A dataflow model of concurrency, communication and weak memory

John Wickerson \& Tony Hoare

Example

$$
\begin{aligned}
& \text { lock } s \text { in var } x \text { in \{ } \\
& \text { acq s; || acq s; } \\
& \text { write (x, 1); } \operatorname{read}(x, 1) \text {; } \\
& \text { write(x,2); rel s } \\
& \text { rel s } \\
& \text { \} }
\end{aligned}
$$

Example

Example

Example

Example

Example

lock s in var x in $\{$
acq s; ||acq s; write ($x, 1$); $\operatorname{read}(x, 1)$; write (x,2); rel s rel s
\}

Example

Outline

- We model a program as a set of possible traces
- We separate various kinds of flow
- data flow, control flow, ownership transfer
- Our model is stateless
- good for modelling weak memory and asynchronous communication

Traces

- Represented as a 6-tuple:
- NodeSet, $\quad N \in \mathbb{P}_{\text {fin }}$ Node
- ArrowSet, $A \in \mathbb{P}_{\text {fin }}$ Arrow
-Labelling, $L \in N \rightarrow$ Label
- Valuation, $V \in \mathrm{~A} \rightarrow$ Value
- HeadMap, $\mathrm{H} \in \mathrm{A} \rightharpoonup \mathrm{N}$
- TailMap, $\quad \mathrm{T} \in \mathrm{A} \rightharpoonup \mathrm{N}$

Traces

- A composition operator:

Traces

- A composition operator:

Traces

- A composition operator:

- Lifted to sets of traces:

$$
\mathrm{T} * \mathrm{U}=\{\mathrm{t} \circ \mathrm{u} \mid \mathrm{t} \in \mathrm{~T}, \mathrm{u} \in \mathrm{U}\}
$$

A denotational semantics

$$
\llbracket-\rrbracket: \text { Command } \rightarrow \mathbb{P}_{\text {fin }}(\text { Trace })
$$

Locks

- $C::=\ldots \mid$ lock s in $C \mid$ acq $s \mid$ rel s
- \llbracket acq $\rrbracket \rrbracket=\quad$ own(s) \rightrightarrows acq s $\leftrightarrows_{\text {own(s) }}$
- $\llbracket \mathrm{rel} \mathrm{s} \rrbracket=\quad \operatorname{own(s)} \rightrightarrows \quad \mathrm{rels}{ }_{\mathrm{own}(\mathrm{s})}$
- \llbracket lock l in $\mathrm{C} \rrbracket=\underset{\substack{\text { new s } \\ \text { own(s) }}}{\substack{\text { nown(s) }}}$
n lockconstraints(s)

Example

Locks

- $\llbracket \mathrm{acq} \mathrm{s} \rrbracket=\{$

a1,a2,a3,a4 \in Arrow, a1,a2,a3,a4 all distinct \}

Variables

- $C::=\ldots \mid \operatorname{var} x$ in $C|w r i t e(x, v)| \operatorname{read}(x, v)$

Variables

- $C::=\ldots \mid \operatorname{var} x$ in $C|w r i t e(x, v)| \operatorname{read}(x, v)$

Variables

- $C::=\ldots \mid \operatorname{var} x$ in $C|w r i t e(x, v)| \operatorname{read}(x, v)$

Variables

- $C::=\ldots \mid \operatorname{var} x$ in $C|w r i t e(x, v)| \operatorname{read}(x, v)$
- $\llbracket r e a d(x, v) \rrbracket=$

- \llbracket Write $(X, V) \rrbracket=$

- $\llbracket \operatorname{var} \times$ in $C \rrbracket=$

n varconstraints(x)

Example

Variables

$=\quad \operatorname{own}(x) \xrightarrow{\longrightarrow}$ write $(x, v) \longrightarrow$ own (x)

U \ldots

Assignments and assumptions

- $\llbracket \mathrm{x}:=\mathrm{f}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \rrbracket=$ $\cup\left\{\llbracket \operatorname{read}\left(\mathrm{y}_{1}, \mathrm{v}_{1}\right) ; \ldots ; \operatorname{read}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right) ;\right.$ write $(\mathrm{x}, \mathrm{v}) \rrbracket$

$$
\left.f\left(v_{1}, \ldots, v_{n}\right)=v\right\}
$$

- \llbracket assume $p\left(x_{1}, \ldots, x_{n}\right) \rrbracket=$
$\mathrm{U}\left\{\llbracket \mathrm{read}\left(\mathrm{x}_{1}, \mathrm{v}_{1}\right) ; \ldots ; \operatorname{read}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right) \rrbracket\right.$

$$
\left.\mathrm{p}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)=\text { true }\right\}
$$

Sequential composition

- $\llbracket C_{1} ; C_{2} \rrbracket=\llbracket C_{1} \rrbracket *_{\text {seq }} \llbracket C_{2} \rrbracket$
where $t_{1} o_{\text {seq }} t_{2}$ is only defined when:

$$
\text { out } C \operatorname{trl}\left(\mathrm{t}_{1}\right)=\operatorname{inCtrl}\left(\mathrm{t}_{2}\right)
$$

and $*_{\text {seq }}$ is the lifted version of $\circ_{\text {seq }}$

Sequential composition

- Examples:

Sequential composition

- $\llbracket x:=5 ;$ assume $x=6 \rrbracket$

Sequential composition

- $\llbracket \operatorname{var} x$ in $\{x:=5$; assume $x=6\} \rrbracket=$

n varconstraints(x)

Parallel composition

- $\llbracket C_{1}| | C_{2} \rrbracket=$
\rightarrow fork $\rightrightarrows *_{\text {seq }}\left(\llbracket \mathrm{C} 1 \rrbracket *_{\text {par }} \llbracket \mathrm{C} 2 \rrbracket\right) *_{\text {seq }} \rightarrow$ join \rightarrow
where $t_{1} o_{\text {par }} t_{2}$ is only defined when:

dangling $\operatorname{Ctrl}\left(\mathrm{t}_{1}\right) \cap$ dangling $C \operatorname{trl}\left(\mathrm{t}_{2}\right)=\varnothing$

and $*_{\text {par }}$ is the lifted version of $\mathrm{o}_{\mathrm{par}}$

Weak memory

Weak memory

```
var x in var y in {
    write(x,1);||}\begin{array}{l}{\mathrm{ write(y,1);}}\\{\mathrm{ read(y,0) |}|}\\{\mathrm{ read(x,0) }}
}
```


Weak memory

```
var x in var y in {
    write(x,1);|| write(y,1);
}
```


Variables

Variables

Weak memory

```
var x in var y in {
    write(x,1);||}\begin{array}{l}{\mathrm{ write(y,1);}}\\{\mathrm{ read(y,0) |}|}\\{\mathrm{ read(x,0) }}
}
```


Summary

- A model of concurrency, communication and weak memory, based on dataflow
- Next steps:
- automate the generation of traces?
- use as a basis for a program logic for weak memory?

Spare slides

Use of separation logic laws

- We can use laws of separation logic to prove theorems about our model, such as commutativity of local variable declarations

Use of separation logic laws

n varconstraints(x)

Use of separation logic laws

- $\llbracket \operatorname{var} x \operatorname{in} C \rrbracket=\left(\llbracket C \rrbracket * \mathrm{nd}_{\mathrm{x}}\right) \cap \mathrm{v}_{\mathrm{x}}$
- $\llbracket \operatorname{var} \mathrm{y}$ in var x in $\mathrm{C} \rrbracket=\llbracket \operatorname{var} \mathrm{x}$ in var y in $\mathrm{C} \rrbracket$?
- $\left(\left(\left(\llbracket C \rrbracket * n d_{x}\right) \cap v_{x}\right) * n d_{y}\right) \cap v_{y}$
$=\left(\llbracket \mathrm{C} \rrbracket * \mathrm{nd}_{\mathrm{x}} * \mathrm{nd}_{\mathrm{y}}\right) \cap \mathrm{v}_{\mathrm{x}} \cap \mathrm{v}_{\mathrm{y}}$
- $(P \wedge Q) * R=P * R \wedge Q * R$
(provided R is precise)

Communication

Well-behaved channel

Lossy channel

Singly-buffered channel

Stuttering channel

Re-ordering channel

