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Abstract
We describe CertiCoq-Wasm, a verified compiler from the

Gallina programming language of the Coq theorem prover to

WebAssembly. CertiCoq-Wasm is mechanised with respect

to the WasmCert-Coq formalisation of the WebAssembly

1.0 standard, and produces WebAssembly programs with

reasonable performance. Internally, CertiCoq-Wasm is based

on the CertiCoq pipeline, and diverges only at the lowering

from its minimal lambda calculus in administrative normal

form.

1 Introduction
Interactive theorem provers like Coq make it possible to

develop a program and prove its properties in the same en-

vironment. In many cases, the program is also of interest

outside of the theorem prover; therefore, the theorem prover

makes it possible to extract such an internal program to an

external file, possibly written in another language. However,

this raises the question of how the extracted program relates

to the internal program, especially if extraction involves

non-trivial compilation. Coq provides both unverified ex-

traction [5] and a recent certified extraction, CertiCoq [1].

CertiCoq targets Clight and depends on CompCert [4] to

produce verified machine code. For applications such as the

web and blockchains (‘web3’), WebAssembly (abbreviated

Wasm) has emerged as the standard assembly language.

Contribution. We thus contribute CertiCoq-Wasm, an

extraction mechanism from Gallina, the programming lan-

guage of Coq, to WebAssembly. We implement CertiCoq-

Wasm by replacing the back-end of CertiCoq [1] to produce

WebAssembly from its 𝜆ANF language [6]. This greatly de-

creases the trusted code base over, for example, unverified
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compilation of Clight to WebAssembly. We prove CertiCoq-

Wasm correct with respect to the official specification of

WebAssembly 1.0 [7], as mechanised in WasmCert-Coq [10].

Gallina

reified Gallina

𝜆ANF

Clight

asm

WebAssembly

MetaCoq

CertiCoq core

this paper

CompCert

Figure 1. The CertiCoq pipeline. Proofs in progress are in

dashed magenta, and MetaCoq [9] (which has to be trusted)

is in dotted orange. Our verified contribution is in blue.

1.1 CertiCoq
CertiCoq is a compiler from Gallina, the programming lan-

guage of the Coq proof assistant [3], to Clight [2], the dialect

of the C programming language that CompCert [4] compiles.

It works as an alternative to the usual ‘extraction’ mechanism

from Gallina to OCaml or Haskell.

As often in compilation of a functional language to an im-

perative one, CertiCoq’s pipeline involves a low intermediate

language, which is where CertiCoq-Wasm inserts itself.

1.2 WebAssembly
CertiCoq-Wasm ismechanisedwith respect to theWasmCert-

Coq formalisation of the WebAssembly 1.0 standard. Web-

Assembly is a simple but detailed stack language (Figure 3).

The main feature we rely on is that each WebAssembly mod-

ule is equipped with a linear memory, a growable array of

bytes, accessed with loads and stores that take integers in-
dices (as opposed to the complex pointers of C). We also take

advantage of call_indirect, which takes a function index into

a table of functions.
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(Variables) 𝑥,𝑦, 𝑓 ∈ Var
(Constructors) C ∈ Constr
(Function defs) fd ::= (𝑓 (𝑦) = 𝑒)
(Expressions) 𝑒 ::= let 𝑥 = C(𝑦) in 𝑒

| let 𝑥 = 𝑦.𝑖 in 𝑒

| case 𝑦 of [𝐶𝑖 → 𝑒𝑖 ]𝑖∈𝐼
| let fd in 𝑒

| let 𝑥 = 𝑓 𝑦 in 𝑒

| 𝑓 𝑦

| ret(𝑦)
(Values) 𝑣 ::= (𝐶, 𝑣) |

(
𝜌, fd, 𝑥

)
(Environments) 𝜌 ::= · | 𝜌, 𝑥 ↦→ 𝑣

Figure 2. Syntax of CertiCoq’s 𝜆ANF intermediate language,

primitive operations omitted

𝑡 ::= i32 | i64 | . . .
instr ::= 𝑡 .const | 𝑡 .add | . . . | 𝑡 .xor | . . . |

𝑡 .load memarg | 𝑡 .store memarg |
memory.grow
nop | if bty instrs1 else instrs2 end |
call funcidx | call_indirect tableidx funcidx

Figure 3. Syntax of (parts of) WebAssembly

2 CertiCoq-Wasm
2.1 Correctness
Theorem 2.1 (Correctness of lowering). For any closed well-
formed 𝜆ANF program 𝑒 with globally unique bound variables,(

· ⊢ 𝑒 ⇓ 𝑣 ∧ compile 𝑒 = (mod, . . .) ∧
instantiate mod = (sr, . . .)

)
=⇒

∃sr′ .
(sr, . . . , [call idxmain]) →∗ (sr′, . . . , []) ∧(
𝑣 ≃val

sr′ sr
′.globals

res
∨ sr′.globals

out_of_mem
= 1

)
where ‘compile’ is our extraction to Wasm, which generates a
Wasm module mod, which is then instantiated (see §4), induc-
ing a ‘store’ sr .

Proof. The proof is roughly as per [8, §4.3], and relates 𝜆ANF
values toWasm values via the relation in Figure 4. The simple

semantics of Wasm makes the proof manageable. □

This only concerns compilation from CertiCoq-Wasm’s

𝜆ANF to WebAssembly. However, we can combine it with

CertiCoq’s internal correctness to get a Gallina-to-Wasm

result.

3 TCB
Because CertiCoq-Wasm builds on the CertiCoq front-end

and middle-end, it inherits all of CertiCoq’s “upper” assump-

tions, in particular MetaCoq’s correctness.

(VR_FUN)

(𝑓 (𝑦) = 𝑒) = fdidx−4
sr .funcsidx = 𝐹 𝐹 .type = (i32 |𝑦 | → [])

𝐹 .body = codegen 𝑒 𝐹 .locals = i32 |bound_vars(𝑒 ) |(
𝜌, fd, 𝑓

)
≃val

sr idx

(VR_CONSTR)

sr .mems0 =𝑚 ptr + 4( |𝑣 | + 1) ≤ sr .globalsgmp

𝑚[ptr, ptr + 4] = 𝐶 ∀𝑣𝑖 ∈ 𝑣 . 𝑣𝑖 ≃val

sr 𝑚

[
ptr + 4(𝑖 + 1),
ptr + 4(𝑖 + 2)

]
(𝐶, 𝑣) ≃val

sr ptr

Figure 4. Value relation, relating a 𝜆ANF value to a Wasm i32

We verify CertiCoq-Wasm down to theWebAssembly AST

of WasmCert. The AST-to-string conversion to the .wat for-

mat (S-expressions) of WasmCert is not verified, but straight-

forward. WasmCert does not capture the binary .wasm for-
mat (which requires some light compilation, as implemented

by wat2wasm).
Our diff to CertiCoq is some OCaml in a single file to insert

our backend; the rest of CertiCoq-Wasm is Gallina code.

4 Limitations
CertiCoq-Wasm has a full proof of correctness, but is still

work-in-progress. Some of the limitations are:

• CertiCoq implicitly utilises the correctness of Comp-

Cert to extract assembly (Figure 1), yielding a Gallina-

to-assembly pipeline. We are not aware of any verified

WebAssembly compilers, so our result stops at Web-

Assembly, and is thus weaker than that of CertiCoq.

• Some Gallina programs are ‘too big’ to be directly

represented inWebAssembly, for example, if they have

more than 2
32
constructors.

• Unavoidably, some compiled Gallina programs con-

sume too much memory, resulting in the weak clause

of the correctness statement. However, our compiler

does not take steps to circumvent that: it grows the

memory as needed to allocate new objects, but never

garbage collects old objects.

• Our backend only supports 𝜆ANFtailcalls, non-tailcalls

are not supported. The absence of non-tailcalls can be

enforced with CertiCoq’s -cps flag.

• Even though all major WebAssembly runtimes sup-

port them, tailcalls are not part of the 1.0 spec of Web-

Assembly. We generate standard calls, and a script

replaces them with tailcalls in the binary.

• WebAssembly is run in two phases: (1) it is first in-
stantiated, which involves type-checking and sets up

the WebAssembly ‘store’, a sort of evaluation context;

(2) it is then run proper from its start function. Our
2
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theorems assume that the module produced by our

compiler gets successfully instantiated.

• CertiCoq can be made to use ‘native types’ like i32
that it can then generate efficient representations and

code for. Our compiler does not support this yet.
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