
Unifying models of data flow

Tony HOARE a and John WICKERSON b

aMicrosoft Research Cambridge
bUniversity of Cambridge Computer Laboratory

Abstract. We propose a model of computation, based on data flow, that unifies
several disparate programming phenomena, including local and shared variables,
synchronised and buffered communication, reliable and unreliable channels, dy-
namic and static allocation, explicit and garbage-collected disposal, fine-grained
and coarse-grained concurrency, and weakly and strongly consistent memory.

Keywords. Unifying theories, concurrency, communication, weak memory

1. Introduction

A unifyingmodel is one that generalises a diverse range of more specific theories, each of
them applicable to a range of phenomena in the real world. The original models turn out
to be special cases of the unifying model. The individual merits of each specific model
are clarified and substantiated by the unification, and they continue to be useful, perhaps
in combination with other theories, in their special areas of application.

The aim of this article is to propose a unifying model for a collection of important
computing concepts that are widely used in computer programming. Currently accepted
theories for these concepts are often expressed by an operational semantics, describing
abstractly how they can be implemented in the in the context of a particular programming
language. Such implementations are an excellent method of differentiating concepts, fea-
tures, and of complete programming languages.

Since our goal is the opposite of that, we take a different approach. The similarities
of specific theories are codified by the properties that they all share, and their differences
are demonstrated by counterexamples to these properties. Each property aims to express
clearly the primary purpose of the concept and its behaviour, and ignores completely the
ways in which it might be implemented, either in software or by the hardware of a phys-
ical device. Each property says as little as possible about the concept that it describes,
and thereby admits a whole range of variations, which can be explored by adding further
properties individually. Every theorem proved from the earlier properties remains valid
for all of the subsequent variations.

Our style of presentation is therefore similar to that of a well-structured mathemat-
ical textbook. We hope that it will not be too unfamiliar and uncomfortable to readers
who are accustomed to seeing a complete characterisation of each concept at the place
where it is first defined.

We take data flow as our primitive concept. Data held in a central computer mem-
ory flows across the interval of time separating an assignment of a value to a memory

location from an access of the value assigned. Data communicated on a channel flows
across the interval of space separating two components of a real or simulated computer
network. Acknowledgement signals are treated as communication of a null message, and
synchronisation can be modelled as acknowledgement in both directions. This insight
enables us treat all these forms of flow uniformly.

For both memory and communication, we will classify several variations of each
kind of resource. In the case of computer memory, we will deal with variables that are
private to an individual thread and those which are shared between multiple threads,
which run concurrently by interleaving accesses to shared memory at varying levels of
granularity. The hardware of the memory may conform to strong or weak rules of con-
sistency.

Variations of our model of communication include channels that are buffered or
synchronised, stuttering or lossy, and overtaking or order-preserving. There are various
methods of allocation and disposal of computer resources, including nested allocation of
data declared local to a block, as well as data dynamically allocated on a heap. Heap data
is either explicitly disposed by the program or recovered automatically in an implemen-
tation, for example by a garbage collector. All the models listed above will cover both
the sequential and concurrent use of resources, at varying granularities of atomicity.

Related Work

Wehrman et al. [4] complements the current article by providing a unifying model of
control flow. Like our data flow model, the control flow model is quite weak, yet it is
strong enough to justify the standard methods of verifying both sequential and concur-
rent programs, in particular Hoare logic [1] and Jones’ Rely/Guarantee reasoning [2]. It
is hoped that the unifying model will also justify other familiar forms of semantic defi-
nition, including operational, algebraic and denotational; this remains as a prospect for
future research.

2. Traces

The main ideas will be conveyed pictorially by a graph recording a trace of all events
that have occurred in a particular execution of a particular program. A program can be
thought of as a set of these traces, each trace representing one possible execution. Each
event in a trace will be pictured as a box, often containing an indication of the nature of
the event. A trace of a complete program can be split into separate traces, one for each
computer resource used by the program. Such a trace contains just the events in which
that resource has engaged.

The trace also records the data that flows between its events. The occurrence of
flow will be drawn as an arrow between the boxes that are the source and target of the
flow. This establishes a dependency relation between the target and the source, in that
occurrence of the source event is necessary for the target event to occur. Certainly the
target event cannot possibly occur before the source event.

Figure 1 shows a first example of a trace of a single resource that is used sequentially.
It contains exactly five events drawn as boxes. Each box contains a label indicating the
nature of the event that it represents. For example, νs labels the event that allocates the

νs s δss s

Figure 1. A sequential trace

resource s, and δs labels the event that disposes it. All the events are labelled by the name
of the resource itself.

In the figure, the events are connected in a series by four arrows, indicating the
dependency or data flow between them. Each event except the first depends upon its
unique predecessor, and each event except the last has a unique successor that depends
uon it. Because of the linear chain of dependencies, each event can only occur after the
previous event and before the next event. There is no possibility of concurrent execution
of events.

Obviously, the graph in Fig. 1 is just one example of a general sequential design
pattern, which happens to have length five. We need some way of defining the general
pattern of a sequential resource, to allow instances of any length.

To define precisely the set of traces that conform to our pictures, we will supplement
them with formal statements expressed generally in the notations of the relation calculus
[3], as described in the next section. For example, the relational formula ν (s → s)∗ δ
uses relational composition and the Kleene iteration operator to indicate a chain of arbi-
trary length.

Here is a more formal definition of our concept of a data flow graph. It is a mathe-
matical triple, comprising:

⊆→ ×

s, c, x, δ, . . . ⊆

(the carrier set of events)

(a relation between events)

(a collection of subsets of events)

The first component is the set of events, drawn as boxes. The second component is a
relation between events, formally defined as a set of pairs of boxes. It is drawn as an
arrow between each pair of related boxes. The third component is a collection of subsets
of the events of the graph. They are drawn by labelling each box with the names of the
subsets to which it belongs.

3. Relation calculus

Here are some useful standard concepts and properties of the relation calculus.

• If two elements are related by a relationm, they are usually written on either side
of it:

e m f
def
= (e, f) ∈ m.

• The composition of two relations m and n will usually be denoted by simple
juxtaposition; that is,

e (m n) f
def
= ∃g. e m g ∧ g n f.

• The identity relation, which holds between anything and itself, is denoted by Id:

e Id f
def
= e = f.

• The universal relation, which holds between every pair of elements is denoted by
U:

e U f
def
= true.

• The converse of a relation, which holds between pairs written in the opposite
order, is generally denoted by superscript cup, or sometimes by reversing the
symbol denoting the relation:

e ← f
def
= f → e

e (m∪) f
def
= f m e.

• TheKleene star will denote the iteration of a relation; it stands for the composition
of any number of instances of the relation. A positive iteration is similarly defined.
A relation defined by iteration is always transitive and reflexive, so we denote it
by a traditional ordering symbol ≤ def

= (→)∗:

(m)∗
def
= Id ∪ m ∪ m m ∪ m m m ∪ . . .

(m)+
def
= m ∪ m m ∪ m m m ∪

Many important properties of relations can be defined using the operations defined above.
In our interpretation of the dependency relation, a cycle of dependency would require
all events in the cycle to occur simultaneously. In some graphs, we may wish to exclude
this possibility, and require that an event is synchronised only with itself. More formally,
in such a graph, the ordering relation ≤ will be a partial order, in that it satisfies the
antisymmetry law:

Definition 3.1 (Antisymmetry). ≤ is antisymmetric iff:

(≤ ∩ ≥) ⊆ Id

or, expanded to predicate calculus,

∀e, f. e ≤ f ∧ e ≥ f ⇒ e = f.

Relational calculus can distinguish a relation that is a (partial) function. If the con-
verse of a function is composed with the function itself, the result is always a subset of
the identity relation:

Definition 3.2 (Partial function). m is a partial function iff:

(m∪ m) ⊆ Id

or, expanded to predicate calculus,

∀e, f. e m f ∧ e m g ⇒ f = g.

In both these examples, the meaning can be fully explained in predicate calculus by
introducing variables and quantifiers. In both cases, the brevity of the relational notation
makes algebraic reasoningmuch simpler than it is in the more explicit predicate notation.
That is useful once one gets used to it.

3.1. Using relation calculus to describe traces

A resource is represented by the set of events in which it has engaged. We will use a
lower case letter to stand for a set of events that have occurred in a trace of a particular
resource. We shall write c, d, etc. for channels, x, y, etc. for variables, and r, s, etc. for
general resources.

Following standard practice, we represent a set as a special kind of relation. It is the
restriction of the identity relation to elements of that set. That is:

e s f
def
= e ∈ s ∧ e = f

where s is a relation on the left-hand side, but a set on the right-hand side. The advan-
tage of this convention is that we can represent the intersection of two sets by relational
composition:

s ∩ t = s t.

An arrow composed on the left with a set restricts the domain of the arrow to that set,
and composition with a set on the right restricts the codomain similarly. As a result, a
chain of alternating arrows and sets of events will represent a path in a graph that passes
through the relevant sequence of event sets. For instance, s → t is a relation containing
all arrows with source in s and target in t. We will continue to use set symbols as sets,
where this is more convenient. It is possible to get used to the ambiguity.

As a first example of the use of relational abbreviations, we return to the concept
of a sequentially reusable resource s. All the events in which the resource engages are
linked by a single chain of dependency. One property of such a chain is that there are
no branching points. So consider a path that starts in the set s, moves rightward to an-
other member of s, and then takes a step backwards. Such a path is described by the
composition s → s ← s. The law we want is that such a path always leads back to
the event at which it started. The case is similar for a path that moves leftward and then
rightward. Each event in s has at most one successor and at most one predecessor in the
direct dependency relation:

(s ← s → s) ⊆ Id and (s → s ← s) ⊆ Id.

In addition to this functional property, we need to state that any two events in s are con-
nected by indirect dependency in one direction or the other. In other words, the depen-
dency ordering (restricted to the set s) is a total ordering on s. This rules out gaps in the
chain of dependency:

(s ← s)∗ ∪ (s → s)∗ = s U s.

We are already using italic letters to denote sets of events involving the same re-
source. We also need to distinguish different types of event, for which we introduce sym-
bols such as ν, which denotes the set of all allocation events, and δ, which is the set of
all deletions. For variables, we then distinguish assignments, written :=, from fetches
(written =:) of a previously assigned value. For channels, we distinguish inputs (written
?) from outputs (written !). For semaphores, we distinguish acquisition (written ⇓) from
release (written ⇑).

Most events will belong to two or more of these sets. For example, the allocation
of a resource s belongs both to the set s and to the set ν. We will exploit the identity of
composition and intersection of sets to build up notations very suggestive of a program-
ming language; for instance, x := denotes the set of all assignments to x, while x =: 5
is the set of fetches of the value 5 from x. In all cases, the meaning is a set, which of
course, in a given trace may be empty, or perhaps contain only one member.

In a diagram, an event box is often labelled by a set to which it belongs. This may
identify both the resource involved and the nature of the event. But we will not be obliged
to write a complete description of every property of an event. In general, we will con-
centrate only on what is important.

4. Allocation and disposal

Now we can embark on the main task of constructing our model of data flow. And we
start at the beginning, with the important and very general concept of allocation of a
resource. The most important property of resource allocation is that it should be the first
event in the life of the allocated resource. This property seems to be close to describing
the actual purpose of allocation. So we take this as the defining property of allocation.
Without loss of generality, we can assume that a resource has a unique allocation event,
even if it occurred before the program started, say when the hardware was made.

Definition 4.1 (Properties of allocation). Allocation is the first event of a resource s:

s ⊆ (s ≥ νs ≤ s)

and each resource s has exactly one allocation event:

|νs| = 1.

Similar definitions apply for disposal, where the disposal may occur after termina-
tion of the program, say when the hardware is thrown away.

And that is all we want to say about allocation and deletion! We certainly do not
want to say anything about methods of implementation, of which there are many. For
instance, a global variable of the program is often allocated by the compiler, which gives
it a fixed location. A variable declared locally in a block of the program is allocated on
a stack. A variable declared as (an attribute of) an object is allocated dynamically on the
heap. All of their allocations satisfy the same defining property given in Defn. 4.1.

There are even more ways that disposal may be implemented. For example, a de-
clared variable may be disposed from the stack on exit from the block in which it is de-
clared. A normal compiler scope check ensures that the variable engages in no event af-

δss ⇑ s ⇓νs s ⇓s ⇑

Figure 2. A semaphore

ter block exit. A dynamically allocated variable may be disposed by garbage collection,
which detects by scanning and marking that no further use of it will ever be made. It may
be disposed by an explicit command in the program, or by the operating system upon
completion of the entire program. In the last resort, it may disappear when the computer
is switched off or even thrown away.

5. Semaphores

Let us develop our first example (a sequential resource) as a simple Boolean semaphore.
The semaphore s shown in Fig. 2 can engage in only two substantive types of operation:
an acquisition, denoted by ⇓, and a release, denoted by ⇑. After allocation, the first action
of this semaphore is a release, which makes the resource available for acquisition by other
threads. Any subsequent pair of consecutive actions is then either a release followed by
an acquire, or vice-versa. The last action before deletion must be an acquisition. There
is a final possibility that there are no actions except allocation and deletion. All of these
alternatives are listed as a union on the right hand side of the following inclusion:

s → s ⊆ (ν → ⇑) ∪ (⇑ → ⇓) ∪ (⇓ → ⇑) ∪ (⇓ → δ) ∪ (ν → δ)

Needless to say, we have described the purpose of the semaphore, without saying
anything about its implementation.

6. Fan-in and fan-out

We now move on to the more interesting types of resource that are non-sequential, and
permit concurrent execution of some of the events. A simple example is provided in a
pure functional (or single assignment) programming language, where the only variables
are function parameters. Each call to the function allocates a different new variable, and
simultaneously assigns to it the value w of the parameter. This is the only assignment
ever made to x. The data flow arrows carry this assigned value to every event in the
function body that fetches it. There is no dependency ordering between any of the fetch
events; they may be executed in any order, or even concurrently. That is indicated by the
absence of arrows between the events.

The behaviour of a parameter is described pictorially in Fig. 3 as a graph. The graph
has the shape of a fan-out in hardware. A more formal definition is as follows:

Definition 6.1 (Parameter). Every arrow has the same source:

x → x ← x ⊆ Id

and every arrow must connect the initialising assignment (of which there can be only
one, in accordance with Defn. 4.1) to a fetch from the same variable x of the same value
w:

νx := w

x =: w

x =: w

x =: w

Figure 3. A parameter

ν δ

Figure 4. A concurrent resource

pub(v′)

read(v)

read(v)

read(v)

pub(v)

Figure 5. Publication

x → x ⊆
⋃

w

(νx := w) → (x =: w).

The mirror image of a fan-out is a fan-in. All of its arrows have the same target.
Occurrence of the target event depends on occurrence of all the source events: the target
event cannot occur any earlier than the latest event on which it depends. The arrows of a
fan-in usually transmit acknowledgement signals rather than data values. These signals
prevent the event at the target of the arrows from occurring before it is wanted.

Figure 4 presents an example of the use of a fan-out followed by a fan-in: it describes
a resource that has been shared among any number of concurrent threads. Each use of the
resource is independent of all the others, and they may occur concurrently. Yet there is
no prohibition of sequential use, and each thread can use the same resource many times.
The boxes have been left empty, and can be filled in many different ways. Allocation and
disposal are subject to the usual constraints. Every event in which the resource engages
must be preceded by an allocation event, which is the source of the fan-out, and it must
be followed by a single disposal event, which is the target of the fan-in.

A familiar example of the use of the concurrent resource pattern is the distributed
publication of values over an ‘ether’ to a known set of subscribers. In the simplified
diagram shown in Fig. 5, there are only three subscribers. The events at the top of the
diagram are the publication of two successive messages. The other boxes stand for the
reads by the subscribers of the most recent value published. Delivery of the value to all
subscribers is guaranteed by an acknowledgement signal, sent by each subscriber to the
publisher after reading. In this simple example, the publisher must not publish the next
message until all the acknowledgement signals have been received. That is ensured by
the fan-in arrows shown in the diagram.

We now come to a much more familiar example, which uses the same pattern as the
publish-subscribe protocol. Figure 6 shows part of the behaviour of an ordinary program

x := v

x =: v

x := w

x =: v

x =: v

Figure 6. Assignment

variable allocated in the central memory of a computer. The assignments to the variable
follow the pattern of a sequential resource, linked by a chain of dependency arrows. Just
two of them are shown at the top of the diagram.

The fetches are connected to the preceding assignment by a data dependency along
which the assigned and fetched value can flow. The fetches are also connected to the fol-
lowing assignment by a fan-in. In contrast to the implementation of the publish/subscribe
pattern, the implementation of a variable in memory requires no acknowledgement sig-
nals at run-time. This is because the hardware of a strongly-consistent memory ensures
firstly that the next assignment to the variable will immediately overwrite the previously
stored value, and secondly that each read will read the result only of the most recent as-
signment. Thus it is logically impossible for the next assignment to occur until all reads
of the previous assignment have taken place. This is the reason for the dependencies that
are recorded by the arrows of the fan-in.

We have seen the same fan-out/fan-in pattern of arrows re-used three times to de-
scribe three different computing phenomena: the sharing of resources among concurrent
threads, the publication and acknowledgement of data published by broadcast, and the
assignment of values to variables in memory. This is a good example of the kind of uni-
fication that we seek in our theories. It is achieved by concentrating on the purpose and
logic of the behaviour of a computer executing a program, and by ignoring all issues of
implementation.

7. The token game

Our traces can be interpreted as Petri nets [5]. Their operational significance can be
illustrated in the same way as Petri nets, by a token game.

Figure 7(a) shows a token residing on an arrow. It passes along the arrow, and
through the box at the target of the arrow, following rules that are illustrated in the rest
of the figure. As it passes through a box, the token splits into enough parts to pass along
all the arrows leading out of the box. When all the arrows leading into a box are filled
with tokens, then all the tokens can pass simultaneously through the box, and appear
as tokens on all the outgoing arrows of the box. This is called the firing of the box. In
Fig. 7(b), all the fetch boxes are ready to fire. At any time, any subset of the boxes that
are ready to fire may fire simultaneously. In Fig. 7(c), two of the fetches have fired, but
not the third. As a result, the final assignment of the slide is not ready to fire. So the only
possible next event on this diagrammust be the occurrence of the third fetch. In Fig. 7(d),
there are now enough tokens to pass together through the final assignment. In doing so,

x := v

x =: v

x := w

x =: v

x =: v

x := v

x =: v

x := w

x =: v

x =: v

x := v

x =: v

x := w

x =: v

x =: v

x := v

x =: v

x := w

x =: v

x =: v

(a) (b)

(c) (d)

Figure 7. The token game

they merge, and re-divide again if necessary, to pass along all the outgoing arrows of the
event.

Note the sharp distinction between our diagrams and those that illustrate a finite
state automaton. In the latter, there is only a single token, which never splits. A box with
many outgoing arrows therefore stands for a choice between them. The whole token then
travels along the chosen arrow. Thus all graphs described by a finite state automaton are
sequential.

Our diagrams are intended to record a single trace of a single execution, in which
all choices have already been made. That is why we can use multiple outgoing arrows
to indicate multiple concurrent successors to an event. We model choice in a program as
giving rise to a whole set of traces.

8. Variables

The more elaborate diagram in Fig. 8 gives an example of an entire (short) history of
events involving a particular variable, declared locally or allocated dynamically by the
program. The assignments are strictly ordered, like a sequential resource. Between any
consecutive pair of assignments, the fetches of the value may take place in any order, or
even concurrently.

As before, the inclusion below constrains the source and target of all the direct de-
pendency arrows within the resource x:

νx x := 3

x =: 3

x := 4

x =: 4

δx

x =: 3

x =: 3

Figure 8. A variable

x → x ⊆ (ν → :=) ∪ (ν → =:) ∪ (:= → :=) ∪ (:= → =:) ∪
(=: → :=) ∪ (ν → δ) ∪ (:= → δ) ∪ (=: → δ)

In our behavioural diagrams, the closed triangles add a great deal of implicit infor-
mation about the way in which two arrows or paths in the trace of a variable share a com-
mon source or a common destination. Equation 1 below makes this information formally
explicit: a path which goes all round the triangle must lead back to the original starting
position. For instance, consider Fig. 8 and suppose we start our path at the “x := 3”
event. We follow an arrow down to one of the fetches and then follow an acknowledge-
ment arrow back up to the next assignment (which is x := 4 in this case, but could in
general be a disposal). Finally, we follow the top arrow backward to the preceding as-
signment. The closure property of the triangle states that this anti-clockwise circular path
ends up in the same place that it began.

(:=) → (=:) → (:= ∪ δ) ← (:=) ⊆ (:=) (1)

Exactly the same information is conveyed in the algebraic equation in the equation
above. The left-hand side of the inclusion describes the set of paths that start with any
assignment, and then follow an arrow to a fetch, then follow an arrow to another assign-
ment (or disposal), and finally follow an arrow backwards to an assignment again. It de-
scribes exactly all anticlockwise paths, starting with an assignment, that go around any
triangle of the shape shown. On the right side of the inclusion there is a null path that
starts and ends immediately with the identity relation over assignments. The inclusion
itself therefore says that every anticlockwise path described on the left will lead back
to the same assignment that it started with. The inclusion is of course also valid for an
assignment that is never fetched, because the left hand side is then empty.

The concept of a closed triangle is very similar to that which we have already en-
countered in the definition of a sequential resource. There, we saw that a path following
an arrow forward from a node, and then following an arrow backward, must end up at its
starting place. Here, the length of the path is just one segment longer.

There another equivalent way of expressing the same closed property. It is obtained
by traversing the same path in a clockwise order, rather than anticlockwise. Obviously,
the arrows are traversed in the opposite order, and in the opposite direction.

(:=) → (:= ∪ δ) ← (=:) ← (:=) ⊆ (:=)

Actually this clockwise formulation is equivalent to the anticlockwise path of Eq. 1.

ν

! 3 ! 7 ! 9

? 3 ? 7 ? 9

δ

Figure 9. A channel

Another equivalent way to express this property involves starting the path at the
second assignment event, and again proceeding either clockwise or anticlockwise. But
the property does not hold for paths that start with the fetch event. This is because the
fan-in or the fan-out that connects the fetch allows a choice at the final step in the path,
and the choice may fall on an event different from the starting point.

9. Communication channels

The other main method of implementing data flow is by communication along channels
that connect components of a distributed system. (Our theory will apply equally to simu-
lated communication between separate processes executing as threads on the same com-
puter.) As mentioned earlier, we will distinguish an outputting event by labelling it with
an exclamation mark, and an inputting event by a query. Obviously, every successful in-
put event depends on the successful occurrence of the particular output that defines the
message that it reads.

Just like assignments to a variable, the output operations on the same channel are
sequentially ordered by control dependency, as are all the input operations. However,
in a fully buffered channel, there is no dependency of the outputs on the inputs. The
implementation of such a channel is expected to interpose a buffer of arbitrary depth
in the channel. As a result, the sequence of outputs that have happened so far may get
arbitrarily far ahead of the inputs.

Figure 9 shows a pattern for the entire (short) history of all events associated with
a single channel. The first event is the allocation of a new channel. This simultaneously
allocates both the output end of the channel and the input end. Similarly, the event that
disposes the channel comes after both the last output and the last input. The history shows
successful communication of three values.

This example illustrates a behaviour that would probably be regarded as desirable
for any channel. However, various kinds of unreliable channel may exhibit some less
desirable behaviour instead, as we shall shortly describe.

Figure 9 provides two more examples of closed triangles. At the beginning, the
first output after allocation provides the message read by the first input. Similarly, the
message read by the last input is provided by the last output. In this case, all the arrows
are functions in both directions, and the closed triangle property holds independently of
both the starting point and the direction of the path. In addition to the closed triangles, we
see two examples of closed rectangles. Because there is no fan-out or fan-in, the closure
property holds for all starting points.

ν δ

!

?

! !

? ?

Figure 10. A singly-buffered channel

ν δ

!

?

! !

? ?

Figure 11. A zero-buffered/synchronised channel

9.1. Buffered channels

Figure 9 places no limit on how many outputs can occur before the first of their corre-
sponding inputs. As mentioned before, this requires implementation with the aid of an
unbounded buffer, storing each output value until its corresponding input is performed.
Some channels place a limit on the size of the buffer used to implement this asynchrony.
The limit introduces a control dependency from an input to the output which first needs
to use the buffer space freed by the input.

Figure 10 shows a channel which is limited to single buffering. The additional arrows
ensure that an output cannot occur until the previously output value has been actually
input at the other end of the channel. One can see from this diagram a certain similarity
between a stored variable and a singly-buffered channel.

A synchronised channel is one that has no buffer at all. Each input is synchronised
with the corresponding output. Figure 11 shows the synchronisation signals, indicating
that the input and the output depend on each other in a cycle. Since no event can occur
before any event that it depends on, the only way of executing a dependency cycle of
events is to execute all of them simultaneously – which is exactly we intend to say in this
case. Note that every area in this diagram that is enclosed by a cyclic path is closed in
the same way as the triangles and rectangles of previous channel diagrams.

Most programming languages put severe restrictions on the size and nature of the
dependency cycles that are allowed. Any violation of the restrictions is punished by
deadlock. Let us not pursue this important issue any further here.

9.2. Badly-behaved channels

Up to this point we have modelled the behaviour of entirely reliable channels. We will
now use our graphical conventions to define various ways in which a real channel may
fall short of this ideal.

A lossy channel is one for which some of the outputs are never input, as shown in
Fig. 12. To specify that a channel is non-lossy, it suffices to require that the data flow
relation between an output and the corresponding input should be a total relation on
outputs. The concept of totality can be defined by three equivalent formal definitions,
two in the relation calculus and one in the predicate calculus:

!

?

! !

?

Figure 12. A lossy channel

!

?

!

? ?

Figure 13. A stuttering channel

!

?

!

??

Figure 14. A fraudulent channel

!

?

!

?

!

Figure 15. A confusing channel

Definition 9.1 (Non-lossy channel). For a non-lossy channel:

• ! → ? is a total relation on outputs
• U ? ← ! = U !
• ! ⊆ ! → ? ← !
• ∀e ∈ !. ∃f ∈ ?. e → f

A stuttering channel is one in which the same output is read more than once, as
shown in Fig. 13. A non-stuttering channel is defined as one for which each output is
read at most once. In other words, the data flow from an output to the corresponding
input is a function.

Definition 9.2 (Non-stuttering channel). For a non-stuttering channel:

• ! → ? is a partial function
• ? ← ! → ? ⊆ ?
• ∀e ∈ !. ∀f1, f2 ∈ ?. e → f1 ∧ e → f2 ⇒ f1 = f2

The ‘stuttering’ pattern also describes the concept of a ‘de-marshalling’ or ‘unpack-
ing’ channel. Each output is, say, a string, but each input is a separate character taken
successively from that string, and delivered to a sequence of input operations. Unpack-
ing is similar in its synchronisation behaviour to message duplication. It can be distin-
guished by the value labels on the arrows; also, stuttering is usually accidental and non-
deterministic (as well as being undesirable). This is revealed by the fact that any channel
which has a stuttering trace also has a similar trace with the stutter removed.

A fraudulent channel is one which may deliver a message that was never sent, as
shown in Fig. 14. There are input events that are not the target of any send arrow.

Definition 9.3 (Non-fraudulent channel). For a non-fraudulent channel:

• ! → ? is surjective on inputs
• U ! → ? = U ?
• ? ⊆ ? ← ! → ?
• ∀e ∈ ?. ∃f ∈ !. f → e

! !

? ?

Figure 16. An overtaking channel

!

?

!

?

Figure 17. A non-overtaking channel

A confusing channel is one that delivers the result of several outputs to the same
input, as shown in Fig. 15. Fraudulent and confusing channels are very similar to lossy
and stuttering channels, except that the fault is manifested by the inputs rather than the
outputs. Specification of the absence of these faults is also very similar to what we have
described already in the case of outputs, and we will not make them explicit.

Definition 9.4 (Non-confusing channel). For a non-confusing channel:

• ! → ? is injective on outputs
• ! → ? ← ! ⊆ !
• ∀e1, e2 ∈ !. ∀f ∈ ?. e1 → f ∧ e2 → f ⇒ e1 = e2

The ‘confusing’ pattern also describes a ‘packing’ or ‘marshalling’ channel. The
output events present a long string of characters, whereas the inputting instructions get
fewer, larger blocks of characters, say sentences.

Finally, we consider an overtaking channel, which allows messages to be input in an
order different to that which was output, as shown in Fig. 16. Overtaking is characteristic
of wide-area store-and-forward networks like the internet. It results when successive
messages take different paths through the network and the message sent earlier takes a
longer or slower path than the message sent later.

Overtaking can be forbidden by a rule stating that the order of input of the messages
is the same as the order that they were output, and vice-versa. In other words, the data
flow relation from output to input is monotonic (order-preserving), and so is its converse,
as exhibited in Fig. 17. Two-way monotonicity of a relation is expressed by a commuting
equation as follows:

Definition 9.5 (Non-overtaking channel). For a non-overtaking channel:

(! →)∗ ! → ? = ! → (? →)∗ ?

10. Threads

The threads of a program can also be regarded as a kind of resource. A thread’s allocation
event is triggered as a result of a ‘fork’ event by some other thread, and its disposal event
must occur before it can be ‘joined’ by another thread. All the events resulting from ex-
ecution of the thread must come in between its allocation and disposal events. Figure 18
shows the dependencies that result from this pattern of behaviour. For simplicity, we have
drawn each thread as a sequential resource, but in principle each could contain internal
concurrency.

The execution of a thread comprises of the execution of its atomic commands. As an
example of an atomic command, Fig. 19 takes the addition of the value of the variable y

ν

δ

fork

join

δ

δν

ν

T1 :

T2 :

T3 :

Figure 18. Threads

atomic(x := x + y)

x =: 3

y =: 4

x := 7

Figure 19. An atomic assignment

to the variable x. It is a common practice to signal atomicity of commands by applying
a function called ‘atomic’. As usual, atomicity of execution of the atomic command is a
single event, pictured as the outer box in the figure. The type of the command, x := x+y,
is written inside it. Inside the same box, we also write the finer-grained atomic events
which occur as part of the coarser-grained atomic event. They represent the boxes that
occur in the data flow diagrams for the individual resources x and y that participate in
this action. In this example, they are shown as a fetch of the value 3 from x, the fetch of
the value 4 from y, and the assignment of their sum 7 to x.

The two arrows at the top of Fig. 19 are control arrows connecting the atomic event
into the trace of the thread that invoked it. Below them are the data flow arrows for each
of the component events of the atomic assignment. The arrows of the topmost internal
box are the fan-out and fan-in arrows between consecutive assignments and fetches of
the variable x; just below it, there are similar arrows for y. The pair of horizontal arrows
at the bottom are part of the assignment chain for x. The bottom six arrows are fan-
out and fan-in arrows between this assignment and other fetches of the same variable
x. The diagram is slightly misleading, in that one of the dependencies has been drawn
twice, as two separate arrows. The arrow leaving the fetch of x and the arrow entering
the assignment to x are, in fact, just the two ends of the same arrow.

The inclusion of the smaller boxes inside the larger box is indicative of the nesting
of atomic regions at various levels of granularity. More formally, this can be represented
as a function from finer grain events to coarser grain events. The function is sometimes
written with the name ‘atomic’ in the program itself, using the syntax shown in Fig. 19.

x := 4

x := 6

x =: 3 x =: 4 x =: 6

x := 3

T1 :

T2 :

Figure 20. A shared variable

There are many ways of implementing atomicity, for example by inhibiting inter-
rupts, or by acquiring and releasing semaphores, or by transactional protocols. Some-
times, responsibility for atomicity is undertaken by the programmer. All methods of im-
plementation should achieve the effect modelled by our pictures. There is much more to
be said about atomicity and the possible constraints on its use, but we shall not do so
here.

11. Shared variables and weakly-consistent memory

Let us now explore in greater detail the interaction between a shared variable and the
threads that share it. Figure 20 shows a fragment from a trace of a variable named x,
in which we have differentiated three kinds of arrow. The three assignments to x are
connected by the chain of bold arrows. The fetches are connected to adjacent assignments
by dotted arrows. The bold and dotted arrows apply to private variables, which are used
exclusively by a single thread. They apply equally to variables that are shared between
many threads. We will concentrate on the shared case in the following discussion.

The two chains of horizontal, solid arrows belong to two threads that share this
resource. The diagram shows how thread T1 interferes with T2 by assigning the value 4 to
the shared variable; in between, two other assignments are made by T2. Thread T2 knows
nothing about the assignment of 4 to x when it occurs, but it does notice the resulting
interference as a spontaneous change in the value of x (from value 3 to value 4), which
occurs between its own two assignments to the variable.

Figure 20 demonstrates how simply our model deals with the behaviour of shared
variables. There was no need for any extra definitions or theorems. The shared variables
turn out to be the simple and general case. It is the private variable that needs to be
defined as a special case, by placing the obvious restrictions on the way in which the
variable is used. As a result, all of the theorems proved of our general shared variable
remain true for all of the more complex restricted cases. This kind of re-use of previously
proved theorems is exactly what motivates our search for unifying theories.

Unfortunately, the simplicity of our definition of a variable is not matched by the
simplicity of writing a program that uses shared variables. And the complexity of assur-
ing its correctness is certainly far greater.

Even more unfortunately, modern multi-core processor architecture makes both the
definition and the programming of shared variables even more complicated. Neverthe-
less, our concept of data flow is capable of dealing with the added complexity, as we will

T1 cache: x := 4 x := 3 x := 6

Figure 21. A cache

x1 := 4 x1 := 3 x1 := 6

x2 := 3 x2 := 4 x2 := 6

T1 cache:

T2 cache:

Figure 22. Two caches

show in the remainder of this article. We will redefine the behaviour of a shared variable
in a way that models the weakness of weakly consistent memory. However, we will deal
only with the simplest possible cases, and ignore the question of whether any current
multi-core architecture actually behaves as badly as we suggest.

11.1. Modelling caches

In a modern multi-core architecture, each separate core has its own cache memory. The
primary purpose of the cache memory is to reduce the average latency of global memory
access by that core. We will disregard the concern for efficiency, and model only the
logical effect of the cache on the behaviour of the variable and the thread which uses it.
In principle, each cache simulates the content of the entire shared global memory, as seen
by the core that owns the cache. Any assignment made by that core has an immediate
effect on the content of its own cache, and therefore on its own view of global memory.

In Fig. 21, we introduce the convention that an assignment made by the owning
thread has a solid border, whereas the (interfering) assignments made by other threads
have a dashed border. Some time after an assignment is made by a thread, the information
about its occurrence will be propagated automatically to the caches of other threads, as
shown by the arrow leading from the first assignment in Fig. 21. Similarly, assignments
made by other threads will eventually be propagated to the cache of this thread, as shown
by the arrows leading to the other two assignments in the figure.

Figure 22 adds the behaviour of the cache of another thread, with the variable name
subscripted to avoid confusion. The arrows show the communication of values between
the two caches. This is a buffered communication, with an arbitrary delay between a lo-
cal assignment and its effect on the cache of another thread. In a hardware implemen-
tation, the assignment is effectively buffered in a hardware write queue that is local to
each thread. As a result, the value 3, assigned by T2, arrives at T1 after the latter’s local
assignment of value 4. But news of the assignment of 4 arrives at T2’s cache after it has
assigned 3. Thus the two threads see the effect of these two assignments in a different
order. This is the essence of the weakly consistent memory of modern multi-core pro-
cessors. However, there are many variations, nearly always stronger than the weak case
which we have shown.

In Fig. 23, we have added to each thread a row of fetches made by that thread from its
own local memory. Comparison of the two rows reveals the inconsistency of the ordering

x1 := 4 x1 := 3 x1 := 6

x2 := 3 x2 := 4 x2 := 6

x =: 3 x =: 4 x =: 6

x =: 4 x =: 3 x =: 6

T1 cache:

T2 cache:

Figure 23. Partial store ordering

x1 := 4 x1 := 3 x1 := 6

x := 4 x := 3 x := 6

x2 := 3 x2 := 4 x2 := 6

x =: 3 x =: 4 x =: 6

x =: 4 x =: 3 x =: 6

T1 cache:

T2 cache:

main memory:

Figure 24. Total store ordering

of the first two assigned values as seen by each thread. When more threads are added,
every thread could see a different interleaving of the assignments made by all the other
threads. The degree of non-determinacy is daunting.

That is why many multi-core architectures adopt a stronger memory model than
the one illustrated in Fig. 23. This stronger model, shown in Fig. 24, has an additional
component representing the hardware of the real main memory shared by all the threads.
This component records every write-back to main memory from the caches of every
thread. Each cache sends its assignments directly to the main memory, rather than to each
other. When the main memory component writes the assigned value, it simultaneously
sends that assignment, synchronously, to the caches of all the threads, except the one that
originally made the assignment. This is indicated by the double-ended arrows in Fig. 24.

The synchrony ensures that there is single canonical ordering to assignments ac-
tually made to the main store, and that this same ordering is seen by all the threads –
with the exception of assignments made by the thread itself, which are seen too early.

This stronger memory model is known as total store ordering. Upon comparison with the
model depicted in Fig. 23, we can see that the introduction of the main memory makes
no difference if there are only two threads. In fact, four threads are needed to reveal the
true difference between the two models.

The synchronous propagation of an assignment to a large number of caches could
be very inefficient; so it is usually implemented in an indirect way, by invalidating every
hardware cache line which holds the assigned variable. If and when the thread needs
access to the variable x, it is thereby forced to go to the real shared memory to get it.
The effect however is the same as we have described – at least at the level of granularity
modelled by our diagrams.

This section has been a brief and over-simplified introduction to the ideas of weakly-
consistent memory. It diverges from the model actually implemented in current multi-
core architectures in many ways. Nevertheless, the explanation is illustrative of the power
of data flow to describe important computational ideas, and the power of the relational
calculus to reason about them.

12. Conclusion

Data flow is a primitive concept, adequate to describe the dynamic behaviour of many
kinds of computing resource. Relational calculus, illustrated by labelled graphs, provides
a general framework adequate for a unifying theory of data flow.

Acknowledgements

Many thanks to colleagues who have contributed detailed suggestions to improve the
substance and presentation of this work, and in particular: Peter Höfner, Jay Misra, Bern-
hard Möller, Jørgen Steensgaard and Viktor Vafeiadis.

References

[1] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10), 1969.
[2] C. B. Jones. Development methods for computer programs including a notion of interference. PhD thesis,

University of Oxford, 1981.
[3] R.D. Maddux. Relation Algebras, volume 150 of Studies in Logic and the Foundations of Mathematics,

pages 1–33. Elsevier, 2006.
[4] Ian Wehrman, C.A.R. Hoare, and Peter W. O’Hearn. Graphical models of separation logic. Information

Processing Letters, 109(17):1001 – 1004, 2009.
[5] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of Logic in Computer

Science, volume 4, pages 1–148. Oxford University Press, Oxford, UK, 1995.

