
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

CertiCoq-Wasm: Verified compilation
from Coq to WebAssembly

Wolfgang Meier

womeier@posteo.de
Aarhus University

Aarhus, Denmark

Jean Pichon-Pharabod

jean.pichon@cs.au.dk
Aarhus University

Aarhus, Denmark

Bas Spitters

spitters@cs.au.dk
Aarhus University

Aarhus, Denmark

Abstract
We describe CertiCoq-Wasm, a verified compiler from the

Gallina programming language of the Coq theorem prover to

WebAssembly. CertiCoq-Wasm is mechanised with respect

to the WasmCert-Coq formalisation of the WebAssembly

1.0 standard, and produces WebAssembly programs with

reasonable performance. Internally, CertiCoq-Wasm is based

on the CertiCoq pipeline, and diverges only at the lowering

from its minimal lambda calculus in administrative normal

form.

1 Introduction
Interactive theorem provers like Coq make it possible to

develop a program and prove its properties in the same en-

vironment. In many cases, the program is also of interest

outside of the theorem prover; therefore, the theorem prover

makes it possible to extract such an internal program to an

external file, possibly written in another language. However,

this raises the question of how the extracted program relates

to the internal program, especially if extraction involves

non-trivial compilation. Coq provides both unverified ex-

traction [5] and a recent certified extraction, CertiCoq [1].

CertiCoq targets Clight and depends on CompCert [4] to

produce verified machine code. For applications such as the

web and blockchains (‘web3’), WebAssembly (abbreviated

Wasm) has emerged as the standard assembly language.

Contribution. We thus contribute CertiCoq-Wasm, an

extraction mechanism from Gallina, the programming lan-

guage of Coq, to WebAssembly. We implement CertiCoq-

Wasm by replacing the back-end of CertiCoq [1] to produce

WebAssembly from its 𝜆ANF language [6]. This greatly de-

creases the trusted code base over, for example, unverified

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

compilation of Clight to WebAssembly. We prove CertiCoq-

Wasm correct with respect to the official specification of

WebAssembly 1.0 [7], as mechanised in WasmCert-Coq [10].

Gallina

reified Gallina

𝜆ANF

Clight

asm

WebAssembly

MetaCoq

CertiCoq core

this paper

CompCert

Figure 1. The CertiCoq pipeline. Proofs in progress are in

dashed magenta, and MetaCoq [9] (which has to be trusted)

is in dotted orange. Our verified contribution is in blue.

1.1 CertiCoq
CertiCoq is a compiler from Gallina, the programming lan-

guage of the Coq proof assistant [3], to Clight [2], the dialect

of the C programming language that CompCert [4] compiles.

It works as an alternative to the usual ‘extraction’ mechanism

from Gallina to OCaml or Haskell.

As often in compilation of a functional language to an im-

perative one, CertiCoq’s pipeline involves a low intermediate

language, which is where CertiCoq-Wasm inserts itself.

1.2 WebAssembly
CertiCoq-Wasm ismechanisedwith respect to theWasmCert-

Coq formalisation of the WebAssembly 1.0 standard. Web-

Assembly is a simple but detailed stack language (Figure 3).

The main feature we rely on is that each WebAssembly mod-

ule is equipped with a linear memory, a growable array of

bytes, accessed with loads and stores that take integers in-
dices (as opposed to the complex pointers of C). We also take

advantage of call_indirect, which takes a function index into

a table of functions.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Wolfgang Meier, Jean Pichon-Pharabod, and Bas Spitters

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

(Variables) 𝑥,𝑦, 𝑓 ∈ Var
(Constructors) C ∈ Constr
(Function defs) fd ::= (𝑓 (𝑦) = 𝑒)
(Expressions) 𝑒 ::= let 𝑥 = C(𝑦) in 𝑒

| let 𝑥 = 𝑦.𝑖 in 𝑒

| case 𝑦 of [𝐶𝑖 → 𝑒𝑖]𝑖∈𝐼
| let fd in 𝑒

| let 𝑥 = 𝑓 𝑦 in 𝑒

| 𝑓 𝑦

| ret(𝑦)
(Values) 𝑣 ::= (𝐶, 𝑣) |

(
𝜌, fd, 𝑥

)
(Environments) 𝜌 ::= · | 𝜌, 𝑥 ↦→ 𝑣

Figure 2. Syntax of CertiCoq’s 𝜆ANF intermediate language,

primitive operations omitted

𝑡 ::= i32 | i64 | . . .
instr ::= 𝑡 .const | 𝑡 .add | . . . | 𝑡 .xor | . . . |

𝑡 .load memarg | 𝑡 .store memarg |
memory.grow
nop | if bty instrs1 else instrs2 end |
call funcidx | call_indirect tableidx funcidx

Figure 3. Syntax of (parts of) WebAssembly

2 CertiCoq-Wasm
2.1 Correctness
Theorem 2.1 (Correctness of lowering). For any closed well-
formed 𝜆ANF program 𝑒 with globally unique bound variables,(

· ⊢ 𝑒 ⇓ 𝑣 ∧ compile 𝑒 = (mod, . . .) ∧
instantiate mod = (sr, . . .)

)
=⇒

∃sr′ .
(sr, . . . , [call idxmain]) →∗ (sr′, . . . , []) ∧(
𝑣 ≃val

sr′ sr
′.globals

res
∨ sr′.globals

out_of_mem
= 1

)
where ‘compile’ is our extraction to Wasm, which generates a
Wasm module mod, which is then instantiated (see §4), induc-
ing a ‘store’ sr .

Proof. The proof is roughly as per [8, §4.3], and relates 𝜆ANF
values toWasm values via the relation in Figure 4. The simple

semantics of Wasm makes the proof manageable. □

This only concerns compilation from CertiCoq-Wasm’s

𝜆ANF to WebAssembly. However, we can combine it with

CertiCoq’s internal correctness to get a Gallina-to-Wasm

result.

3 TCB
Because CertiCoq-Wasm builds on the CertiCoq front-end

and middle-end, it inherits all of CertiCoq’s “upper” assump-

tions, in particular MetaCoq’s correctness.

(VR_FUN)

(𝑓 (𝑦) = 𝑒) = fdidx−4
sr .funcsidx = 𝐹 𝐹 .type = (i32 |𝑦 | → [])

𝐹 .body = codegen 𝑒 𝐹 .locals = i32 |bound_vars(𝑒) |(
𝜌, fd, 𝑓

)
≃val

sr idx

(VR_CONSTR)

sr .mems0 =𝑚 ptr + 4(|𝑣 | + 1) ≤ sr .globalsgmp

𝑚[ptr, ptr + 4] = 𝐶 ∀𝑣𝑖 ∈ 𝑣 . 𝑣𝑖 ≃val

sr 𝑚

[
ptr + 4(𝑖 + 1),
ptr + 4(𝑖 + 2)

]
(𝐶, 𝑣) ≃val

sr ptr

Figure 4. Value relation, relating a 𝜆ANF value to a Wasm i32

We verify CertiCoq-Wasm down to theWebAssembly AST

of WasmCert. The AST-to-string conversion to the .wat for-

mat (S-expressions) of WasmCert is not verified, but straight-

forward. WasmCert does not capture the binary .wasm for-
mat (which requires some light compilation, as implemented

by wat2wasm).
Our diff to CertiCoq is some OCaml in a single file to insert

our backend; the rest of CertiCoq-Wasm is Gallina code.

4 Limitations
CertiCoq-Wasm has a full proof of correctness, but is still

work-in-progress. Some of the limitations are:

• CertiCoq implicitly utilises the correctness of Comp-

Cert to extract assembly (Figure 1), yielding a Gallina-

to-assembly pipeline. We are not aware of any verified

WebAssembly compilers, so our result stops at Web-

Assembly, and is thus weaker than that of CertiCoq.

• Some Gallina programs are ‘too big’ to be directly

represented inWebAssembly, for example, if they have

more than 2
32
constructors.

• Unavoidably, some compiled Gallina programs con-

sume too much memory, resulting in the weak clause

of the correctness statement. However, our compiler

does not take steps to circumvent that: it grows the

memory as needed to allocate new objects, but never

garbage collects old objects.

• Our backend only supports 𝜆ANFtailcalls, non-tailcalls

are not supported. The absence of non-tailcalls can be

enforced with CertiCoq’s -cps flag.

• Even though all major WebAssembly runtimes sup-

port them, tailcalls are not part of the 1.0 spec of Web-

Assembly. We generate standard calls, and a script

replaces them with tailcalls in the binary.

• WebAssembly is run in two phases: (1) it is first in-
stantiated, which involves type-checking and sets up

the WebAssembly ‘store’, a sort of evaluation context;

(2) it is then run proper from its start function. Our
2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

CertiCoq-Wasm: Verified compilation
from Coq to WebAssembly Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

theorems assume that the module produced by our

compiler gets successfully instantiated.

• CertiCoq can be made to use ‘native types’ like i32
that it can then generate efficient representations and

code for. Our compiler does not support this yet.

References
[1] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe

Paraskevopoulou, Randy Pollack, Olivier Savary Belanger,

Matthieu Sozeau, , and Matthew Weaver. 2017. CertiCoq:

A verified compiler for Coq. In CoqPL’17: The Third In-
ternational Workshop on Coq for Programming Languages.
http://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf

[2] Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for

the Clight Subset of the C Language. J. Autom. Reason. 43, 3 (2009),
263–288. https://doi.org/10.1007/s10817-009-9148-3

[3] Coq development team. 2023. The Gallina specification lan-

guage. https://coq.inria.fr/doc/V8.18.0/refman/language/gallina-
specification-language.html

[4] Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.

1538814
[5] Pierre Letouzey. 2002. A New Extraction for Coq.. In TYPES (Lecture

Notes in Computer Science, Vol. 2646). Springer, 200–219.
[6] Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel. 2021. Com-

positional optimizations for CertiCoq. Proc. ACM Program. Lang. 5,
ICFP (2021), 1–30. https://doi.org/10.1145/3473591

[7] Andreas Rossberg. 2019. WebAssembly Core Specification W3C Recom-
mendation. Technical Report. W3C. https://www.w3.org/TR/wasm-
core-1/

[8] Olivier Savary Bélanger. 2019. Verified Extraction for Coq. Ph. D.

Dissertation. Princeton University. https://dataspace.princeton.edu/
handle/88435/dsp01zw12z817f

[9] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yan-

nick Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and

Théo Winterhalter. 2020. The MetaCoq Project. J. Autom. Reason. 64,
5 (2020), 947–999. https://doi.org/10.1007/s10817-019-09540-0

[10] Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and

Philippa Gardner. 2021. Two Mechanisations of WebAssembly 1.0. In

Formal Methods - 24th International Symposium, FM 2021, Virtual Event,
November 20-26, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan

(Eds.). Springer, 61–79. https://doi.org/10.1007/978-3-030-90870-6_4

3

http://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://doi.org/10.1007/s10817-009-9148-3
https://coq.inria.fr/doc/V8.18.0/refman/language/gallina-specification-language.html
https://coq.inria.fr/doc/V8.18.0/refman/language/gallina-specification-language.html
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3473591
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://dataspace.princeton.edu/handle/88435/dsp01zw12z817f
https://dataspace.princeton.edu/handle/88435/dsp01zw12z817f
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/978-3-030-90870-6_4

	Abstract
	1 Introduction
	1.1 CertiCoq
	1.2 WebAssembly

	2 CertiCoq-Wasm
	2.1 Correctness

	3 TCB
	4 Limitations
	References

