
The Problem of Programming Language
Concurrency Semantics

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod,
and Peter Sewell

University of Cambridge

Abstract. Despite decades of research, we do not have a satisfactory
concurrency semantics for any general-purpose programming language
that aims to support concurrent systems code. The Java Memory Model
has been shown to be unsound with respect to standard compiler opti-
misations, while the C/C++11 model is too weak, admitting undesirable
thin-air executions.

Our goal in this paper is to articulate this major open problem as
clearly as is currently possible, showing how it arises from the combi-
nation of multiprocessor relaxed-memory behaviour and the desire to
accommodate current compiler optimisations. We make several novel
contributions that each shed some light on the problem, constraining
the possible solutions and identifying new difficulties.

First we give a positive result, proving in HOL4 that the exist-
ing axiomatic model for C/C++11 guarantees sequentially consistent
semantics for simple race-free programs that do not use low-level atom-
ics (DRF-SC, one of the core design goals). We then describe the thin-air
problem and show that it cannot be solved, without restricting current
compiler optimisations, using any per-candidate-execution condition in
the style of the C/C++11 model. Thin-air executions were thought to
be confined to programs using relaxed atomics, but we further show
that they recur when one attempts to integrate the concurrency model
with more of C, mixing atomic and nonatomic accesses, and that also
breaks the DRF-SC result. We then describe a semantics based on an
explicit operational construction of out-of-order execution, giving the
desired behaviour for thin-air examples but exposing further difficulties
with accommodating existing compiler optimisations. Finally, we show
that there are major difficulties integrating concurrency semantics with
the C/C++ notion of undefined behaviour.

We hope thereby to stimulate and enable research on this key issue.

1 Introduction

Context Shared-memory concurrent machines are now ubiquitous, but, despite
decades of research, we still do not have a satisfactory concurrency semantics
for any general-purpose programming language that aims to support concurrent
systems code. The basic tension is between implementability and usability: to
be efficiently implementable, such a semantics must admit the relaxed-memory

behaviours that are permitted by multiprocessor architectures, and those that
are introduced by compiler optimisations, but it must also provide sufficiently
strong guarantees for concurrent algorithms to work correctly. It is important
also for the semantics to be mathematically rigorous, as informal reasoning is
particularly error-prone here, it should be as intuitive as possible, it should
support testing of implementations and of concurrent algorithms, and it should
support compositional reasoning.

There have been two major attempts to develop concurrency semantics for
such languages, for Java and C/C++. For Java, the original language specifi-
cation [20] was shown by Pugh [31] to be flawed in both directions: too strong
to be implementable and too weak for some concurrent programming idioms.
A new specification [25] was developed in JSR-133, and incorporated into Java
5.0, but that too has been shown to be unsound with respect to standard com-
piler optimisations, by Cenciarelli et al. [16] and Ševčík and Aspinall [34]. This
remains unresolved.

For C and C++, an effort as part of the C++0X standardisation process led
to a specification incorporated into the C++11 and C11 standards [9, 2]. The
basic design was outlined by Boehm and Adve [13], and Batty et al. [8] developed
a formal semantics in the latter stages of the standardisation process, identifying
various flaws in the draft standard and feeding back into the ratified standards
and later defect reports. C/C++11 concurrency has been supported by GCC
and Clang since versions 4.9 and 3.2 respectively, and the model by Batty et
al. has been used for many purposes, including correctness proofs for compila-
tion schemes to x86, by Batty et al. [8], and to IBM Power, by Batty et al. [7]
and Sarkar et al. [32]; compiler testing via a theory of sound optimisations, by
Morisset et al. [29]; model checking, by Norris and Demsky [30]; compositional
library abstraction, by Batty et al. [6]; and program logics, by Vafeiadis and
Narayan [39] and by Turon et al. [37]. Elements of the model have also been
incorporated into OpenCL 2.0. The C/C++11 concurrency model is the best-
developed currently in existence, but it also suffers from major problems. The
model is known to admit undesirable “thin-air” executions which actual imple-
mentations are not thought to exhibit, and it has become clear that these make
informal reasoning, formal compositional reasoning, and compiler optimisation
very difficult [14, 6, 39, 38]. This too is unresolved.

Without a semantics, programmers currently have to program against their
folklore understanding of what the Java and C/C++ implementations provide,
and research on verification, compilation, or testing for such languages is on
shaky foundations.

Contributions Our goal in this paper is to highlight and articulate this major
open problem as clearly as is currently possible, explaining the difficulties with
the design of concurrency semantics for shared-memory programming languages
in general and for C/C++-like languages (and Java-like, albeit in less depth)
languages in particular. We make several novel contributions that each shed
some light on the problem, constraining the possible solutions and identifying

2

new challenges. We begin (§2) by recalling some basic design constraints and
choices, to make this paper as self-contained as possible.

Our first new contribution is a positive result: we describe a machine-checked
proof, in HOL4 [21], that (for programs without loops or recursion) the model
of Batty et al. satisfies one of the core design goals for C/C++11 concurrency:
programs that do not use the low-level atomics of the language, and that are
race-free in a sequentially consistent (SC) semantics, only exhibit sequentially
consistent behaviour (§3). This DRF-SC property gives a relatively simple se-
mantics for programmers using that fragment of the language.

We then consider thin-air reads (§4). This is a long-standing open problem
in the design of the semantics for C/C++11 relaxed atomics: accesses for which
races are permitted but where one does not wish to pay the cost of any barriers
or other hardware instructions beyond normal reads and writes. The question
is how one can define an envelope that permits current compiler optimisations
and hardware behaviour, while excluding particular example executions that it
is agreed should be forbidden: those with self-satisfying conditional cycles or
values appearing out of thin air (this is also closely related to the difficulties
with Java). Here we give an instructive negative result: the C/C++11 model is
expressed in terms of candidate executions, defining which candidate executions
are consistent, but we show that thin-air executions cannot be forbidden in a
per-execution style by any adaptation of the C/C++11 consistency predicate
that uses the same notion of candidate execution.

In §5 we identify a new problem that arises when one tries to integrate
C/C++11 concurrency with semantics for more of the C language. Thin-air
executions have previously been thought to be a problem only for programs
using the relaxed atomics (intended only for expert use) of C/C++11, but that
turns out not to be the case. The model of Batty et al. presupposes an up-front
distinction between atomic and non-atomic locations, but that is not present in
C, where (for example) one should be able to reuse malloc’d regions to store
atomics and then nonatomics, or use char pointers to read the representation
bytes of an atomic. We show that the thin-air problem essentially recurs in this
setting, even in the absence of relaxed atomics, and that also breaks the DRF-SC
result.

Moving away from per-candidate-execution semantics, we explore an out-of-
order operational semantics construction (§6); this gives the desired behaviour for
the thin-air examples of §4 but exposes further difficulties with accommodating
existing compiler optimisations.

Finally we identify additional new difficulties that arise when integrating
concurrency semantics with the C/C++ notion of undefined behaviour (§7). We
conclude briefly in §8.

Our HOL4 proof script and the associated Lem definitions are available
at www.cl.cam.ac.uk/~pes20/esop2015-supplementary-material. We introduce
aspects of the C/C++11 model as required, but it is not possible to recap the
whole model here; for a full description we refer to [8].

3

2 Background: an Introduction to the Design Space

Sequential Consistency The most obvious shared-memory concurrency se-
mantics is sequential consistency (SC), in which, as articulated by Lamport [23],
any execution has a total order over all memory writes and reads, with each read
reading from the most recent write to the same location. This is attractively sim-
ple from a theoretical point of view, and it has been the underlying assumption
for much research on shared-memory concurrency verification. But it does not
capture the concurrency behaviour of typical current systems: multiprocessors
exhibit non-SC behaviour, compilers perform optimisations that violate SC, and
for C/C++-like languages the language-level memory accesses cannot reason-
ably be implemented as atomic machine-level accesses. We briefly summarise
each of these points in turn.

Non-SC Multiprocessor Behaviour The behaviour of Intel/AMD x86, IBM
Power, and ARM multiprocessors has been clarified by a series of recent pa-
pers [35, 33, 32, 26, 4]. For x86, normal memory accesses have a Total Store Or-
dering (TSO) semantics, similar to SPARC TSO [1] — as if there were a FIFO
write buffer (with a readback path) for each hardware thread, above a single
memory. This allows the SB behaviour on the left below, but little other relaxed
behaviour (in these execution diagrams x and y are shared locations, initially 0,
po denotes program order, and rf denotes the reads-from relation). Power and
ARM are much more relaxed, with programmer-visible out-of-order and specu-
lative execution. For example, the MP behaviour on the right below is allowed,
as the writes to different locations might be committed out-of-order, the writes
might propagate out-of-order to other threads, and the reads might be satisified
out of order.

Test SB: Allowed on x86, Power, and ARM

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

Test MP: Allowed on Power and ARM

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Moreover, Power and ARM are not multi-copy atomic: writes to different lo-
cations can propagate to multiple other threads in different orders, as in the
WRC+addrs example below (pulling the a write of MP to a third thread). The
address dependencies prevent local reordering, but the fact that Thread 0’s write
of x propagates to Thread 1 before its write of y can be committed does not
guarantee that the write of x has propagated to Thread 2 before the write of y
is propagated to Thread 2.

Test WRC+addrs: Allowed on Power and ARM

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf

4

One can recover SC in each architecture, but at nontrivial cost: without sophis-
ticated analysis, for x86 one needs an MFENCE barrier between shared stores
and loads, while for Power, Sarkar et al. [7] prove that one needs a heavyweight
sync barrier between each pair of shared memory accesses.

SC-violating Compiler Optimisations Just as hardware optimisations can result
in non-SC behaviour, compiler optimisations can too. The simplest example here
is Common Subexpression Elimination (CSE): if two subexpressions are identi-
cal, e.g. perhaps just reads of the same location, typical compilers will sometimes
retain the value of the first in a register for use instead of the second, effectively
hoisting the second read above whatever memory accesses to other locations are
in between. This is one of the ways in which the Java Memory Model is un-
sound with respect to (e.g.) the HotSpot implementation: the implementation
does that, but the semantics (unintentionally) disallows it [16, 34]. We return to
other compiler optimisations in §4 and §6.

Atomicity Problems Finally, as highlighted by Boehm [10], there is an atomicity
mismatch between the language-level memory operations of C/C++-like lan-
guages and those that can be implemented reasonably in a concurrent setting.
For example, C lets one access a bitfield or a byte within a larger struct, but
that might have to be compiled into machine operations that also read or write
some of the adjacent memory.

All this means that SC is not viable for current languages, compiler implemen-
tations, and hardware (though some authors argue that SC could be achieved
at reasonable cost with modified compilers and hardware, e.g. [27, 36]). It is
also highly debatable whether SC is desirable: for example, McKenney argues
that it does not match the intuitive programming models of those who imple-
ment high-performance concurrent algorithms, and notes that the “Linux kernel
makes heavy use of weak ordering” [28].

TSO as a Language Semantics As the hardware models are now tolera-
bly well-understood, one can imagine lifting them to the programming language
level, limiting compiler optimisations to those that are sound w.r.t. the hard-
ware model. The CompCertTSO verified compiler of Ševčík et al. [41] does this
for a C-like language (without bitfield accesses), and Demange et al. propose
their BMM model for Java-like languages [17]. Both use TSO, which makes for
simple implementation on x86 processors but would require expensive fences or
sophisticated analysis on Power or ARM machines. This can be reasonable in
particular circumstances, especially as x86 is very common, but it is not viable
for a general-purpose language intended to support portable high-performance
concurrent code.

DRF-SC or Catch Fire The compiler optimisation and atomicity problems
with SC described above are only an issue for programs in which multiple threads
might be accessing the same location concurrently. Exploiting this fact, Adve and

5

Hill [3] and Gharachorloo et al. [19] proposed language-level models in which
programs that are free of such data races (in any SC execution) are guaranteed
to have only SC behaviours (DRF-SC), while other programs have completely
undefined behaviour. This model is simple to explain and to implement, and
it allows a wide range of compiler optimisations (c.f. Ševčík [40] and Morisset
et al. [29]). It has two disadvantages: first, giving wholely undefined behaviour
to racy programs, while perhaps acceptable for C/C++-like languages (which
already have undefined behaviour for other reasons, many of which are not stat-
ically decidable), is not acceptable for Java-like languages, which aim to provide
memory safety guarantees for arbitrary well-typed code (that led to the com-
plexities of the JSR-133 Java Memory Model [25]). It also begs the question of
how one can debug code, and indeed whether there are any large programs that
are actually race-free. Second, it requires heavier synchronisation than one wants
in some concurrent algorithms.

The C/C++11 Model The C/C++11 model [13, 8, 2, 9] aims to support DRF-
SC for simple programs (those using only locks and SC atomics), but also pro-
vides a range of low-level atomics that provide less synchronisation but without
the cost of restoring full SC: release/acquire write/read pairs for message-passing
synchronisation, relaxed atomics that should be implementable just with single
machine-level loads and stores, and release/consume pairs to expose some de-
pendency preservation guarantees of the hardware to make them available in the
language. As we shall see, the semantics of all these remains problematic.

3 DRF-SC: sequential consistency for race-free programs

The design of the C/C++11 model could not simply adopt DRF-SC/catch-fire
as its definition, due to the need to provide low-level atomics, but it aimed to pro-
vide a DRF-SC property (for programs that do not use those) as a consequence
of its actual definition. We now report on a proof that, for the first time, estab-
lishes DRF-SC for the full C/C++11 concurrency model: for programs that do
not use low-level atomics and that are race-free in an SC semantics (and subject
to conditions detailed below), the full model permits only SC executions. The
proof is mechanised in HOL4 and is included in the supplementary material (ap-
prox. 23k lines of proof script, including additional model equivalence results).
For a more complete account of the proof, see Batty’s thesis [5]. Recalling that
the prose ISO standards for C++11 and C11 [9, 2] and the mathematical for-
malisation of the model by Batty et al. [8] correspond closely, this is effectively
a mechanised proof of a key metatheoretic property of a mainstream language
definition.

There have been two previous results along these lines, but both were pre-
liminary: Boehm and Adve [13] give a hand proof for a preliminary model that
omits many features, while Batty et al. [7, Thm. 5] give a hand proof based on
an earlier version of their formal model that uses that model’s notion of races
for the SC semantics. This is a major simplification: the point of a DRF-SC

6

theorem is to let programmers in the DRF fragment reason solely in terms of
an SC semantics, but that result required users to grapple with the full model
complexity to understand whether their program contained races. In contrast,
the result we present here uses the straightforward SC notion of race based on
identifying two conflicting adjacent actions. The mechanisation of the current
proof adds assurance, particularly desirable for a fundamental result about an
industry-standard model of this intricacy.

To state DRF-SC, we first define a memory model for C/C++ executions, the
total model, that is manifestly sequentially consistent. We start with a graph over
memory accesses, called a pre-execution [8], that captures the syntactic struc-
ture of the program with a relation for parent-to-child thread ordering and an-
other (sequenced-before) for program order. The total model and C/C++11 differ
in the relations added to the pre-execution to form their candidate-executions:
C/C++11 represents the dynamic behaviour of memory with many partial or-
ders (modification order, lock order and SC order), whereas the total model has
only a single total order over all memory accesses in the pre-execution. Reads
must read from the immediately preceding write to the same location in the
total order, and two accesses race if they access the same location, at least one
is a write, they are not both atomic, and they are adjacent in the total order.

The theorem requires that the program ensures that atomic initialisation
happens before all atomic accesses for each location. To simplify the proof, we
also restrict its statement to programs that satisfy a strong finiteness condition:
there must be a finite bound on the size of the pre-executions allowed by the
threadwise semantics (this lets us use a simple form of induction). This means it
does not apply to programs with recursion or loops. However, intuitively those
are orthogonal to the concurrency semantics; we do not know of any reason why
including them might affect the truth of the theorem.

Theorem 1. For programs whose pre-executions (i) use only mutex, non-atomic
and SC-atomic accesses, (ii) have atomic initialisations ordered by sequenced-
before and parent-to-child thread synchronisation before all atomic accesses at
the same location, and (iii) are bounded in size by some N , either both the
C/C++11 model and the total model give undefined behaviour, or the sets of
consistent executions in each, projected down to the pre-execution and the reads-
from relation, are equal.

Proof Outline The proof first involves several steps of simplifying the
C/C++11 model for programs that do not use low-level atomics. The remaining
proof can be split into one part for race-free programs and another for racy ones.
For race-free programs there are two cases.

Given a consistent execution in the C/C++11 model, we must construct a
consistent execution in the total model with the same pre-execution and reads-
from relation. The union of happens-before and SC order is acyclic, so we extend
this to a total order and show that that is consistent according to the total
model. In the other direction, given a consistent execution in the total model,
we project partial relations from the total relation that serve as modification

7

order, SC order and lock order in a C/C++11 candidate execution, and then
show that it is consistent.

Given a racy execution in one model, e.g. the execution in the total model
on the left below, we construct a (potentially different) racy execution in the
other, e.g. the C/C++11 execution on the right. As one might expect, given
a race in the C/C++11 model, constructing a consistent racy execution in the
total model is quite involved, and this execution might be very different to its
progenitor. Perhaps surprisingly, the other direction is similar: a direct transla-
tion, with identical read values, of a consistent execution in the total model is
not necessarily consistent in C/C++11. Take the execution on the left below:
reads-from would violate the C/C++11 non-atomic reads-from condition that
requires the write to happen before the read, so we have to construct a different
execution with a race.

Thread 0 Thread 1
a:WNA x=1

b:WNA x=2

c:RNA x=2

...
A racy execution
in the total model

tot

sbdrtot,rf

tot sb

prefix

fringe

Thread 0 Thread 1
a:WNA x=1

b:WNA x=2

c:RNA x=2

...
The bare

pre-execution

sb

sb

prefix

fringe

Thread 0 Thread 1
a:WNA x=1

b:WNA x=2

c:RNA x=1

...
Extended racy execution
in the C/C++11 model

sbrf
dr

sb
extended prefix

To build the execution, we rely on several definitions and an assumption
about the thread-local semantics: the part of the semantics that enumerates
the pre-executions of a particular program. We illustrate these on the example
executions above. We define a prefix as a part of an execution where every
sequenced-before or thread-synchronisation predecessor of any action within the
part is also included: e.g. all nodes above the “prefix” lines in the executions
above. The fringe actions of a prefix are all actions that are not in the prefix,
but are immediate sequenced-before or thread-synchronisation successors of an
action in the prefix, e.g. precisely c in the left and central executions above. The
central diagram above is just the pre-execution of the consistent execution on the
left, and hence is allowed by the thread-local semantics. We must assume that the
thread-local semantics is receptive: for any read or lock in the fringe of a prefix
of a pre-execution, allowed by the thread-local semantics, e.g. c in the centre
above, and for every other value or lock outcome, there exists a pre-execution
with the same prefix, but where the fringe action is changed accordingly, e.g. c
in the underlying pre-execution of the right-hand diagram.

Given a racy execution in the total model, we find the first race according
to the total relation, e.g. b and c above left, and take the prefix made up of
all strict predecessors of the later action (c) with respect to the total order.
The prefix is consistent and race free, so we can translate it to a consistent
prefix in the C/C++11 memory model with the same set of fringe actions. We
extend this to a consistent prefix containing the second racy action, appealing

8

to receptiveness to change its value if necessary for consistency, producing the
execution on the right above, and we show that there is a race in the extended
prefix, again between b and c. This is all inside an induction on the size of the
prefix: we show that for each larger finite prefix size, n, either there exists a racy
consistent execution, or a racy consistent prefix with at least n actions. Finally,
we appeal to the boundedness of executions to establish that there is a racy
consistent execution of the program in the C/C++11 memory model.

Given a racy execution in the C/C++11 model, the steps involved in the
proof are similar, but finding the first race differs. For each race in the execution,
we identify the set containing the racy actions and all of their happens-before
predecessors. The execution is finite, so the set of all such sets is finite, and
the subset relation is acyclic over them, so we can find a subset-minimal set
made up of a pair of racing actions and their happens-before predecessors. We
identify one of the racy actions and the happens-before predecessors of both as
a race-free prefix. This prefix is consistent, so we can translate it to a consistent
prefix in the total model. We then add the previously-racy fringe action to the
prefix, and establish that it is consistent and racy, appealing to receptiveness, if
necessary for consistency. In a similar fashion to the previous case, we complete
the consistent racy prefix to get a consistent racy execution in the total model.

4 The thin-air problem has no per-candidate-execution
solution

The question of “thin-air” reads is a longstanding issue in the design of memory
models for C and C++, specifically for C/C++11 relaxed atomics: accesses for
which races are permitted but which should be implemented with normal load
and store instructions, without the cost of additional barriers or synchronisation
instructions. Related questions arise in the semantics of C as used in the Linux
Kernel (for ACCESS_ONCE accesses), and for normal accesses in Java [25].

The C++11 standard [9] included text intended to forbid thin-air executions
(29.3p9), and it says explicitly (29.3p10) that that text forbids the LB+data
example below, but the text was already recognised as flawed: a non-normative
note in the standard (29.3p11) observed that “The requirements do allow [the
LB+ctrldata+ctrl-single example below]. However, implementations should not
allow such behavior.”. Batty et al. identified further problems [8, §4], and their
formal model does not attempt to capture that text or to exclude thin-air execu-
tions in any other way. The current proposal [12] for C++14 acknowledges diffi-
culties with the C++11 version and proposes a deliberately vague placeholder as
an interim replacement: “Implementations should ensure that no “out-of-thin-air”
values are computed that circularly depend on their own computation.”.

There is not a precise definition of what it means for a read to be “out of thin
air” (if there were, the problem would be solved, as the semantics could simply
exclude those). Rather, there are some example executions for which there is a
consensus that the language should forbid them, and that current hardware and
compiler optimisations do not exhibit. This is a high-level-language specification

9

problem: there is no suggestion that thin-air executions occur in practice with
current compilers and hardware; the problem is rather how to exclude them
without preventing desired compiler optimisations.

In this section, we describe the thin-air problem via a series of examples,
and we show that thin-air executions cannot be forbidden without restricting
current compiler optimisations by any per-candidate-execution condition using
the C/C++11 notion of candidate executions.

For each example we identify a particular execution by specifying the values
read, and discuss whether it should be allowed by the semantics or not.

Example LB (language must allow)

r1=loadrlx(x) //reads 42

storerlx(y,42)

r2=loadrlx(y) //reads 42

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

sbsb
rfrf

Here r1 and r2 are thread-local variables (which do not have memory actions in
the model), while x and y are shared variables; initially all are 0. This execution
(the dual of the first example of §2) is permitted by the ARM and IBM POWER
architectures (presuming the code is compiled in the obvious way into machine
load and store instructions): the actions of the each thread are to manifestly
different addresses and so can be done out of order; it is moreover experimentally
observable on current ARM multiprocessors [33]. Hence, the language semantics
must allow it for relaxed atomics.

Example LB+datas (language can and should forbid)

r1=loadrlx(x) //reads 42

storerlx(y,r1)

r2=loadrlx(y) //reads 42

storerlx(x,r2)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,dd sb,dd

There are two paradigmatic kinds of thin-air execution, the thin-air read value
executions like this one, in which a value (here 42) “appears out of thin air”,
and the self-satisfying conditional example we discuss below. This example is
architecturally forbidden on current hardware (x86, ARM, and IBM POWER),
we do not expect future hardware to adopt the load-value prediction that would
be required to make it observable, and to the best of our knowledge it cannot
be exhibited by any reasonable current compiler optimisation combined with
current hardware. Hence, the language semantics could forbid it.

Moreover, it is clearly desirable to forbid it, to make the language semantics as
intuitive as possible. Boehm and Demsky [14] give examples where programming
with relaxed atomics that permit thin-air values would be problematic, and in
languages that aim to preserve implementation invariants at some types (such
as that all pointer values point to allocated memory) it would be essential.

10

As for how it might be forbidden, the example suggests that one might sim-
ply forbid candidate executions with cycles in the union of the reads-from and
dependency relations (the model has a data dependency relation shown as dd
above). But the next two examples show that a combination of hardware be-
haviour and compiler optimisations make that infeasible.

Example LB+ctrldata+po (language must allow)

r1=loadrlx(x) //reads 42

if (r1 == 42)

storerlx(y,r1)

r2=loadrlx(y) //reads 42

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sbsb,dd,cd

This is architecturally allowed on ARM and Power (for the same reason as LB),
and likewise observable on ARM, hence the language must allow it.

Example LB+ctrldata+ctrl-double (language must allow)

r1=loadrlx(x) //reads 42

if (r1 == 42)

storerlx(y,r1)

r2=loadrlx(y) //reads 42

if (r2 == 42)

storerlx(x,42)

else

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,cdsb,dd,cd

This is forbidden on hardware if compiled naively, as the architectures respect
read-to-write control dependencies, but in practice compilers will collapse con-
ditionals like that of the second thread, removing the control dependencies from
the read of y to the writes of x and making the code identical to the previous
example. As that example is allowed and observable on hardware (and we pre-
sume that it would be impractical to outlaw such optimisation for C or C++),
the language must also allow this execution. But this execution has a cycle in
the union of reads-from and dependency, so we cannot simply exclude all those.

Then one might hope for some other adaptation of the C/C++11 model, but
the following example shows at least that there is no per-candidate-execution
solution.

Example LB+ctrldata+ctrl-single (language can and should forbid)

r1=loadrlx(x) //reads 42

if (r1 == 42)

storerlx(y,r1)

r2=loadrlx(y) //reads 42

if (r2 == 42)

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,cdsb,dd,cd

11

This is the paradigmatic “self-satisfying conditional” example. It is forbidden on
hardware if compiled naively (both ARM and POWER architectures prevent
speculative writes becoming visible to other threads), and applying reasonable
thread-local compiler optimisation does not change that. Hence, the language
could forbid it. Moreover, it is problematic for informal and formal compositional
reasoning [14, 6, 39], so the language should forbid it.

But the candidate execution that we want to forbid here is identical to the
execution of the previous example that we have to allow. This immediately gives:
Theorem 2. No adaptation of the C/C++11 per-candidate-execution definition
that uses the same notion of candidate execution can give the desired behaviour
for both of these examples.

The basic point here is that compiler optimisations (such as the collapse of
the LB+ctrldata+ctrl-double conditional) are operating over a representation of
the program, covering all its executions, while the C/C++11 definition of can-
didate execution and consistency for those considers each candidate execution
independently (it ignores the set of all executions); it is not able to capture
the fact that the conditional is unnecessary because the two candidate execu-
tions corresponding to taking the two branches are equivalent. We develop this
observation in §6.

Restricting optimisation involving relaxed atomics? One might think that it
would be feasible to restrict just compiler optimisations involving relaxed atom-
ics, e.g. requiring that the compiler should respect all dependencies between
relaxed atomic operations, while permitting more optimisation elsewhere. But
(as observed by Boehm [11]) dependencies can be via functions in other com-
pilation units that only involve non-atomic accesses, e.g. as in the version of
LB+ctrldata+ctrl-double below, where the second thread’s conditional is fac-
tored out into a function f() that does not involve atomics and that is in a dif-
ferent compilation unit. When compiling f() the compiler cannot tell whether it
might be used in a dependency chain between atomic accesses, and so it would
have to preserve all such dependencies. The cost of that is unknown, and worth
investigating experimentally, but we suspect it to be unacceptable.

// in one compilation unit

void f(int ra, int*rb) {

if (ra==42)

*rb = 42;

else

*rb = 42; }

// in another compilation unit

r1=loadrlx(x) //reads 42 r2=loadrlx(y) //reads 42

if (r1 == 42) f(r2,&r3)

storerlx(y,r1) storerlx(x,r3)

In practice, GCC (checked with 4.6.3 on x86) does optimise away the control
dependency in f(), at O1, O2, or O3.

12

Preventing load-store reordering If one relaxes the requirement that relaxed
atomics must be implementable with simple machine accesses, one might re-
strict all shared-variable load-to-store reordering, as proposed by Boehm and
Demsky [12, 14], adding barriers and somewhat restricting compiler optimisa-
tion. The cost has not yet been quantitatively assessed. For C/C++ it might
be viable due to the small number of relaxed atomics (though if practitioners
resorted to in-line assembly instead, that would defeat the purpose). But for
normal Java accesses on ARM or Power, the cost seems likely to be prohibitive.

5 Integrating non-atomics and atomics leads back to thin
air

We now show that the thin-air problem is not confined to relaxed atomics. The
C++11 standard prose refers to “atomic objects” as if they are quite different
from non-atomic objects, and the mathematical model of Batty et al. [8] for the
C++11 and C11 concurrency primitives followed suit by imposing a simple type
discipline: a location kind map in each candidate execution partitioned locations
into atomic, nonatomic, and mutex locations. The definition of consistent execu-
tion permitted atomic accesses only at atomic locations, and the only nonatomic
accesses allowed at atomic locations were atomic initialisations1.

However, when one considers generalising that semantics for the concurrency
primitives to cover more of C, it becomes clear that an up-front location-kind
distinction is unrealistic, for several reasons:

1. In C it is permitted to reuse a region of allocated storage (e.g. from malloc)
at a new type, simply by overwriting the bytes of memory with a new value.
Restricting that to prevent strong updates from atomic to nonatomic (or
v.v.) would not give a usable language.

2. In C one can inspect the representation bytes of a value by casting a pointer
to (char *), or by type-punning via a union.

3. In C one can copy a value by copying its representation bytes, e.g. us-
ing memcpy. This could perhaps be deemed illegal for structures containing
atomic values (indeed, it would have to be if atomic values had to be regis-
tered somewhere in the implementation), but it would be preferable, and in
keeping with the rest of the language, to permit it.

4. In C11 one can construct atomic versions of structure and union types (with
_Atomic(type-name) or the _Atomic qualifier), but their members can be
accessed only via a non-atomic object which is assigned to or from the atomic
object, not directly [2, 6.5.2.3p5].

Hence, contrary to [8], we have to allow mixtures of atomic and nonatomic
accesses at the same location, at least where the nonatomic accesses do not race
with each other or with any atomic accesses.
1 It is desirable to have nonatomic initialisations so that they do not require fences, but
then to obtain a DRF-SC result initialisation had to be limited to be happens-before
all other accesses, and without reinitialisation.

13

But what should the semantics be for these? The standard text does not di-
rectly address these mixtures, but for the entirely nonatomic and entirely atomic
cases it and the formal model [8] are clear:

– for the non-atomic case, the definition of consistent execution requires, in
consistent_non_atomic_rf , the read to read from the most recent happens-
before-visible write to the same location; while

– for the atomic case, the analogous consistent_atomic_rf lets the read read
from any write that is not after it in happens-before (subject to the other
predicates of the model).

Neither of these predicates are suitable to govern mixtures of atomic and non-
atomic accesses, as the following two examples show. Our first example program
uses memcpy to mix atomic and non-atomic accesses at the same location. The
C/C++11 memory model as it stands suggests that the mixed accesses would
be governed by consistent_atomic_rf , because the location has an atomic type.
However, this breaks DRF-SC: the example program is race-free in every SC
execution, but it has racy executions in the C/C++11 memory model:

// parent thread

size_t s = sizeof(atomic_int)

atomic_int x = 0

atomic_int y = 0

atomic_int a = 1

int r1 = loadsc(x)

if(r1 != 0)

memcpy(&y,&a,s)

int r2 = loadsc(y)

if (r2 != 0)

memcpy(&x,&a,s)

b:WNA y=1 d:WNA x=1

a:RSC x=1 c:RSC y=1

sbsb
rfrf

sc

dr dr

In the execution above, each atomic load reads from the non-atomic write im-
plicit in the memcpy of the other thread. The execution is consistent and has data
races. Breaking DRF-SC makes consistent_atomic_rf unsuitable to govern non-
atomic reads from atomic writes. By swapping the atomics and non-atomics in
the example, we see that it is also not suitable to govern atomic reads from
non-atomic writes.

Our second example establishes that we also cannot use the
consistent_non_atomic_rf predicate for mixtures. In the program be-
low, there is a reading thread that spins until it sees the other thread’s writes
of z and y, and then reads from x twice: once with acquire memory order and

14

once with consume. After the loop, there are two memcpy’s of location x:

// parent thread

size_t s = sizeof(atomic_int)

atomic_int n=0, x=0, y=0, z=0

storerlx(x,1)

storerel(z,1)

storerlx(x,2)

storerel(y,&x)

do { r1 = loadacq(z)

r2 = loadcon(y)}

while (r1==0 || r2==0)

memcpy(&n,r2,s)

memcpy(&n,&x,s)

a:WRLX x=1

b:WREL z=1

c:WRLX x=2

e:RACQ z=1

d:WREL y=x

g:RNA x=2

h:RNA x=1

f:RCON y=&x

sb

sb

sb

sb

sb

dob,rf
rf

dob

rf

sw,rf

rf
sb,dd

mo

In the candidate execution on the right above, the loop exits (we elide the implicit
write of the memcpy’s, and the initialisation writes). The first memcpy happens
after all atomic writes of x, but before the write implicit in the second memcpy,
so according to consistent_non_atomic_rf , it must read write c. The second
memcpy reads a pointer provided by the consume read, creating a dependency and
forcing it to read a, but this execution, shown above, contains a CoRR coherence
violation between accesses a, c, g and h, making the execution inconsistent,
so the only behaviour that the model allows of this program is spinning on
the conditional of the loop (similar executions arise if we swap atomics with
non-atomics and vice versa), when in fact the program contains a race. Using
consistent_non_atomic_rf for the mixtures cuts out executions we need to
allow: it can make reasonable executions of race-free programs inconsistent and
remove racy executions from racy programs, making them race-free and well-
defined.

Vafeiadis et al. provide another alternative semantics for non-atomic
reads [38]: modification order and coherence are extended to cover all locations
(including non-atomics), atomic reads use the existing condition for reads at
atomic locations, and the condition on non-atomic reads is replaced with a re-
quirement that a new relation, the union of happens-before and rf edges to or
from non-atomic accesses, is acyclic. This semantics provides the desired be-
haviour in the examples above, but, as noted by Vafeiadis et al., it forbids com-
piler optimisations from reordering loads followed by stores. Morisset et al. ob-
serve that this sort of reordering results from loop invariant code motion [29],
an optimisation performed by both GCC and LLVM [18, 24], so this attractive
semantics comes with the unacceptable cost of forbidding routine compiler op-
timisations over blocks of non-atomic code.

We have seen that using consistent_nonatomic_rf to govern the behaviour
of non-atomic reads at locations accessed atomically removes too many be-
haviours; we cannot use consistent_atomic_rf to govern such reads either (that
would break DRF-SC); and the suggestion of Vafeiadis et al. comes at too high
a cost. It is not clear what the semantics of non-atomic reads should be in C11.

15

6 An out-of-order operational construction

The examples of §4 showed that, for relaxed atomics, the language semantics has
to admit reorderings that are enabled by removals of syntactic control depen-
dencies, where those removals can be justified only by examination of multiple
control-flow paths (not just inspection of a single candidate execution). For ex-
ample, consider again the second thread of LB+ctrldata+ctrl-double:

r2=loadrlx(x)
compiler−−−−−→ r2=loadrlx(y)

h/w−−→ storerlx(x,42)

if (r2 == 42) storerlx(x,42) r2=loadrlx(y)

storerlx(x,42)

else

storerlx(x,42)

The key fact here is that the storerlx(x,42) is possible on all control-flow paths
of this thread, and a sufficiently “smart” compiler can detect that and then
remove the control dependency from the read of y. In this section we generalise
this observation: we give a semantics for relaxed and nonatomic accesses (and
locks and fences) that correctly accounts for all the thin-air examples of §4
in an interesting and reasonably clean way. But those examples only involve
reorderings; in §6.2 we use this semantics to highlight difficulties with other
common optimisations.

6.1 The semantics for reorderings

We start from a standard labelled transition system (LTS) semantics for each
thread in isolation, describing its interactions with memory by transitions la-
belled a:R x=v and b:W x=v for a read or write of value v at location x. This
thread-local base semantics does not constrain the values read from memory in
any way; it simply has a transition for each possible read value. For example,
looking at some of the threads from the §4 tests, we have:

LB’s first thread LB+datas’s first thread
r1=loadrlx(x)

storerlx(y,42)

r1=loadrlx(x)

storerlx(y,r1)

a:R x=0 ... c:R x=42

 b:W y=42 ... d:W y=42

a:R x=0 ... c:R x=42

 b:W y=0 ... d:W y=42

In LB’s first thread, there is a write of 42 to y in all branches of the LTS, and
we will allow the thread to write 42 before reading, letting both threads read
42. On the other hand, in LB+datas’s first thread, it is not the case that a write
of 42 is available in all branches, so it will have to do the read first, preventing
LB+datas from exhibiting out-of-thin-air behaviour.

16

We capture this by constructing a derived out-of-order labelled transition
system for each thread. Its states are copies of the entire base in-order LTS
with some edges ticked. The initial state is the base LTS with no edge ticked.
For example, part of the out-of-order LTS for LB’s first thread is shown below.
From now on, we only show the branches for some interesting values; in reality
there is one branch per possible value, as we assume the base LTS is receptive.

a:R x=0 c:R x=42

 b:W y=42 d:W y=42

a:R x=0 c:R x=42

 b:W y=42✔ d:W y=42✔

a:R x=0✔ c:R x=42

 b:W y=42 d:W y=42

W y=42

{b,d}

R x=0 {a}

The transitions are labelled with the same memory actions as the base se-
mantics; each transition of the derived LTS corresponds to ticking a set of base
transitions. But the base transitions can be performed out-of-order, when they
are not blocked (as defined below) in any branch by coherence or fences. Specifi-
cally: a set of edges can be ticked iff it forms a frontier, that is, (1) it is non-empty,
(2) the edges are not ticked, (3) the edges have the same memory action label,
(4) each non-discarded path either has a single edge in the frontier, or becomes
discarded by this ticking, and (5) no edge is blocked (see below). Here an edge
is discarded if it has a ticked sibling, and a path is discarded if it contains a
discarded edge.

For example, the horizontal transition above is justified by the frontier on
the left below consisting of all the W y=42 edges (b, d, and all the similar edges
in elided paths), while the vertical transition is justified by the frontier on the
right below consisting just of a (and there is a similar transition, not shown, for
each base transition with a different read value).

a:R x=0 c:R x=42

 b:W y=42 d:W y=42

a:R x=0 c:R x=42

 b:W y=42 d:W y=42

An edge is blocked by another if its action cannot be reordered before the
other’s. To maintain coherence (the fact that execution respects a per-location
total order over writes to each location, consistent with program order, as guar-
anteed by standard hardware and by C11 relaxed atomics), actions to the same

17

location cannot be reordered. Fences cannot be reordered before or after actions,
so that all the actions before the fence have to be ticked before the fence can
be ticked, and all the actions before the fence and the fence itself have to be
ticked before actions after the fence can be ticked. Unlock and lock actions can-
not be reordered before and after actions, respectively, but can in some cases be
reordered the other way around, to allow for roach motel reordering.

Handling nonatomics Non-atomic accesses can be executed out-of-order, like
relaxed accesses, but in addition, they can also cause races, which the semantics
has to be able to detect.

Non-multi-copy-atomic memory For two-thread examples, one can combine the
derived LTS of each thread with an underlying sequentially consistent shared
memory (and that is what we have done for the testing described below). But in
general the language semantics must also admit the lack of multi-copy atomicity
permitted by the Power and ARM architectures, as described in §2. This can be
handled by taking the parallel composition of the thread subsystems given by
the derived LTSs with a storage subsystem following that of Sarkar et al. [33],
which provides a generic non-multi-copy-atomic memory by keeping track of (a)
the coherence commitments made among write events, and (b) the lists of writes
and barriers propagated to each thread. The storage and thread subsystems are
then synchronised on write requests, read requests and responses, etc.

This semantics gives the desired behaviour for each of the thin-air examples
of §4: it is liberal enough to allow the reordering (introduced by compiler or hard-
ware) that gives rise to the “must be allowed” examples, and restrictive enough
to prevent the “should be forbidden” examples, ruling out thin-air executions
basically by executing along a totally ordered trace of the derived LTS, with
reads reading from previous writes in that trace. We have a precise Lem defi-
nition of the out-of-order semantics, and have built a tool that lets one explore
the semantics of small examples, based on OCaml code generated from the Lem
and integrated with an underlying SC memory. It has several good features:

– It is operational and relatively concrete, which makes it easier to understand
than (say) the C11 axiomatic memory model.

– The construction is independent from the language syntax and thread-local
operational semantics, which is highly desirable for tackling a complex lan-
guage like C. This contrasts with explicit-speculation calculi, e.g. [15, 22].

– For entirely thread-local computation, as thread-local variables do not create
memory events, optimisations are already factored into the computation of
the thread-local LTS.

– It does not involve syntactic notions of dependency, which are difficult for
optimising compilers to preserve.

However, this semantics does not allow behaviour that is introduced by many
other common compiler optimisations. Looking at these other optimisations
highlights some subtle issues that any semantics for a C-like language will have
to tackle.

18

6.2 Optimisations beyond reordering

In contrast to hardware semantics, there is (to date) no good characterisation of
the envelope of all compiler optimisations normally performed in practice. The
syntactic optimisations that are performed by compilers are numerous (GCC
and Clang each have of the order of 100 passes) and they have unclear effects
and interactions. Ševčík [40] and Morisset et al. [29] consider some abstract
classes of optimisations, but these are only thread-local. In this section we give
a preliminary discussion of some optimisations that go beyond reordering, in the
context of the out-of-order semantics.

Elimination of subsumed memory actions Many common compiler optimisa-
tions, like constant propagation and common subexpression elimination (CSE),
can be explained in terms of eliminations of individual memory accesses [40]:
read after read, read after write, write after read, and overwritten write elimi-
nation, which consist in conflating actions when the effect of one subsumes that
of the others. For example, in the following program, the second read of x can
be merged into the first as a very simple instance of CSE (by a read after read
elimination); then, both branches of the conditional write 1 to x, so this write
can be executed out-of-order, so there is an execution where both r1 and r3

are 1.

r1=loadrlx(x) r3=loadrlx(y)

if (r1 == 1) storerlx(x,r3)

r2=loadrlx(x)

storerlx(y,r2)

else

storerlx(y,1)

a:R x=0 c:R x=1

b:W y=1 d:R x=0 f:R x=1

e:W y=0 g:W y=1

We conjecture that the notion of frontier can be relaxed to deal with these,
e.g. with extended frontiers as below. We interleave optimisations (extended fron-
tiers) with execution (ticking) on purpose to account for adaptive optimisations.
When compilers perform this kind of optimisation, they effectively identify ex-
tended frontiers, and collapse them into elementary frontiers, but work on finite
foldings of the LTSs, like SSA.

a:R x=0 c:R x=1

 b:W y=1 d:W y=1

 e:W y=1

19

These optimisations need information about multiple paths, but only in a
limited way: they only need the existence of particular actions (in a non-blocked
path context) in each path. However, this is not the case for all optimisations,
as we show next.

Irrelevant read elimination Intuitively, irrelevant read elimination consists in
removing a read action when its result does not affect the thread’s behaviour:
for example, if the branches of a read have identical subtrees, it is certainly
irrelevant. But in general a read is irrelevant if its subtrees are in some sense
semantically equivalent, where equivalence is up to optimisations, including re-
ordering, eliminations, and irrelevant read elimination. For example, in the fol-
lowing program, the read of x is irrelevant only up to reordering of the writes to
y and z, overwritten write elimination of the first write to z in the else branch,
and irrelevant read elimination of the read of w. This suggests a recursive con-
struction of the memory model, but it is not clear at what level: thread-local
read-irrelevance, whole-program read irrelevance, etc.

r1=loadrlx(x)

if (r1 == 1) {

storerlx(y,1)

storerlx(z,1)

r2=loadrlx(w)

} else {

storerlx(z,42)

storerlx(z,1)

storerlx(y,1)

}

a:R x=0 e:R x=1

b:W z=42 f:W y=1

c:W z=1

d:W y=1

g:W z=1

h:R w=0 i:R w=1

Inter-thread optimisations The previous optimisations were all thread-local.
Inter-thread optimisations (alias analysis, pointer analysis, ...) turn out to be
even more challenging. The out-of-order construction makes no assumption
about what values can be read, and thread-local LTSs thus have a branch for
every value of each read. Identifying a value restriction amounts to discarding
some “impossible” branches of the LTS. This can create more valid frontiers, and
hence permit more out-of-order behaviour. For example, in the LTS below, if, by
looking at all the writes to x by all the threads, the compiler determines that x
can only contain values 0 and 1, then it can discard the branch where the value
2 is read, which makes {b, d} into a frontier, which allows the write to y to be
executed before the read from x:

r1=loadrlx(x)

if (r1 == 2)

storerlx(y,0)

else

storerlx(y,1)

a:R x=0 c:R x=1 e:R x=2

 b:W y=1 d:W y=1 f:W y=0

a:R x=0 c:R x=1 e:R x=2

 b:W y=1 d:W y=1 f:W y=0

20

Moreover, some optimisations restrict behaviour, which creates more opportuni-
ties for inter-thread analyses, so inter-thread optimisations cannot be separated
to an initial phase, but have to be intertwined with the other optimisations. This
again suggests a recursive construction of the memory model. For example, in the
following program, the second read of x can be merged into the first (by read
after read elimination); value-range analysis can then remove the conditional,
which allows additional behaviour: r1 and r3 can be 42.

r1=loadrlx(x) r3=loadrlx(y)

r2=loadrlx(x) storerlx(x,r3)

if (r1 == r2)

storerlx(y,42)

else

storerlx(y,43)

The additional behaviour introduced by the analysis can invalidate it, or enable
more optimisations that can invalidate it, so the semantics cannot be defined by
a naive fixpoint.

Thread-local and shared variables Finally, the out-of-order semantics is defined
over a calculus that has a syntactic distinction between thread-local variables
and potentially-shared variables. This distinction is important, as the semantics
does not need to consider interference on thread-local variables, and thread-local
optimisations on them are built into the base LTS construction, and can be much
more aggressive. For example, in the following program, if x is determined to
be thread-local, then constant propagation (in our framework, read after write
elimination) can be done across the synchronisation.

x = 7

unlock(l)

...

lock(l)

r1 = x

However, C does not have such a distinction, and whether a variable behaves
thread-locally depends on the dynamic behaviour of the program, which in turn
depends on which variables behave thread-locally.

7 Concurrency and undefined behaviour

For our final contribution, we observe that there is a fundamental mismatch
between the concurrency models of C/C++11 and the treatment of undefined
behaviour in their preexisting specifications.

The C and C++ standards impose many constraints on programs by at-
tributing undefined behaviour to programs that exhibit them (for C these are
collected in [2, J.2]). Some of these are static properties (e.g. programs should
define a main function) but many are dynamic, e.g. there should be no division

21

by zero or out-of-bounds array access (OOBAA). For programs with undefined
behaviour, the standard does not say that execution fails or behaves arbitrarily
at that point. Instead, the compiler is completely unconstrained in the code it
produces for the whole program [2, §3.4.3#1]:

NOTE Possible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the en-
vironment (with or without the issuance of a diagnostic message), to
terminating a translation or execution (with the issuance of a diagnostic
message).

This is important because optimisations can involve significant code motion.
For example, in an execution in which x=0, the following reaches a division-
by-zero after the puts, both in the sequential execution model of the standard
and in a non-optimising implementation. But an optimising compiler that does
loop-invariant code motion might well hoist the 1/x before the loop, reaching
the division-by-zero error before the puts. That code motion is made legal in
general by giving this program entirely undefined behaviour.

for(int i=0; i<5; i++) {

puts("foo\n");

ret += i + 1/x;

}

Integrating the concurrency model into the language changes things. There
are new sources of undefined behaviour: any program with a data race has unde-
fined behaviour, which (for example) licenses the conventional implementation
of bitfield operations mentioned in §2. But the overall form of the semantics
also changes: instead of that simple sequential execution model (used to dis-
cover the division-by-zero on a reachable path) the definition calculates the set
of candidate complete executions (essentially graphs like the examples shown
in §4 and §5) that satisfy the consistency predicate of the concurrency model;
if none of those contains a data race, then they are the allowable behaviour of
the program (otherwise the program is undefined). There is a tension between
this global completed-execution structure and the implicit use of the sequential
execution model to discover the earlier forms of undefined behaviour.

For example, the C standard says that out-of-bounds array access is undefined
behaviour [2, §6.5.6#8 (for an access from one-past an array)]. In the sequential
setting (or indeed in an SC concurrent setting) there is a clear notion of execution
prefix, and to identify such an undefined behaviour one only has to consider
such a prefix leading up to it. But in the concurrency model, LB-like tests show
that parts of a candidate complete execution that follow (in program order)
the offending access might influence whether it is performed; we cannot restrict
attention to simple prefixes. Consider the following example, where x and y are

22

atomic integers initialised to 0, and a is an integer array with two elements:

r1 = loadrlx(x)

r3 = a[r1]

storerlx(y,2)

r2 = loadrlx(y)

storerlx(x,r2)

In any sequentially consistent execution of the program, the first thread loads 0
from x, and there is no OOBAA. But with the intended implementation of re-
laxed atomics above the ARM or Power architectures, there can be an execution
where the second thread loads the store of 2 to y then writes to x, and the first
thread loads 2 from x and then performs an OOBAA2. As a consequence, the
language must provide this program with undefined behaviour.

But to identify this undefined behaviour, we need to consider executions
that go past it in program order, and that means we need to choose some se-
mantics for the out-of-bounds array access, and the other sources of undefined
behaviour, to provide a context for the subsequent execution. This leads to a
great many questions about the semantics of constructs that might introduce
undefined behaviour. Taking out-of-bounds array access as an example, what
should the semantics of an out-of-bounds load be, what if control flow is de-
cided by the result of the load, what if the access is a store, or if the access
loads or stores a function pointer? In each of these cases, it is unclear what
the semantics should be. The point of undefined behaviour in the C and C++
semantics is to cover cases where the language semantics cannot easily reflect
what an implementation might do, so one would prefer not to have to answer
such questions.

8 Conclusion

The C/C++11 concurrency model remains the state of the art for the semantics
of a general-purpose shared-memory concurrent programming languages; it is,
to the best of our knowledge, sound with respect to the compiler optimisation
behaviour of implementations [29] (in contrast to the JMM [16, 34]), it is provably
compilable to relaxed hardware models [8, 7, 32], and our work here establishes a
machine-checked DRF-SC theorem. But the thin-air problem shows that it allows
too many behaviours, and we have seen here that that cannot be solved in a
simple per-candidate-execution way, that the problem is not specific to relaxed
atomics, that, while an operational solution for those examples is possible, it
brings other difficulties, and that there are further problems with undefined
behaviour.

Disturbingly, 40+ years after the first relaxed-memory hardware was intro-
duced (the IBM 370/158MP), the field still does not have a credible proposal for
2 Note that this is not a thin-air execution, just a normal LB shape, with the reads and
writes to x and y related by program order on the first thread and a data dependency
on the second, extended just by using the read value of the first thread in an array
access.

23

the concurrency semantics of any general-purpose high-level language that in-
cludes high-performance shared-memory concurrency primitives. This is a major
open problem for programming language semantics.

Acknowledgements We would like to thank Hans Boehm, Paul McKenney,
Jaroslav Ševčík, Ali Sezgin, Viktor Vafeiadis, and Francesco Zappa Nardelli for
discussions about parts of this work. We acknowledge funding from EPSRC
grants EP/H005633 (Leadership Fellowship, Sewell) and EP/K008528 (REMS
Programme Grant), and a Gates Cambridge Scholarship (Nienhuis).

References

1. The SPARC architecture manual, v. 9. http://dev http://www.sparc.org/

technical-documents/.
2. Programming Languages — C. 2011. ISO/IEC 9899:2011. http://www.open-std.

org/jtc1/sc22/wg14/docs/n1539.pdf.
3. S. V. Adve and M. D. Hill. Weak ordering — a new definition. In ISCA, 1990.
4. J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation,

testing, and data mining for weak memory. ACM TOPLAS, 36(2), 2014.
5. M. Batty. The C11 and C++11 concurrency model. PhD thesis, University of

Cambridge, 2014. http://www.cl.cam.ac.uk/~mjb220/battythesis.pdf.
6. M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++ concur-

rency. In Proc. POPL, 2013.
7. M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying and com-

piling C/C++ concurrency: from C++11 to POWER. In Proc. POPL, 2012.
8. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++

concurrency. In Proc. POPL, 2011.
9. P. Becker, editor. Programming Languages — C++. 2011. ISO/IEC 14882:2011.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf.
10. H.-J. Boehm. Threads cannot be implemented as a library. In Proc. PLDI, 2005.
11. H.-J. Boehm. Memory model rationales. http://open-std.org/jtc1/sc22/wg21/

docs/papers/2007/n2176.html, March 2007.
12. H.-J. Boehm. N3786: Prohibiting "out of thin air" results in C++14. http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3786.htm, September 2013.
13. H.-J. Boehm and S.V. Adve. Foundations of the C++ concurrency memory model.

In Proc. PLDI, 2008.
14. H.-J. Boehm and B. Demsky. Outlawing ghosts: Avoiding out-of-thin-air results.

In Proc. MSPC, 2014.
15. G. Boudol and G. Petri. A theory of speculative computation. In ESOP, 2010.
16. P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model: Operationally,

denotationally, axiomatically. In Proc. ESOP, 2007.
17. D. Demange, V. Laporte, L. Zhao, S. Jagannathan, D. Pichardie, and J. Vitek.

Plan B: A buffered memory model for Java. In POPL, 2013.
18. Free Software Foundation, Inc. RTL Passes — GNU Com-

piler Collection (GCC) Internals, October 2014. Available at
https://gcc.gnu.org/onlinedocs/gccint/RTL-passes.html.

19. K. Gharachorloo, S. V. Adve, A. Gupta, J. L. Hennessy, and M. D. Hill. Program-
ming for different memory consistency models. Journal of Parallel and Distributed
Computing, 15:399–407, 1992.

24

20. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. 1996.
21. The HOL 4 system. http://hol.sourceforge.net/.
22. R. Jagadeesan, C. Pitcher, and J. Riely. Generative operational semantics for

relaxed memory models. In Proc. ESOP, 2010.
23. L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Trans. Comput., C-28(9):690–691, 1979.
24. LLVM Project. LLVM’s Analysis and Transform Passes — LLVM 3.6 documenta-

tion, October 2014. Available at http://llvm.org/docs/Passes.html.
25. J. Manson, W. Pugh, and S.V. Adve. The Java memory model. In POPL, 2005.
26. L. Maranget, S. Sarkar, and P. Sewell. A tutorial introduction to the ARM

and POWER relaxed memory models. October 2012. http://www.cl.cam.ac.uk/

~pes20/ppc-supplemental/test7.pdf.
27. D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. A case

for an SC-preserving compiler. In PLDI, 2011.
28. Paul McKenney. Reordering and verification at the linux kernel reorder workshop

in vienna summer of logic, july 2014. Invited talk at REORDER workshop, Vienna
Summer of Logic, July 2014. http://www2.rdrop.com/users/paulmck/scalability/
paper/LinuxRCUVerif.2014.07.17a.pdf.

29. R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing via a theory of
sound optimisations in the C11/C++11 memory model. In Proc. PLDI, 2013.

30. B. Norris and B. Demsky. CDSchecker: Checking concurrent data structures writ-
ten with C/C++ atomics. In Proc. OOPSLA, 2013.

31. W. Pugh. Fixing the Java memory model. In Proc. ACM 1999 Conference on Java
Grande, 1999.

32. S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget, J. Alglave,
and D. Williams. Synchronising C/C++ and POWER. In Proc. PLDI, 2012.

33. S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding
POWER multiprocessors. In Proc. PLDI, 2011.

34. J. Ševčík and D. Aspinall. On validity of program transformations in the Java
memory model. In ECOOP, 2008.

35. P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen. x86-TSO:
A rigorous and usable programmer’s model for x86 multiprocessors. C. ACM,
53(7):89–97, 2010. (Research Highlights).

36. A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi. End-to-
end sequential consistency. In Proc. ISCA, 2012.

37. A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory with ghosts,
protocols, and separation. In Proc. OOPSLA, 2014.

38. V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Zappa Nardelli.
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. In Proc. POPL, 2015.

39. V. Vafeiadis and C. Narayan. Relaxed separation logic: A program logic for C11
concurrency. In Proc. OOPSLA, 2013.

40. J. Ševčík. Safe optimisations for shared-memory concurrent programs. In PLDI,
2011.

41. J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency. J. ACM,
60(3):22:1–22:50, June 2013.

25

