon the arena-with-gap and the token. But how do
we tell the client this?

Malloc specification

29

x := malloc(n) Treat G like an
abstract relation

��
arena

�
G

�

�
arena-with-gap(x, n)
∗ token(x, n)

�

G
∗ x �→ ∗ . . . ∗ x+n−1�→

We can encode this fact using explicit stabilisation.

We wrap the assertion in the stabilisation brackets. We’re identifying that
part of the assertion that is crucial to the stability of the overall assertion.

We’re using the strengthening stabiliser in the postcondition -- this is
only sound when it has no effect, i.e. when its operand is already stable!

Note that the contents of the block lies outside the stabilisation, so the
client can fiddle with that however it likes, but it shouldn’t go inside the
stabilisation brackets, otherwise it would have to recalculate stability.

Note that G can now be treated as an abstract relation, just like arena and
token are abstract predicates. The client doesn’t need to know its value;
just that G represents the actions of malloc and free, and that this
assertion is stable under G.

x := malloc(n) free(x)

∗ token(x,n) G

 arena-with-gap(x,n)

Crux of the proof

y:=
mall

oc(5
)

z:= m
alloc

(34)

free(y)

free(w)

So in answer to our earlier question - how to get the
postcondition of malloc safely to reach the
precondition of free - we need to partner the arena-
with-gap predicate with a token, and then wrap it in
the explicit stabilisation operator (which tells the
client, don’t touch inside here!), and it will be safe
for the journey.

Summary

‣ We have extended RG reasoning with ‘explicit
stabilisation’, which lets us...

‣ Verify libraries without knowing clients’
environments

‣ Verify a module’s clients without revealing the
module’s ‘internal interference’

31

So: two forms of modularity, which we’ve teased
apart and tackled separately. Perhaps in future work
we might be able to blend the two solutions
together.

Extra slides
‣ The bug

‣ E.S. as fixed points / weakest pre

‣ The arena, graphically

‣ Definition of token

‣ Actions

‣ Deny-Guarantee

32

The bug

33

0 10

malloc(40287);

p

This bug was discovered as a direct consequence of
the verification process - an invariant that we wanted
didn’t hold, and upon investigation as to why, we
found this bug.

To illustrate, consider a very small arena comprising
two free blocks. Then attempt a malloc that fails.
The free blocks are coalesced, but the victim pointer,
p, is neglected.

The bug

34

0 10

p

x := malloc(1);

Then do a successful malloc, which corrects the
victim pointer.

The bug

35

0 11

px

y := malloc(3);

Do another successful malloc.

The bug

36

1 11

pxy

Now the block at y includes the pointer of the block
at x. So you can modify that pointer, then free x, and
you’ll get a segfault.

‣ Can be thought of as fixed-points:

‣ Or as predicate transformers:

Explicit Stabilisation

37

{p} R∗ {�p�R} {�p�R} R∗ {p}

�p�R =
�

{q | q ⇒ p ∧ q stab R}

�p�R =
�

{q | p ⇒ q ∧ q stab R}

Floor is big OR-ing of all the stronger, stable
assertions.

Ceiling is big AND-ing of all the weaker, stable
assertions.

The arena

38

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam viverra scelerisque
imperdiet. Suspendisse ac arcu sem. Integer
venenatis posuere nunc. Proin vulputate, nulla
placerat aliquam pulvinar, massa dolor
scelerisque velit, porta ullamcorper lorem est id
nunc. Proin interdum, lacus ac aliquam aliquet,
neque justo fermentum massa, in iaculis nulla
tortor vel purus. Vestibulum vel nisl quis urna
euismod malesuada. Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Nam viverra
scelerisque imperdiet. Suspendisse ac arcu sem.
Integer venenatis posuere nu0 1 0 1

Let’s have a look at it pictorially: here’s the arena: a
contiguous linked-list. The lowest bits of the
pointers are used as status bits: 0 means the next
block is free and 1 means it’s allocated.

The arena

39

0 1 0 1

token(x, n) = (x− 1) .5�→(x + n)

We can implement the token as half-permission on a
block’s pointer (the memory manager needs to keep
the other half for later traversals of the list). This
implementation is not exposed to the client.

Malloc precondition

40

1

Here’s malloc’s precondition, pictorially. The
double-headed arrow means a sequence of pointers,
and the zigzag abbreviates a sequence of blocks.

Malloc postcondition

41

1

x

1

n
1

local
state

Afterwards, one block has been transferred into the
client’s local state. We also transfer half permission
on the block’s pointer (as the token). We leave
behind an “arena-with-gap” predicate, which we
need to show to be stable under the actions of other
calls to malloc and free.

Actions

42

Coalesce:

AllocatePart:

AllocateWhole:

Free:

⇝

⇝

⇝

⇝

These actions are:
1. Coalescing adjacent free blocks.
2. Allocating part or the whole of a block.
3. Freeing a block.

Problem: the arena-with-gap predicate is not stable
under the Free action, which is potentially able to fill
in the gap.

‣ Dodds et al. (ESOP 2009)

‣ Fork rule, originally:

Deny-Guarantee

43

� {pgive} C {q}
pkeep ⇒ canwrite(x)

thread(x, q) ∗ pkeep ⇒ q�

� {pgive ∗ pkeep} x := fork(C) {q�}

In DG, assertions both describe the state and contain
permissions to perform reads and writes. I have
p_give and p_keep. I spawn off a thread, and give it
p_give. I write its thread identifier into x (provided
p_keep contains sufficient permission to do so).
Later I’ll call join(x), and get back the assertion q.
The q’ assertion is simply a weaker, stable assertion
(stability is an implicit side condition on all
assertions). We could use the ceiling operator to
neaten this up...

Deny-Guarantee

44

� {pgive} C {q}
pkeep ⇒ canwrite(x)

� {pgive ∗ pkeep} x := fork(C) {�thread(x, q) ∗ pkeep�}

‣ Fork rule with explicit stabilisation:

... like so.

