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Very relaxed concurrency memory models, like those of the Arm-A, RISC-V, and IBM Power hardware

architectures, underpin much of computing but break a fundamental intuition about programs, namely that

syntactic program order and the reads-from relation always both induce order in the execution. Instead,

out-of-order execution is allowed except where prevented by certain pairwise dependencies, barriers, or other

synchronisation. This means that there is no notion of the ‘current’ state of the program, making it challenging

to design (and prove sound) syntax-directed, modular reasoning methods like Hoare logics, as usable resources

cannot implicitly flow from one program point to the next.

We present AxSL, a separation logic for the relaxed memory model of Arm-A, that captures the fine-grained

reasoning underpinning the low-overhead synchronisation mechanisms used by high-performance systems

code. In particular, AxSL allows transferring arbitrary resources using relaxed reads and writes when they

induce inter-thread ordering. We mechanise AxSL in the Iris separation logic framework, illustrate it on key

examples, and prove it sound with respect to the axiomatic memory model of Arm-A. Our approach is largely

generic in the axiomatic model and in the instruction-set semantics, offering a potential way forward for

compositional reasoning for other similar models, and for the combination of production concurrency models

and full-scale ISAs.
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1 INTRODUCTION
Systems code, such as operating system and hypervisor kernel code, is a prime target for software

verification, being security-critical yet relatively small. However, it is highly concurrent, which

raises two questions: What model to verify it above? And what verification theory to use? The

Arm-A architecture is used in essentially all mobile devices, and its base (“user”) relaxed concurrency

model is now reasonably well-understood and stable [Arm Ltd. 2023, Ch.B2],[Alglave et al. 2021,

2014; Deacon 2016; Flur et al. 2017; Pulte et al. 2018]. However, there is little program verification

theory or tooling that applies directly to Arm-A.

In this paper, we develop a separation logic for Arm-A “user” concurrency that is expressive,

supporting local reasoning with higher-order ghost state and invariants, and mechanised in Coq,

𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] 1 𝑑 : str [𝑥] 1

𝑎:R 𝑥 1

𝑏:W 𝑦 1

𝑐:R 𝑦 1

𝑑 :W 𝑥 1

po po
rf

rf

Fig. 1. LB+pos

using the Iris program logic framework [Jung et al. 2018,

2015]. The Arm-A concurrency model is particularly chal-

lenging for program-logic reasoning because it (like RISC-V

and IBM Power, but unlike x86) permits load-store reorder-

ing, as in the classic “load buffering” LB shape of Fig. 1. This

means that the union of program order (po) and the reads-

from relation (rf) is not guaranteed to be acyclic — but for

compositional reasoning, one wants to attach assertions to

particular program points, and program logics usually rely

on the strength of program order captured by that acyclicity; they let resources implicitly flow

in the proof context from one program point to the next. Previous program logics have either

assumed po ∪ rf acyclic (which requires extra barriers), e.g. FSL++ [Doko 2021; Doko and Vafeiadis

2017], GPS [Turon et al. 2014], and iRC11 [Dang et al. 2020], or lack ghost state, e.g. FSL [Doko

and Vafeiadis 2016], which makes the logic substantially less expressive and more awkward to use,

or give extremely weak guarantees for non-synchronised reads, e.g. RSL [Vafeiadis and Narayan

2013]. The Lace logic [Bornat et al. 2015] targeted relaxed architectural models but lacked a proof

of soundness, and the Ogre and Pythia logic [Alglave and Cousot 2017] is a refinement of Owicki-

Gries [Owicki and Gries 1976] that is parameterised by (and sound for) a range of relaxed models,

but (like Owicki-Gries) lacks thread-local modular reasoning.

In contrast to those previous program logics, to allow sound usage of ghost resources even in

the presence of LB, we prevent implicit flow of usable resources between program points along po,

allowing it only along the ordered-before ordering (ob) of the Arm-A memory model. In Arm-A,

there are many ways to create ob ordering. We allow explicit reasoning about those if need be, by

exposing the structure of the axiomatic model, letting one reason about the low-cost ordering that

Arm-A guarantees from various forms of dependency (RSL, FSL, FSL++, GPS, and iGPS are all for

C11 or RC11, without dependencies).

Stepping back, why would one want to reason directly above an architecture concurrency model?

After all, high-level language concurrency models, e.g. C/C++11 [Batty et al. 2011; Boehm and Adve

2008] and the Linux kernel memory model, LKMM [Alglave et al. 2018; McKenney et al. 2020],

were designed to obviate the need to program and reason about specific underlying architectures,

with extensive work on the correctness of their compilation schemes [Batty et al. 2012; Lahav et al.

2017; Manerkar et al. 2016; Sarkar et al. 2012], and one would not envisage manual proof about

large bodies of assembly code. There are three main reasons.

First, those C/C++ language-level models are fundamentally flawed for highly relaxed code

because of the out-of-thin-air problem [Becker 2011, §23.9p9] [Batty et al. 2015]: they allow arbitrary

values to be created, e.g. for the Fig. 2 LB+datas shape of relaxed atomic accesses and source-language

data dependencies. Thin-air values are not believed to arise for conventional compilers and hardware,
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𝑥 = 0 ∧ 𝑦 = 0

𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] 𝑟1 𝑑 : str [𝑥] 𝑟2

𝑎:R 𝑥 42

𝑏:W 𝑦 42

𝑐:R 𝑦 42

𝑑 :W 𝑥 42

po
data po

data

rf

rf

Fig. 2. LB+datas

but it has proven challenging to define tractable semantics

that exclude them while remaining sound w.r.t. conventional

compiler and hardware optimisations — especially compiler

dependency removal and hardware load-store reordering.

The LKMM forbids thin-air outcomes by assuming some de-

pendencies are respected, and in specific coding idioms they

often are, but in general they can be removed by conventional

compiler optimisations. There have been many attempts to

solve this problem [Chakraborty and Vafeiadis 2019; Jeffrey

and Riely 2016; Kang et al. 2017; Lee et al. 2020; Paviotti et al.

2020; Pichon-Pharabod and Sewell 2016], but so far none have been adopted — so we simply do not

yet have any high-level language semantics suitable for reasoning about deployed highly relaxed

code. In contrast, architecture concurrency models for Arm-A (and other architectures, including

x86, RISC-V, and IBM Power) are now well-established [Alglave et al. 2021, 2014; Arm Ltd. 2023;

Deacon 2016; Flur et al. 2017; Owens et al. 2009; Pulte et al. 2018; Sarkar et al. 2011, 2009; Waterman

and Asanović 2019], and do not suffer from the thin-air problem: these architectures guarantee to

respect certain syntactic dependencies, ruling out thin-air. These architectural models thus give us

a solid foundation that we can reason above.

Second, ultimately, the machine-code binary is what runs — and therefore one ultimately wants

to verify down to the (concurrent) machine semantics, even if the bulk of one’s source-language

verification is at the C level or above. There are several possible approaches to this: for example,

one might have a source language with more restricted concurrency (without relaxed accesses),

and then some verified compilation result down to the machine semantics [Cho et al. 2022; Tao

et al. 2021]. But production systems-code practice does use relaxed accesses for performance, and

hence reasoning about them is an important problem. We thus aim here to first understand how to

reason directly about the binary, where we have a good underlying model; future work can then

use this as the basis for verified compilation or other verification approaches for higher-level code.

Third, systems code relies, in small but crucial parts, on assembly which is not C-language

expressible — e.g. for particular barriers, and for management of systems features of the underlying

architecture (instruction and data cache management [Simner et al. 2020], virtual memory [Simner

et al. 2022][Arm Ltd. 2023, B2.3], exceptions, etc.). We do not cover systems semantics here, but our

approach is designed to generalise to it.

Contributions. We develop a separation logic for Arm-A “user” concurrency, AxSL, that is ex-

pressive, supporting reasoning with higher-order ghost state and invariants, and mechanised in

Coq, using the Iris program logic framework.

We do this specifically for the Arm-A concurrency model, and only for an idealised instruction

set architecture (ISA), but our approach is designed to generalise in both respects. For the ISA,

our idealised ISA semantics and base logic are defined above the microinstructions of the Sail

“outcome” interface [Gray et al. 2015][Pulte et al. 2018, §6.1][Pulte 2018, §2.3], so they should

generalise straightforwardly to the full ISA of Arm-A or RISC-V. For the concurrency model, our

approach is largely generic in the structure of the Arm-A axiomatic model, so this work offers a path

towards similar logics for other architecture axiomatic models (e.g. the rather similar RISC-V “user”

model), or, more speculatively, to extensions covering Arm-A systems semantics [Simner et al. 2022,

2020]. Moreover, the Arm-A architecture reference manual specifies its concurrency architecture in

this axiomatic style [Arm Ltd. 2023, Ch.B2] and is actively maintained and occasionally changed,

so (while semantics for new features have been developed both within and outside Arm, and in

multiple styles), it is desirable to be able to track the reference-manual version with minimal effort.
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We describe the program-logic and relaxed-memory context in §2. We explain the key ideas of

our logic informally in §3, and in §4 we describe the language we consider – the combination of a

simplified assembly language and the real LB-permitting Arm-A axiomatic concurrency model –

and how we give its semantics in a way that makes it possible to build an expressive logic featuring

higher-order ghost state. In §5, we describe the rules of our logic and exercise them on small,

representative examples. In §6, we show how we embed the axiomatic memory model of Arm-A in

Iris; we present our non-standard definition of weakest precondition and non-standard proof of

adequacy for an axiomatic memory model in Iris. We discuss related work in §7, and how our work

can be used and extended further in §8. The logic, its soundness, and the examples are formalised

in Coq using the Iris separation logic framework; the full development is available [Hammond et al.

2023].

Limitations. To avoid adding overwhelming complexity to an already complex topic, we only

consider the “user” Arm-Amemory model of 2018 [Pulte et al. 2018], and not more recent extensions

and changes: no mixed-size accesses, no instruction fetching, no virtual memory, and no pick

dependencies, although these extensions are all in the shape that our approach supports. Also for

simplicity, we use an idealised assembly language, but, as mentioned, give its semantics in terms

of the Sail interface monad that supports the full Arm ISA. Our logic is sound, but we did not

investigate its completeness. Our logic provides support and abstraction when reasoning about

synchronisation (through ob), but not when reasoning about coherence (per-location SC).

2 CONTEXT: PROGRAM LOGICS AND RELAXED CONCURRENCY
Early work on program verification, in a sequential setting, could assume the existence of a simple

program state of memory values, updated by each instruction, and program proof could be done by

annotating a flowchart (as per Turing [Morris and Jones 1984; Turing 1949] and Floyd [Floyd 1967]),

or syntactic program points (as per Naur [Naur 1966] and Hoare [Hoare 1969]), with assertions on

that state. In this setting, a fact about a part of the state untouched by some instruction remains

true (and usable for program proof) after the instruction, though managing such framing had to be

done manually. The first separation logics, of Reynolds, O’Hearn, and Yang [O’Hearn et al. 2001;

Reynolds 2002], refined this view with a separating conjunction, allowing assertions to express

ownership of some part of such a state, with an explicit frame rule. Simple concurrent separation

logics, e.g. CSL [Brookes and O’Hearn 2016], are broadly similar except that ownership of parts of

the state can be transferred at lock acquire and release points; facts about owned parts of the state

remain true from one program point to the next, except where the state they mention is explicitly

modified by the intervening instruction.

In a relaxed-memory concurrent setting, however, there is no simple notion of program state,

acted on by all threads in some global interleaving: threads do not execute in-order, and different

threads can observe events in incompatible orders. To capture this, the underlying semantics

have quite different forms to classical sequential or sequentially consistent concurrent semantics.

Two styles of semantics for architectural relaxed-memory concurrency are common: abstract-

microarchitectural operational models explain how the allowed observable behaviour arises from

explicit speculative execution and event propagation, but with roll-back when speculation turns

out to violate some constraint, e.g. [Higham et al. 2007; Owens et al. 2009; Pulte et al. 2018; Sarkar

et al. 2011], while axiomatic models define the allowed observable behaviour more concisely as

predicates on candidate complete execution graphs, e.g. [Alglave et al. 2010, 2014; Gharachorloo

1995; Kohli et al. 1993], but do not straightforwardly support the incremental construction of valid

executions. A third, “Promising”, style is, very roughly, intermediate between the two [Pulte et al.

2019]. All are challenging to work with, in different ways, as we discuss in §3.2.
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(* Coherence-after *)
let ca = fr | co
(* Observed-by *)
let obs = rfe | fre | coe
(* Dependency-ordered-before *)
let dob = addr | data
| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (ctrl | data); coi
| (addr | data); rfi
(* Atomic-ordered-before *)
let aob = rmw
| [range(rmw)]; rfi; [A | Q]
(* Barrier-ordered-before *)
let bob = po; [dmb.full ]; po | [L]; po; [A]

| [R]; po; [dmb.ld ]; po
| [A | Q]; po
| [W]; po; [dmb.st ]; po; [W] | po; [L]
| po; [L]; coi
(* Locally ordered-before *)
let lob = dob | aob | bob
(* Ordered-before *)
let ob = (obs | lob)+
(* Internal visibility requirement *)
acyclic po-loc | ca | rf
(* External visibility requirement *)
irreflexive ob
(* Atomicity requirement *)
empty rmw & (fre; coe) as atomic

Fig. 4. Arm-A axiomatic model by Deacon [Pulte et al. 2018] (with lob separated out, following later Arm

models [Alglave et al. 2021]), in herd’s cat syntax [Alglave et al. 2014] for relational algebra. Here |, &, ;, and +

are relational union, intersection, composition, and transitive closure; [W], [R], [L], [A] and [Q] are the identity

relations over all write, read, release, acquire and acquirePC events; [ISB], [dmb.full], [dmb.st], [dmb.ld] are the

identity on those barrier events; addr, data, and ctrl are the syntactic dependency-relation subsets of program

order po; po-loc relates same-address memory accesses in po; co is coherence over writes; the derived fr relates

reads to coherence successors of the write they read from; rmw is the successful read/write-exclusive pairs; and

the rf, co, and fr relations are subdivided into their “internal” (same-thread) and “external” (different-thread)

parts, suffixed i and e respectively. The main “axiom” requires that ordered-before (ob) is irreflexive.

We base the current work on an axiomatic model. In these, a program gives rise to a large set

of candidate complete execution graphs X , each with a function X .lab from event IDs to events,

a program order relation over event IDs (po) within each thread, with reads of arbitrary values

and writes of values consistent with the instruction semantics, and with arbitrary reads-from (rf)

and coherence (co) relations between them. An axiomatic concurrency model typically defines

various relations derived from these, e.g. for Arm-A the Fig. 4 model defines an observed before
(ob) relation, and imposes constraints on those, in particular that ob is acyclic. The semantics of a

program is the set of all candidate complete execution graphs that satisfy those properties and are

consistent with the intra-instruction semantics. For example, the candidate execution for LB+pos

in Fig. 1 is allowed by the Arm-A axiomatic model because the plain po relation, between reads and

writes to different addresses, is not included in the ordered-before ob that is required to be acyclic

𝑎:R 𝑥 0

𝑏:W 𝑦 0

𝑐:R 𝑦 0

𝑑 :W 𝑥 0

po
data po

data

rf

rf

Fig. 3. An SC execution of LB+datas

(or in the internal or atomicity requirements). The candidate

execution for LB+data at the bottom of Fig. 2 is forbidden in

Arm-A because the intra-thread syntactic data dependencies

create data edges, which are included in the Arm-A locally
ordered before lob relation, and that and the inter-thread reads-
from relation rfe are both contained in ob. For contrast the

candidate execution for LB+data in which 𝑎 reads from the

initial state, above, is allowed.

For some, relatively simple, forms of relaxed concurrency, one can adapt separation logic relatively

straightforwardly. For example, rely/guarantee reasoning with acquire/release reads and writes

lets one do thread-modular proofs, in which a thread might gain some resource at an acquire read,

manipulate it freely, and then pass it on with a release write – with the resource still persisting from

one program point to the next between those points (except where explicitly modified by this thread),

as a read-acquire is ordered with all po-successors and a write-release with all po-predecessors.

The effect of reading from a shared variable on the thread’s logical state is accounted for thread-

locally by relying on a protocol or invariant to abstract the possible actions of other threads. The
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protocol constrains what logical resources are transferred when accessing shared variables. In a

candidate execution, one can see this as annotating the incoming (to reads) and outgoing (from

writes) reads-from edges, for the part of the graph for each thread, with the resources that get

transferred along them (Fig. 5).

a: 𝑟1 := ldracq [𝑥]

b: strrel [𝑦] 𝑟1

𝑐:Wrel 𝑥 𝑣

𝑎:Racq 𝑥 𝑣

𝑏:Wrel 𝑦 𝑣

𝑑 :Racq 𝑦 𝑣

po 𝑆1

po 𝑆2

po 𝑆3

rf

𝜙 𝑣

rf

𝜓 𝑣

Fig. 5. Thread-local part (in grey) of

a candidate execution, annotated with

the logical resources in blue flowing on

edges. The thread program is on the

left. Resources 𝑆1,2,3 are those in hand

at each program point, and the proto-

col specifies the resources 𝜙 𝑣 and 𝜓 𝑣

passed along the release-acquire edges

for 𝑥 and 𝑦.

In this view, as described for RSL, the events of the execu-

tion graph act following flow implications: “the annotation is

locally valid around that action [when] basically the sum of

the annotated heaps on the incoming edges should equal the

sum of the annotated heaps on the outgoing edges, modulo

the effect of [the] action”.

FSL generalises RSL to reason about C11’s release and

acquire fences, but its assertions are still persistently freely

usable along po, so they have to choose between soundness

in the presence of load buffering (FSL) and support for ghost

state, at the cost of requiring po ∪ rf acyclic (FSL++). We

describe these and related logics in more detail in §7.

3 KEY IDEAS
3.1 The first problem: relaxed thread-local ordering
The biggest challenge for reasoning about the more relaxed

behaviour of mainstream (non-TSO) relaxed architectures,

including Arm-A, RISC-V, and IBM Power, arises from the

fact that they all permit out-of-order execution of program-

ordered loads and stores, except where there is some depen-

dency or barrier. This means that a resource gained on a load cannot be deemed to implicitly persist

through to any program-order-later store where it might be passed on. For example, consider a

thread consisting of two interleaved copies of the left thread of LB+datas (operating on disjoint

addresses), as in Fig. 6. The data dependencies order 𝑎 with 𝑐 , and 𝑏 with 𝑑 , but that is all the

ordering we get. In particular, nothing orders the last read 𝑏, before the first write 𝑐 – in contrast to

the release/acquire case.

𝑎: 𝑟1 := ldr [𝑥]
𝑏: 𝑟2 := ldr [𝑥 ′]
𝑐: str [𝑦] 𝑟1
𝑑 : str [𝑦′] 𝑟2

𝑎:R 𝑥 𝑣1

𝑏:R 𝑥 ′ 𝑣2

𝑐:W 𝑦 𝑣1

𝑑 :W 𝑦′ 𝑣2

po

po

po

data

data

Fig. 6. Intra-thread concurrency

The Arm-A axiomatic model’s locally-ordered-before (lob)

relation specifies what thread-local ordering is respected, as

introduced by barriers, synchronising accesses (store release,

acquire reads, etc.), and register-to-register dependencies. All

but the strongest barriers and synchronising accesses im-

pose only a partial ordering and allow some intra-thread con-

currency. In particular, some register dependencies merely

impose a pairwise ordering of events; as such, they are par-

ticularly cheap, and are one of the motivations to directly

write assembly for high-performance code, for example in

the Linux kernel’s pervasive RCU library.

Our first key idea is that by attaching resources only to locally-ordered-before edges, rather

than all of program order, we can make a sound logic even for relaxed architectures exhibiting load

buffering and intra-thread concurrency. However, for practical and compositional reasoning, we

want to annotate a program text, not the large set of its candidate executions. Moreover, to identify

when ordering will arise from register dependencies to program-order-later events, it suffices to

keep track of the source of each register value, not just its value. Concretely, a load 𝑎 into register 𝑟

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 21. Publication date: January 2024.
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of a value 𝑣 , from some location following a protocol 𝜙 , will give us

(𝑟 r↦→ 𝑣@{𝑎}) ∗ (𝑎 ↬ (𝜙 𝑣))

Here our register points-to assertion 𝑟 r↦→ 𝑣@𝐸 keeps track of the set 𝐸 of (thread-local) events that it

stems from, along with 𝑟 ’s current value 𝑣 , while 𝑎 ↬ (𝜙 𝑣) records the resources gained (according
to protocol 𝜙) from the load, tying them to its event ID 𝑎. (The 𝜙,𝜓, . . . are per-location value-based

protocols, which we later generalise.)

These register points-to and tied resources then do flow down to later program points (except

where transferred away), but, crucially, they can only be used for an event 𝑏 when 𝑎 is locally-

ordered-before 𝑏, e.g. where 𝑏 is a program-order and data-dependent write after 𝑎, which might

consume some or all of the resources in passing them to another thread. It is tempting to try

to combine these two assertions into one, bypassing the indirection, as 𝑟 r↦→ 𝑣&(𝜙 𝑣), but this
breaks down for all but the simplest use cases: moving the contents of a register into another must

distribute the resources, or use indirection as we do via events. Lace logic [Bornat et al. 2015] had a

somewhat similar mechanism, but more explicitly in terms of edges than sources, which fits their

setting where they dictate ordering (à la Crary and Sullivan [Crary and Sullivan 2015]) better, but

is less convenient for ours, where ordering emerges in program order. In general, of course, there

may be many dynamic instances – and hence memory events – arising from each static instruction;

that can also be dealt with within the logic, by existential quantification and counters for event

IDs [Alglave and Cousot 2017; Lamport 1977].

Crucially, we allow any Iris proposition to be tied to an event. This includes any piece of ghost

state gs, embedded into an Iris proposition as gs . Ghost state is very flexible [Dinsdale-Young et al.

2013, 2010; Jung et al. 2018, 2015; Svendsen and Birkedal 2014], and, as usual in Iris, we use it both

(1) to track the physical state (by enforcing in the definition of weakest precondition that it keeps

in sync with physical state introduced in §§3.2 and 4.3), but piecemeal, so that we for example can

talk about the state of a single register; and (2) to track the logical state of a program, for example

with an exclusive permission to commit to a value, where owning such a permission to commit

refutes observing another thread having done something that required having committed to a

value (as in §5.3). In a sense, ghost state instruments the physical state of the operational semantics,

but unlike physical state, ghost state can be updated freely by a view shift 𝑃 ⇛ 𝑄 , as long as the

update is frame-preserving, meaning that it does not contradict other pieces of ghost state; the

view shift can be viewed as a generalised implication. Finally, our 𝑎 ↬ 𝑃 assertion is itself defined

using ghost state, using the fact that Iris ghost state is higher-order, in the sense that it is mutually

defined with Iris propositions.

Using these assertions, we can write concrete proofs for synchronisation involving thread-local

dependencies, as sketched in Fig. 7, without relying on the program-order strength of release-acquire

reasoning we illustrated in Fig. 5. (This proof sketch is more complicated than needed for LB+datas,

which has a very simple proof just asserting all writes write 0, but it generalises to variations of LB,

1 {𝑟1 r↦→ _ ∗ 𝑅0} // 𝑆1
2 𝑎: 𝑟1 := ldr [𝑥]
3 {∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ (𝑎 ↬ (𝜙 𝑣1)) ∗ 𝑅0} // 𝑆2
4 𝑏: str [𝑦] 𝑟1 (𝑅0 ∗ 𝜙 𝑣1) ⇛ (𝜓 𝑣1)
5 {𝑟1 r↦→ 𝑣1@{𝑎}} // 𝑆3

Fig. 7. Proof sketch for a plain-access (non-release/acquire)

version of Fig. 5. The flow implication is on line 4.

as we show in §5.) The initial logical state

of the thread on line 1, 𝑆1, includes a reg-

ister points-to for 𝑟1 containing unknown,

irrelevant data, which we write with an un-

derscore: 𝑟1
r↦→ _, and some potential ex-

tra logical state 𝑅0. The load 𝑎 reads some

value 𝑣1, so now we have 𝑟1
r↦→ 𝑣1@{𝑎} and

𝑎 ↬ (𝜙 𝑣1). When performing the store 𝑏

on line 4, the proof rule requires us to es-

tablish the corresponding flow implication.
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Because the store has a data dependency on 𝑎, we get to use not only the ambient 𝑅0, but also the

𝜙 𝑣1 tied to 𝑎, to establish (because this is a store) the protocol for 𝑣1 for𝑦,𝜓 𝑣1. The flow implication

for 𝑏 that the proof rule requires us to establish is thus (𝑅0 ∗ 𝜙 𝑣1) ⇛ (𝜓 𝑣1).
If the data dependency between 𝑎 and 𝑏 is removed (so the store, e.g. now of a constant, can

execute early, and hence the relaxed LB behaviour of Fig. 1, where both reads read a non-zero

value, is allowed by Arm-A), then the proof does not go through anymore, as desired, because

the flow implication for 𝑏 no longer has 𝜙 𝑣1 available. This illustrates how our assertions allow

us to soundly use ghost state to reason about relaxed architectures exhibiting load buffering and

intra-thread concurrency.

𝑎: 𝑟 := ldr [𝑥]
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ (𝑃 ∗𝑄)}
{𝑟 r↦→ 𝑣@{𝑎} ∗ (𝑎↬𝑃) ∗ (𝑎↬𝑄)}
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ 𝑃}

𝑏: str [𝑦] 𝑟 // uses 𝑃
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ ⊤}
{𝑟 r↦→ 𝑣@{𝑎}}

{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ 𝑄}
𝑐: str [𝑧] 𝑟 // uses 𝑄
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ ⊤}

Fig. 8. Splitting tied resources

Framing. We are separating resources flowing from differ-

ent sources to different targets by necessity. Relatedly, one of

the points of separation logic is allow separate resources to

flow side-by-side, for convenience (specifically, for modular-

ity). In the example of Fig. 6, reasoning about 𝑐 is not allowed

to use the resource from 𝑏, only from 𝑎 — thanks to framing,

it does not need to mention the resource from 𝑏 either (sim-

ilarly, reasoning about 𝑑 is not allowed to use the resource

from 𝑎, and does not need to mention them either). In addi-

tion to framing a tied resource off, we also support splitting

tied resources, so that given an instruction that merely needs

𝑎 ↬ 𝑃 , we can split 𝑎 ↬ (𝑃 ∗𝑄) into (𝑎 ↬ 𝑃) ∗ (𝑎 ↬ 𝑄) and
frame the latter off, as in Fig. 8, see §6.1.

3.2 The second problem: operationalising the relaxed Arm-A model
The next challenge is that of selecting – or developing – a version of the Arm-A concurrency

architecture to underlie the soundness proof for our logic. A priori, one might use existing abstract-

microarchitectural operational [Pulte et al. 2018], axiomatic [Pulte et al. 2018], or Promising-

Arm [Pulte et al. 2019] models, which are proved equivalent (for the features covered by all). We

would like to express the logic as an instantiation of Iris [Jung et al. 2018, 2015], an expressive

separation logic framework, to get the benefits of its higher-order ghost state, guarded recursion,

and existing mechanisation. That requires the underlying semantics to be phrased as a small-step

operational semantics, for the logical setup for higher-order ghost state to apply, and it should

work ‘enough’ along program order for the soundness proof of our syntax-directed proof rules to

be tractable.

The abstract microarchitectural operational model is explanatory, based on hardware intuition,

and it is operational, but it is in this respect too close to hardware, with explicit out-of-order execu-

tion; it also splits memory reads and writes into multiple fine-grained events. The axiomatic model

as normally presented is not straightforwardly operational: phrased as acyclicity requirements

on the ob and certain other derived relations of a whole-program complete candidate execution,

expressed using relational algebra with fixpoints over basic relations po, data, rf, etc. One might

imagine constructing an operational model from the axiomatic model by fiat, with a state that is

a set of events, and steps that add an arbitrary event and recheck the axiomatic-model validity

predicate, but for Arm-A (and similarly RISC-V and IBM Power), because po ∪ rf is not acyclic,

this cannot straightforwardly follow program order, as reads would have to sometimes read from

events that have not yet been introduced. One might follow ob, but that would be at odds with the

structure of the soundness proof. Or one might permit such reads to read new symbolic values, and

propagate those through the instruction semantics, but that adds substantial complexity.
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Instead, we develop a novel operationalisation of the axiomatic memory model in a mixed

operational-axiomatic style (§4), our second key idea. This opax semantics is sufficiently close to

a small-step operational semantics that it is not too difficult to instantiate the Iris logical framework

to it, it works enough along program order for the soundness proof of our syntax-directed proof

rules to be tractable, and it remains manifestly equivalent to the reference axiomatic model.

Executions in our opax semantics are with respect to an ambient complete candidate execution

graph that satisfies the axiomatic model validity predicate (but unconstrained by the thread-local

ISA semantics), which is picked non-deterministically at the start. The semantics executes threads

individually: there is no substantive interleaving, nor interaction directly between threads, only

between single threads and the ambient memory graph. The instructions of each thread execute in

order, keeping only thread-local state – the next memory event identifier, the contents of registers,

sources of control dependencies, etc. Each instruction acts as an assertion about the existence of

a corresponding memory event at a particular position in the ambient execution graph, and the

thread is stuck if an appropriate memory event does not exist in the graph (in which case that

specific execution is stuck in the opax semantics, but of course the assembly program itself does

not get stuck). This explicitly manipulates a non-thread-local graph; but in the logic, we manage to

hide this non-thread-locality in normal cases (as we show in §5).

Candidate graphs in which one or more thread(s) get stuck are simply ignored. This is unusual:

getting stuck is not an error; it indicates rather that this particular graph is not consistent with the

thread-local semantics of instructions. This was inspired by a related approach taken for the Islaris

logic [Sammler et al. 2022] for reasoning about sequential Arm-A machine-code, which faced a

similar challenge in that rather different context
1
. In a sense, this opax model is merely permuting

the order of the usual construction of the axiomatic model: it starts by guessing a valid execution

graph (that is, an execution graph that follows the constraints), and then checks that each thread’s

contribution in the graph does indeed correspond to an execution of the thread.

One could instead try to work directly over Promising-Arm [Pulte et al. 2019], which is also

operational enough for our current purposes in the above senses. In Promising-Arm, apart from

promises of future writes (which can all be done at the start of execution, and which also inspire

our up-front nondeterministic choice of graph) each thread executes in program order; threads

interact through a linear history of writes, keeping track of certain integer timestamps (indices into
the history of writes), which constrain how instructions can interact with the history. Timestamps

keep track of lower bounds on the sources of register values (and some whole-thread bounds

for barriers), abstracting the set of source events for each. These integer timestamps might be

technically easier to work with than graphs, but we found the explicit nodes with explicit edges of

the axiomatic model helpful in developing our model of assertions. In a sense, our opax semantics

is a reformulation of an axiomatic model made to look more like a promising model, but with the

advantage that changes to the axiomatic model apply directly.

Note that, while our opax technically qualifies as an operational semantics, it falls short of most

usual expectations of such. In particular, there is no reasonable sense in which it is executable.

By putting an axiomatic model in the required shape, we need a non-standard definition of

weakest precondition (§6.1) and a non-standard proof of adequacy (§6.2) (even more so as our

threads are executed independently), but we still benefit from more fundamental Iris features like

higher-order ghost state, which one would not want to reconstruct.

1
To reason above the full Arm-A ISA semantics without being overwhelmed with irrelevant detail, Islaris simplified the

semantics of each instruction with respect to chosen assumptions, e.g. about Arm-A system register values and alignment

facts, using Isla SMT-assisted symbolic execution [Armstrong et al. 2021]. The resulting symbolic traces contain asserts

on some paths, which (when they fail to hold) discard those paths from the instruction semantics – which the Islaris

instantiation of Iris exploits.
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Developing a separation logic directly over an axiomatic memory model has previously been

done either using a non-standard semantics of assertions (e.g. RSL, FSL, and GPS, which, as noted

by Kaiser et al. [Kaiser et al. 2017, §1.2], requires significant effort), or by defining an equivalent,

operational model (e.g. iGPS [Kaiser et al. 2017] and ORC11 [Dang et al. 2020]), which is challenging

when the model allows very relaxed behaviour.

3.3 The third problem: structuring the adequacy proof
Finally, given a proof in AxSL using our new assertions, we then need an adequacy theorem (§6.2),

which, given a family of thread-local proofs in our logic, gives a statement about a whole program

in the meta-logic, sound w.r.t. the Arm-A semantics. To prove such an adequacy theorem, we

need to address a tension between our proof, which is syntax-directed, and therefore in program

order, and synchronisation, which is along rf — even though there can be cycles in po ∪ rf, which

prevents doing an induction on it. Our third key idea is that, to solve this tension, we can split

the proof of adequacy in two phases: first along po, and then along ob. The first phase, along

po, uses thread-local resources to establish, for each thread, and for each memory event of that

thread, that the flow implication for that event holds. The second phase, along ob, stitches the flow

implications together. For example, this second phase walks through the thread of Fig. 6 twice, for

the two disjoint components of ob: once from 𝑎 to 𝑐 , and once from 𝑏 to 𝑑 (with both orderings

being possible).

4 THE LANGUAGE
As the focus of this paper is on real-world concurrency rather than realistic instruction set archi-

tectures, we consider a simplified language in which to write simple Arm-A concurrency-model

programs. However, we give its semantics by elaborating it into the outcome interface type of

Sail [Gray et al. 2015][Pulte et al. 2018, §6.1][Pulte 2018, §2.3] (§4.1), translating instructions into

sequences of their semantic “microinstructions”: primitive register and memory accesses, and Arm-

A fences. These are what our logic actually reasons about. Using our basic rules for the interface

events, we then give high-level rules for our toy instructions. This means the logic should extend

naturally to the full Sail semantics for a large fragment of the Arm-A instruction-set architecture

(ISA), using either the Sail-generated Coq definitions for the ISA, or (as in Islaris [Sammler et al.

2022]) the output of the Isla symbolic evaluator for Sail [Armstrong et al. 2021], both of which

express the intricate real semantics of instructions in terms of that same outcome interface type.

Our simplified assembly language is shown in Fig. 9. Loads and stores are parameterised by an

ordering strength, os, either plain, release/acquire, or weak-acquire, and a variety, vr : non-exclusive
or exclusive. The output register of a store is used only for the success/fail value of a store exclusive;

a dummy register is used for other stores.

4.1 The elaboration semantics of instructions into the Sail outcome interface
The Sail outcome interface defines the intra-instruction semantics of each instruction, in isolation

from the behaviour of registers and memory. It does this in terms of abstract microinstructions,

formally a free monad of effects on outcomes, with constructors RegRead, RegWrite, MemRead,

MemWrite, etc. Each of these takes the appropriate arguments, and the free monad constructor

Next pairs it with a continuation which takes any register or memory read result and gives the

subsequent intra-instruction semantics. MemRead os vr 𝑥 𝐷 has type (roughly) Outcome Word,

wrapped in the instruction monad IMon 𝐴 which has constructors Next𝑇 : Outcome 𝑇 → (𝑇 →
IMon 𝐴) → IMon 𝐴 and Ret :𝐴 → IMon 𝐴.

Rather than give an exhaustive definition, we sketch how a few special cases of our instructions

elaborate into (a meta-level Coq program over) this Sail outcome interface in Fig. 10. A plain,
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𝑖 ::= nop instructions 𝑟 ∈ Reg ≜ {𝑟0, 𝑟1, . . .}
| 𝑟 := 𝑡 register assignment 𝑣, x ∈ Word ≜ 0..264 − 1

| br x branch to address x op ::= + | − | ×
| bne 𝑡 x conditional branch 𝑡 ::= 𝑣 | 𝑟 | 𝑡1 op 𝑡2
| 𝑟 := ldros,vr [𝑡addr] memory load os ::= plain | relacq | weakacq
| 𝑟 := stros,vr [𝑡addr] 𝑡data memory store vr ::= nexcl | excl
| dmb sy | dmb st | dmb ld | isb Arm-A fences

𝑟 := ldr [𝑡addr] ≜ 𝑟 := ldrplain,nexcl [𝑡addr]
𝑟 := ldar [𝑡addr] ≜ 𝑟 := ldrrelacq,nexcl [𝑡addr]
stlr [𝑡addr] 𝑡data ≜ 𝑟 := strrelacq,nexcl [𝑡addr] 𝑡data

Fig. 9. Instructions and syntactic sugar

J𝑟 := ldr [𝑡addr]K ≜ TJ𝑡addrK >>= _𝑥 .Next (MemRead plain nexcl 𝑥 ∅)
(_𝑣 .Next (RegWrite 𝑟 𝑣 ⟨∅, {0}⟩) (_(). Ret ())) >> IncPC

Jstlr [𝑡addr] 𝑡dataK ≜ TJ𝑡addrK >>= _𝑥 .TJ𝑡dataK >>= _𝑣.
Next (MemWrite rel nexcl 𝑥 𝑣 (DJ𝑡addrK) (DJ𝑡dataK)) (_(). Ret ()) >> IncPC

Jbne 𝑡 xK ≜ TJ𝑡K >>= _𝑣.Next (BranchAnnounce 𝑥 DJ𝑡K)(
_(). if 𝑣 = 0 then IncPC

else Next (RegWrite pc x ⟨∅, ∅⟩) (_(). Ret ())

)
IncPC ≜ Next (RegRead pc) (_𝑣 .Next (RegWrite pc (𝑣 + 4) ⟨∅, ∅⟩) (_(). ()))

TJ𝑣K ≜ Ret 𝑣

TJ𝑟K ≜ Next (RegRead 𝑟 ) Ret
TJ𝑡1 op 𝑡2K ≜ TJ𝑡1K >>= _𝑣1. TJ𝑡2K >>= _𝑣2 . Ret (𝑣1 OJopK 𝑣2)

DJ𝑣K ≜ ∅
DJ𝑟K ≜ {𝑟 }
DJ𝑡1 op 𝑡2K ≜ DJ𝑡1K ∪ DJ𝑡2K

Fig. 10. A few cases of the elaboration of our simplified assembly into the outcome interface (eliding some

details). The computation of intra-instruction dependencies is highlighted.

non-exclusive load 𝑟 := ldr [𝑡addr], into register 𝑟 from address 𝑡addr, elaborates into a plain (and

non-exclusive) memory read from that address with no dependencies (indicated by ∅), the value of
which is bound to 𝑣 , followed by a register write to 𝑟 of 𝑣 with no register dependency (∅ on the

left) and a dependency on the 0thMemRead of the instruction ({0} on the right), and a program

counter increment (which we write with a bind >>= to be systematic). A non-exclusive store release

stlr [𝑡addr] 𝑡data, at 𝑡addr of 𝑡data, elaborates into the elaboration of the evaluation of terms 𝑡addr and

𝑡data to some 𝑥 and 𝑣 , using the auxiliary function TJ−K, followed by a release (and non-exclusive)

memory write to 𝑥 of 𝑣 with address data dependencies given by the auxiliary function DJ−K (in
our simplified language, dependencies can be computed from the syntax) and again a PC increment

(the dummy register is not mentioned). We use the Sail interface BranchAnnounce outcome to

capture dependencies of branches, which we elaborate into evaluation of their condition, followed

by, depending on whether the condition holds (using the conditional of the meta-language), either

a write of the given address x to the program counter, or a normal program counter increment.

4.2 The conventional axiomatic concurrency model semantics
A program working over the Sail outcome interface can then be glued onto a memory model, either

operational, axiomatic, or promising. For an axiomatic memory model, this is usually done by
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recursively computing the set of thread-local instruction-semantics pre-executions of (the control-

flow unfoldings of) each thread, allowing arbitrary concrete values for register and memory reads,

and then taking the cartesian product of these sets. For each such pre-execution, one enumerates the

set of candidate executions, decorating the pre-execution with rf and co relations (unconstrained

except for some well-formedness properties). Finally, one filters those with the axiomatic-model

validity predicate.

4.3 Our opax concurrency model semantics
However, as discussed in §3.2, it is not clear how to define a syntax-directed program logic over

this style of semantics. Hence we reformulate the combination of axiomatic model and instruction

semantics in our novel opax semantics, mixing operational and axiomatic styles.

The opax semantics works in two phases. In the first phase, execution of a whole program starts

by guessing a complete candidate execution graph X for the program. This execution graph has to

be well-formed and satisfy the axiomatic-model validity predicate, but is otherwise unconstrained,

and in particular is for now unrelated to the program itself. In the second phase, each thread is

executed independently, with interaction only via the execution graph.

For simplicity we assume a fixed instruction memory 𝐼 , which is simply a map from addresses

to opcode values, and 𝑛 threads, with initial program counter values 𝑐1, . . . , 𝑐𝑛 . Each thread state

s is either Ctd 𝑇 (“continued”), which represents an ongoing thread execution, or Done 𝑅, which

represents a completed thread execution. Here𝑇 is a pair ⟨𝑝, 𝑅⟩ and 𝑅 is a tuple ⟨regs, 𝑒po, srcsctrl, 𝑒⟩,
together comprising: the remaining microinstruction program 𝑝 in the Sail outcome interface for

the current instruction, a register state regs, the identifier of the previous event 𝑒po (or initially
None), the set srcsctrl of sources of control dependencies, and the next identifier 𝑒 . For each thread

tid, 𝑠init (𝑐tid) is its initial thread state, with regs(pc) = ⟨𝑐tid, ∅⟩ and microinstruction program Ret ()
(before the first instruction has started). Execution of a thread terminates when it has finished

execution of the current microinstruction program and the program counter points outside of

instruction memory. Thread transitions 𝑠
tid,X ,𝐼−−−−−→h 𝑠

′
are indexed by the thread ID, execution graph,

and instruction memory.

Successful whole system execution requires each thread to execute to completion independently:

Whole-system-execution

(𝑠init 𝑐1)
1,X ,𝐼−−−→∗

h
Done ⟨_⟩ . . . (𝑠init 𝑐𝑛)

𝑛,X ,𝐼−−−−→∗
h
Done ⟨_⟩

⟨𝑐1 ∥ . . . ∥ 𝑐𝑛, 𝐼 , X⟩ −→tp ✓

A stuck thread is not an error state, but rather indicates that the guessed execution graph does

not correspond to this program. Rule Whole-system-execution of our semantics and our definition

of weakest precondition (see §6.1) ignore them. We sketch selected rules of the thread operational

semantics in Fig. 11. A thread executes by executing the current microinstruction program until it

ends, and then (rule H-reload) fetching the next instruction at the address in register pc by looking

it up in 𝐼 , and decoding it into a new microinstruction program, until pc is outside the instruction

memory (rule H-term), at which point there must not be further events by this thread in the graph.

A MemRead microinstruction can execute (rule H-mem-read) only when there is a corresponding

memory read event in the execution graph; otherwise, this instruction (and thus this thread) is

stuck. This event has to be of the appropriate type, and has to have the appropriate po, addr and ctrl

edges to it, as induced by the thread state (by the po predecessor 𝑒po, the set of data dependencies

𝑑addr, and the control dependency sources srcsctrl, respectively). A RegWrite microinstruction can

similarly execute (rule H-reg-write) only when there is a corresponding register write event in

the execution graph. The graph register write event needs to agree with the thread-local register
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state, both on value and on dependencies, as well as on edges. (This register event is not used in

the current axiomatic memory model, which instead uses primitive dependency relations, but the

interface includes it to support operational models and other axiomatic models.)

An event identifier comprises a thread identifier (zero being reserved for the ‘initial’ thread

that contains all the initial writes), an instruction counter (incremented with next-i), and an intra-

instruction event counter (incremented with next-e).

H-mem-read

X .lab(𝑒) = Ros,vr x 𝑣 ⟨𝑒po, 𝑒⟩ ∈ to(𝑒,X .po
1
) {⟨𝑒𝑑 , 𝑒⟩ | 𝑒𝑑 ∈ srcsctrl} = to(𝑒,X .ctrl)

{⟨𝑒𝑑 , 𝑒⟩ | 𝑟 ∈ 𝑑addr.regs ∧ regs(𝑟 ) = ⟨_, srcs𝑑⟩ ∧ 𝑒𝑑 ∈ srcs𝑑 } = to(𝑒,X .addr)

Ctd ⟨Next (MemRead os vr x 𝑑addr) 𝐾, ⟨regs, 𝑒po, srcsctrl, 𝑒⟩⟩
tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 𝑣 {𝑒}, ⟨regs, 𝑒, srcsctrl, next-e(𝑒)⟩⟩

H-reg-write

X .lab(𝑒) = RegWrite 𝑟 𝑣 ⟨𝑒po, 𝑒⟩ ∈ to(𝑒,X .po
1
) srcs′reg =

⋃
{srcs𝑑 | 𝑟 ∈ 𝑑data .regs ∧ regs(𝑟 ) = ⟨_, srcs𝑑⟩}

srcs𝑑 ∪ 𝑑data.m

Ctd ⟨Next (RegWrite 𝑟 𝑣 𝑑data) 𝐾, ⟨regs, 𝑒po, ?𝑅, 𝑒⟩⟩
tid,X ,𝐼−−−−−→h Ctd ⟨𝐾 (), ⟨regs[𝑟 ↦→ ⟨𝑣, srcs′reg⟩], 𝑒, ?𝑅, next-e(𝑒)⟩⟩

H-reload

regs(pc) = ⟨x, _⟩ 𝐼 (x) = opcode
decode(opcode) = 𝑝

Ctd ⟨Ret (), ⟨regs, ?𝑅, 𝑒⟩⟩ tid,X ,𝐼−−−−−→h Ctd ⟨𝑝, ⟨regs, ?𝑅, next-i(𝑒)⟩⟩

H-term

regs(pc) = ⟨x, _⟩ x ∉ dom(𝐼 )
�𝑒′ . ⟨𝑒, 𝑒′⟩ ∈ X .po

1

Ctd ⟨Ret (), ⟨regs, ?𝑅⟩⟩ tid,X ,𝐼−−−−−→h Done ⟨regs, ?𝑅⟩

Fig. 11. Selected reduction rules of our operationalised semantics. We write ?𝑅 to stand for the rest of a 𝑅.

We write to(𝑒,R) for the set of edges of type R with source 𝑒 , and R1 for the transitive reduction of R
(that is, R without transitively induced edges).

The guessing step and the fact that executions can get stuckmean that this model is not executable

as such, but this is not problematic for a logic. First, we treat discarded executions by ignoring

stuck states in the definition of weakest preconditions. Second, the guessing does not appear in the

definition of weakest preconditions, which takes the guessed graph as a parameter; instead, the

guessing is handled by a quantification in the adequacy theorem, when the proofs of the individual

threads are combined.

Infinite executions. Handling infinite executions in memory models exhibiting load buffering is

currently an open problem. The problem manifests in axiomatic models in the form of an infinite

regress, where an event is justified by a program-order-later event, itself justified by another

program-order-later event, ad infinitum, without an eventual grounding, but because this is not a

cycle, most axiomatic models do not reject this kind of execution. The same underlying problem

appears in the promising and operational models of Arm-A under a different guise. We do not

attempt to tackle this problem, and our opax semantics sticks to the axiomatic model as-is.

5 THE LOGIC
The AxSL proof rules (and the Hoare triples used in them) are defined at two abstraction levels:

the underlying rules are for microinstructions, and are proven sound against the semantics of

Hoare triples described in §6.1, while the high-level rules explicitly used in proofs of examples

are for the surface instructions of Fig. 9, derived from the former by reasoning about instruction

elaboration (Fig. 10).We first explain the AxSL notion of protocols, used in both to enable thread-local
rely/guarantee reasoning (§5.1), and explain one of the key microinstruction rules, for MemRead

(§5.2). We then explain how AxSL can be used to reason compositionally, using two key examples:

versions of load buffering (§5.3) and message-passing (§5.4), describing our high-level proof rules
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along the way. We highlight why the proofs go through, and how they fail (as desired) if the

necessary synchronisation is removed. These examples also demonstrate two styles of proof: a high-

level proof for LB that abstracts physical state with simple, easy-to-use ghost state, demonstrating

the convenience of our logic; and a low-level proof for MP working explicitly with graph facts

(reflected as ghost state), showing how one can tackle subtle reasoning, that depends on intricacies

of the memory model, if needed. Finally, we describe how the logic we have seen so far has been

extended, with only minor changes, with proof rules for Arm-A exclusives (§5.5), and briefly

describe other examples we verified with AxSL (§5.6).

5.1 Protocols
An AxSL protocol Φ is a rely/guarantee-style protocol that enables thread-local reasoning by

expressing the intended resource transfer across an entire program. Our Hoare triples are parame-

terised by a protocol, which should be agreed upon by all threads, like invariants in CSL. Our triples

ensure the protocol holds at every event, and enable resource transfer between events. In particular,

as we see in §5.2, every read event obtains the resource specified by Φ from the external write that

it is reading from, and every external write must supply that resource. An AxSL protocol takes as

arguments an address 𝑥 , a value 𝑣 , and an event ID 𝑒 . The event ID 𝑒 is the write to 𝑥 of 𝑣 written

to for stores, and read from for loads. This event ID argument 𝑒 is used for explicit reasoning about

the execution graph, as illustrated in §5.4. For example, it makes it possible to state “there exists a

write to a certain address of a certain value that is lob-before 𝑒” using our library of graph ghost

state properties. For simpler cases, this last argument can be elided, as we have so far. In addition,

as we also have so far, we can define per-location protocols, and combine them pointwise.

5.2 Our logic for microinstructions
We now explain one of the key proof rules used for reasoning about the language of microinstruc-

tions: rule ht-micro-memread-rdep-ext in Fig. 12, for aMemRead with ordering strength os, variety
vr , address x, and address dependencies 𝑑 . To keep the exposition manageable, the rule is specialised

to a read from a distinct thread (an external read), with empty intra-instruction dependencies (i.e.

only syntactic register dependencies). We illustrate this rule schematically in Fig. 13. The rule is

proved sound against our opax semantics, specifically the H-mem-read rule. We present the rule for

a MemRead microinstruction in isolation, leaving the plumbing into its continuation implicit.

ht-micro-memread-rdep-ext

(1)NoLocalWrites(x) ∗ (2)𝑑 = (dom(regs), ∅) ∗
(3)PoPred(𝑒po) ∗ (4)CtrlPreds(srcsctrl) ∗
(5) ∗

(𝑟 ↦→𝑣@𝐸 ) ∈regs
𝑟 r↦→ 𝑣@𝐸 ∗ (6) ∗

(𝑒lob ↦→𝑃lob ) ∈𝑚
(𝑒 ↬ 𝑃lob) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(

(7)GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤, 𝑒po, srcsctrl, 𝑑, regs) −∗
((8)Lob(dom(𝑚), 𝑒) ∗ (9)FlowΦ (𝑒, x, 𝑣, 𝑒𝑤,𝑚, 𝑃))

)


MemRead os vr x 𝑑𝑣, 𝐸.
∃𝑒, 𝑒𝑤 . 𝐸 = {𝑒} ∗ (10)NoLocalWrites(x) ∗ (11)PoPred(𝑒) ∗ (12)CtrlPreds(srcsctrl) ∗
(13) ∗
(𝑟 ↦→𝑣@𝐸 ) ∈regs

𝑟 r↦→ 𝑣@𝐸 ∗ (14)GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤, 𝑒po, srcsctrl, 𝑑, regs)∗

(15)𝑒 ↬ 𝑃 (x, 𝑣, 𝑒𝑤)

tid,Φ

Fig. 12. A proof rule of AxSL for the MemRead microinstruction, specialised for a thread that has no writes

to the location read. The user provides𝑚, a thread-local map from events to the resources consumed.
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Our Hoare triple forMemRead has the form {𝑃}MemRead os vr x 𝑑 {𝑣, 𝐸.𝑄}tid,Φ, which states

that, for a MemRead on thread tid following protocol Φ, if one provides the resources specified in

the precondition 𝑃 , then the MemRead results in the updated resources 𝑄 of the postcondition,

which can refer to the resulting read value 𝑣 and dependency set 𝐸 (the set of event IDs that 𝑣

stems from). In this rule 𝐸 = {𝑒}, where 𝑒 is the existentially quantified event ID of the associated

memory read event. These 𝑣 and 𝐸 are then passed to the continuation, as in the opax rule, to

continue reasoning about the thread.

The rule has two main aspects, as do the other low-level rules for MemRead and MemWrite:

low-level graph reasoning, and high-level resource transfer.

First, for directly conducting graph reasoning with respect to the axioms of the memory model,

the postcondition gives us ghost state describing what we learn about the execution graph as a

result of executing the MemRead (as per the premises of opax rule H-mem-read), including the

existence of a corresponding memory read event 𝑒 and its incoming edges, which we collect as

GraphFacts. TheGraphFacts are mentioned twice in the rule: they appear, as expected, existentially

quantified as facts that we learn in the postcondition as (13), but they also appear in the precondition
(7), in hypothetical reasoning, as an assumption that may be used to establish that there will be lob

edges to the new event sufficient to satisfy the flow implication. (This style of specification, using a

separation implication −∗ in the antecedent, is similar to how the weakest-precondition rules are

often formulated in Iris, see, e.g., the rule for store in [Jung et al. 2018, Page 45].)

Second, to support high-level reasoning via resource transfer, when some of the incoming edges

are in ob, this rule allows us to reason about resources flowing to 𝑒 along those edges. If there

is such an incoming edge, say from 𝑒′ to 𝑒 , and we have an 𝑒′ ↬ 𝑃 , then the flow implication

can use 𝑃 in its premise. In total, the resources that flow into 𝑒 , and thus are considered in the

flow implication for 𝑒 , consist of (the separating conjunction of) all such resources that flow along

lob edges, as collected in the partial event-to-resource map𝑚 (for thread-internal resource flow),

combined with the resources flowing from external events (here, the quantified external write 𝑒𝑤
that 𝑒 is reading from), as specified by the protocol Φ.
The first two clauses of the precondition capture the specialisation mentioned above: (1)

NoLocalWrites(x) captures the fact that there are no thread-local writes on the same address

x up until this point in the program order; with this in hand, one knows that only external writes

can be read from by thisMemRead, and thus resource transfer along obs is possible. This fact is un-

changed after theMemRead, and is thus restored by the postcondition as (10). (2) 𝑑 = (dom(regs), ∅)
requires that this MemRead depends on exactly the registers in the domain of the (partial) reg-

ister file regs of (5) (non-involved registers can be framed off to apply this rule), and not on any

intra-instruction memory read (the ∅ of event IDs). The collection of register points-to for regs of
(5) is unchanged and thus restored in the postcondition as (13) (although, in the elaboration of an

instruction, a MemRead is typically followed by a RegWrite).

Bookkeeping assertions (2) PoPred(𝑒po) and (3) CtrlPreds(srcs𝑐𝑡𝑟𝑙 ) capture the 𝑒po and srcsctrl
parts of the opax thread state 𝑇 . Intuitively, they keep track of the events that will become the

po and ctrl predecessors of the memory event 𝑒 that will be induced to the next microinstruction,

and thus allow us to conclude facts about new incoming edges, e.g. 𝑒po po 𝑒 , that are included in

GraphFacts. They get updated accordingly in the postcondition, as (11) and (12).
Assertion (6) ∗(𝑒lob ↦→𝑃lob ) ∈𝑚 (𝑒 ↬ 𝑃lob) collects the thread-local resources in𝑚 for the premise of

the flow implications.𝑚 is user-supplied, and is constrained by assertion (8) in the hypothetical

reasoning, which requires that an event 𝑒 can only occur in the domain of𝑚 when there will be

(given the graph facts (7)) an lob edge to the newMemRead event.

Finally, as a result of the hypothetical reasoning on the last line of the precondition, we get the

(user-supplied) result 𝑃 (x, 𝑣, 𝑒𝑤) of the flow implications (9), tied to the new memory event 𝑒 , as
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(15), where the flow implication is defined as:

FlowΦ (𝑒, x, 𝑣, 𝑒𝑤,𝑚, 𝑃) ≜
((

∗
(_↦→𝑃lob ) ∈𝑚

𝑃lob

)
∗ �(Φ(x, 𝑣, 𝑒𝑤))

)
⇛ 𝑃 (x, 𝑣, 𝑒𝑤)

𝑒po

𝑚

𝑒lob

regs
𝑟 r↦→ _@{𝑒lob}

𝑒𝑤 :W_ x 𝑣

𝑒:Ros,vr x 𝑣

po

addr ⊆ lob

𝑃lobrfe

�Φ(x, 𝑣, 𝑒𝑤) 𝑃 (x, 𝑣, 𝑒𝑤)↫→

��𝑃lob ∗ · · ·↫→

Fig. 13. A visualisation of ht-micro-memread-rdep-ext for

external read event 𝑒 , with logical annotations and newly

gained graph facts highlighted. The grey area depicts the

resources and the thread we are reasoning about locally.

The protocol specifies the persistent resources�Φ(x, 𝑣, 𝑒𝑤)
passed along the rfe edge to 𝑒 . Local events 𝑒

lob
, which are

shown to become lob predecessors due to the use of some

register 𝑟 , let the corresponding 𝑃
lob

resource, previously

tied to 𝑒
lob

, flow along the newly-learned lob edge, to be

combined with the protocol, and the result 𝑃 (x, 𝑣, 𝑒𝑤) gets
tied to 𝑒 .

This flow implication is an instance of

the general definition of the flow implica-

tion, specialised for a read, which receives

a resource. Symmetrically, in a rule for

MemWrite, the Φ is on the right side of the

view shift, so that this resource can be sent

away.

5.3 Our surface logic, on an example
Moving from microinstructions to the in-

structions composed out of them, we can

write a derived high-level proof rule for

each instruction, and these high-level rules

can be further specialised to specific pro-

gramming idioms and their assumptions.

The Arm-A memory model is intrinsi-

cally complex, so there is no ‘perfect’

rule that is both simple and general, but

we can derive specialised yet reasonably

general high-level rules that make rea-

soning practical. We demonstrate this on

LB+artificialdata+data (Fig. 14), a version

of the LB litmus test with an artificial (but

still architecturally respected) data dependency on Thread 1, and a normal data dependency on

Thread 2. This version of LB is interesting because this specification cannot be proved just using

an invariant about the values of the write, as it can for LB+datas [Jeffrey and Riely 2016, §6]: it

requires reasoning about the order of the writes.

Specification. We would like to show that the example exhibits no load buffering behaviour

on Arm-A, i.e., that Thread 1 cannot read 1 (while Thread 2 can read either the initial value 0,

or the value 1 that Thread 1 writes), as in the Fig. 14 specification. We give two versions of the

postcondition: one still involving tied assertions, corresponding to the final state of the threads,

and one when the assertions have been pulled out, as used in our formal definition of weakest

preconditions, as we describe in §6.1.

Thread 1 Thread 2

{𝑟1 r↦→ _ ∗ some ghost state} {𝑟2 r↦→ _ ∗ some ghost state}
𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] (1 + 𝑟1 − 𝑟1) 𝑑 : str [𝑥] 𝑟2
{∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬ (𝑣1 = 0)} {∃𝑣2. 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬ (𝑣2 = 0 ∨ 𝑣2 = 1)}
{𝑟1 r↦→ 0@_} {∃𝑣2. 𝑟2 r↦→ 𝑣2@_ ∗ (𝑣2 = 0 ∨ 𝑣2 = 1)}

Fig. 14. LB+artificialdata+data and its (informal) specification
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Protocol. The first step of the proof is to come up with an appropriate protocol Φ that abstracts

the interference of the threads, and thus enables thread-modular reasoning. For this LB shape, it

suffices to transfer the information that the write of 1 by Thread 1 has been executed, in the sense

that this write is ob-before the event to which this information is tied. To capture this logically, we

use a simple form of ghost state: the ‘oneshot resource algebra’ of Iris [Jung et al. 2018, §2]. The

oneshot has two states: pending represents the exclusive permission to make a decision to choose

a value, and shot(𝑣) represents the information that the decision has been made to choose value 𝑣 .

In particular, pending ∗ pending is a contradiction, and so is pending ∗ shot(𝑣) , but we can

view-shift pending into shot(𝑣), pending ⇛ shot(𝑣) , to express the logical decision to commit

to 𝑣 . Using this, we can formalise our protocol: for both locations 𝑥 and 𝑦, either the value is 0, or it

is 1, in which case we also have shot(1) .

Φ(_, 𝑣, _) ≜ 𝑣 = 0 ∨ (𝑣 = 1 ∗ shot(1) )
Thread 1:

1

{
𝑟1

r↦→ _ ∗ NoLocalWrites(𝑥) ∗ pending ∗ . . .
}

2
(
𝑣1 = 0 ∨

(
𝑣1 = 1 ∗ shot(1)

))
∗ pending

⇛
3 𝑣1 = 0 ∗ pending

4 𝑎: 𝑟1 := ldr [𝑥]
5

{
∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬

(
𝑣1 = 0 ∗ pending

)
∗ . . .

}
6 pending

⇛
7 shot(1)
8 𝑏: str [𝑦] (1 + 𝑟1 − 𝑟1)
9 {∃𝑣1. 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬ (𝑣1 = 0)}
Thread 2:

10 {𝑟2 r↦→ _ ∗ NoLocalWrites(𝑦) ∗ . . .}
11 𝑐: 𝑟2 := ldr [𝑦]
12 {∃𝑣2 . 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬ Φ(𝑦, 𝑣2, 𝑐) ∗ . . .}
13 𝑑 : str [𝑥] 𝑟2
14

{
∃𝑣2 . 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬

(
𝑣2 = 0 ∨

(
𝑣2 = 1 ∗ shot(1)

))}
Fig. 15. Proof sketch of LB+artificialdata+data.

Proof sketch. Using this protocol, the proof follows the sketch in Fig. 15. On line 1, we give

Thread 1 the exclusive permission pending to choose a value, which it will need when it writes 1;

moreover, we will use pending in the flow implication of the load from 𝑥 of line 4 to show that it

must read 0
2
. Line 2 states the incoming resources of the flow implication: the disjunction obtained

from the protocol, and the pending from the context. In the flow implication, we can then do a case

analysis on the disjunction, and in the case of 𝑣1 ≠ 0, we can derive a contradiction by combining

pending with shot(𝑣); therefore, we must be in the case 𝑣1 = 0, still with pending in hand, as per

line 3. On line 5, because we have used the pending from the context in the flow implication for

𝑎, we get it back, but tied to 𝑎. This deals with the load. Now, for the store on line 8, we need, as

part of the flow implication, to establish the protocol for the written value, 1. For our protocol,

2
We also start Thread 1 with the knowledge that it has made no writes to location 𝑥 , and symmetrically Thread 2 to 𝑦,

to exclude an internal reads-from. Internal reads-from does not imply ob on Arm-A, and thus has a significantly weaker

premise for its flow implication, without Φ(𝑥, 𝑣1, _) .
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we have to take the second disjunct, and so we have to provide shot(1). Because of the artificial
dependency, the flow implication gives access to the resources tied to 𝑎, and thus to pending, as

per line 6. The pending can be view-shifted, as part of the flow implication, into any shot(𝑣), and
thus in particular into shot(1), as per line 7. This satisfies the flow implication, and thus concludes

the proof sketch for Thread 1.

Thread 2 relies on the same dependencies, but is much simpler: given our protocol Φ, we have
Φ(𝑦, 𝑣2, 𝑐) = Φ(𝑥, 𝑣2, 𝑑), so Thread 2 merely forwards this Φ(_, 𝑣2, _) from the load to the store,

which the flow implication for the write allows because of the data dependency.

Abstraction. Using the oneshot resource algebra allows us to reason thread-modularly: the proof

of Thread 1 does not involve any graph reasoning about the intricacies of the Arm-A memory

model, merely reasoning about abstract state. This is already useful for this small proof sketch (and

the corresponding mechanised proof). Thread 2 does not require any inspection of the value or

the resource being forwarded, merely plumbing through the flow implication, and the derivation

of the contradiction in the impossible case of the load of Thread 1 relies on simple ghost theory.

Moreover, the proof is quite flexible: the proof sketch only requires trivial modifications if (e.g.) we

replace the store of 1 + 𝑟1 − 𝑟1 by a store of 𝑟1.

Soundness. The proof sketch above crucially relies on the artificial data dependency of the store

on the load, as it should: without it, if the store were merely str [𝑦] 1, it could be executed out of

order with respect to the load, thus making the relaxed load behaviour observable. More concretely,

without the dependency, the flow implication for the store would not include the resource tied

to the memory read event 𝑎, and would therefore be of the shape ⊤ ⇛ shot(1) , which is not

provable.

Instructions in memory. Before looking at the proof rules that make the proof sketch above

precise, we make our treatment of instructions precise. As usual, reasoning about a machine with

instructions in (and fetched from) specific addresses in memory, rather than a language with an

abstract syntax of statements, causes a slight impedance mismatch with Hoare logic: the thread

state does not include instructions, but merely the address of the “current” instruction. However,

a normal-looking Hoare triple can be recovered by using some indirection [Myreen et al. 2007;

Myreen and Gordon 2007; Myreen et al. 2008][Myreen 2009, §3.4][Erbsen et al. 2021, §4.3][Liu et al.

2023]. We use Hoare triples for presentation, but use weakest preconditions in our formalisation.

Our Hoare triples for a single instruction 𝑖 are of the form {𝑃} a: 𝑖 {𝑄}tid,𝐼 ,Φ, where a is the address of
the instruction. In our rules, 𝑃 will include pc

r↦→ a@_, and𝑄 include pc
r↦→ a′@_ for the appropriate

a′ — which is a + 4 except for branch instructions. For presentation purposes, for programs without

branching (and thus no looping), we can conflate instruction instances with instructions (as we have

so far), and thus conflate instruction identifiers 𝑎, 𝑏, 𝑐 , etc. with numerical addresses for instructions

in memory 𝑎, 𝑎 + 4, 𝑎 + 8, etc. For a language where an instruction instance leads to a single memory

event (as we have so far), we can conflate instruction instance identifiers with memory event

identifiers. In other cases, we use the counters of the operational semantics, although they can often

be quantified over in reasoning rather than considered in detail, merely keeping the information

that they are smaller than the current counter (and thus po-before the current event).

Proof rules.

Load. The proof rule that we use for the load in both threads, ht-ins-ldr-pln-ext (Fig. 16), is

specialised to the instruction: a plain, non-exclusive load with an immediate address 𝑥 . It is further

specialised to the assumption that there are no prior writes to 𝑥 by this thread, as otherwise the

memory model guarantees no synchronisation and thus makes resource transfer unsound.
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The first line of the precondition deals with bookkeeping of the po-predecessor and the program

counter. The second line requires NoLocalWrites to 𝑥 . The third line requires ownership of the

register 𝑟 that will be written to by the load, and requires the flow implication for this instruction,

which flows the protocol Φ for this address to the 𝑅 that will be tied to this event — with the

appropriate address, value, and memory event parameters. The postcondition then updates the

bookkeeping of line 1 accordingly, and keeps the fact that this thread has no writes to 𝑥 . The key

part of the postcondition, highlighted on the last line, is that 𝑅 is then tied the new memory read

event 𝑒 , which is the source of the contents of register 𝑟 .

Store. The proof rule that we use for the store in Thread 1, ht-ins-str-pln-artificialdata, is

similarly specialised to the instruction: a plain, non-exclusive store with an immediate address

𝑥 and an artificial value dependency on register 𝑟 with result 𝑣 . It is further specialised to the

assumption that there is an assertion 𝑃 that is tied to the source of register 𝑟 .

Again, the first lines of the pre- and postcondition deal with bookkeeping. The second lines deal

with the latest write to the address. The key of the precondition, highlighted on line 3, requires

(1) ownership of register 𝑟 together with the knowledge that its source is some memory event 𝑒𝑑 ,

(2) 𝑃 is tied to the source memory event 𝑒𝑑 , and (3) the flow implication, which flows the resource

𝑃 into the protocol for the written value. The postcondition is then just bookkeeping, 𝑃 having

been consumed by the instruction.

The proof obligation for the protocol merely requires �Φ(. . .), as protocols only transfer persis-

tent (duplicable) resources. Transfer of non-duplicable resources can be implemented on top with

some indirection using the expressive ghost state of Iris, as sketched in §5.5.

The proof rule for the store in Thread 2 is almost identical, merely requiring knowing the value 𝑣 ′

of register 𝑟 , and the flow implication requiring the protocol be established for that value, Φ(𝑥, 𝑣 ′, 𝑒).

ht-ins-ldr-pln-ext
PoPred(𝑒po) ∗ pc r↦→ a@_ ∗
NoLocalWrites(𝑥) ∗
𝑟 r↦→ _ ∗ ∀𝑒 𝑣 𝑒𝑤 . (�Φ(𝑥, 𝑣, 𝑒𝑤) ⇛ 𝑅(𝑥, 𝑣, 𝑒𝑤))


a: 𝑟 := ldr [𝑥]∃𝑒, 𝑣, 𝑒𝑤 .

PoPred(𝑒) ∗ pc r↦→ (a + 4)@_ ∗
NoLocalWrites(𝑥) ∗
𝑒 ↬ (𝑅(𝑥, 𝑣, 𝑒𝑤)) ∗ 𝑟 r↦→ 𝑣@{𝑒}

tid,Φ

ht-ins-str-pln-artificialdata
PoPred(𝑒po) ∗ pc r↦→ a@_ ∗
(NoLocalWrites(𝑥) ∨ LastLocalWrite(𝑥, _)) ∗
𝑟 r↦→ _@{𝑒𝑑 } ∗ 𝑒𝑑 ↬ 𝑃 ∗ ∀𝑒. (𝑃 ⇛ �Φ(𝑥, 𝑣, 𝑒))


a: str [𝑥] (𝑣 + 𝑟 − 𝑟 )∃𝑒.

PoPred(𝑒) ∗ pc r↦→ (a + 4)@_ ∗
LastLocalWrite(a, 𝑒) ∗
𝑟 r↦→ _@{𝑒𝑑 }

tid,Φ

Fig. 16. Proof rules for the instructions in the left thread of LB+artificialdata+data

5.4 Example: MP+rel+addr

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: strrel [flag] 1 𝑑 : 𝑟2 := ldr [data + 𝑟1 − 𝑟1]

Fig. 17. MP+rel+addr: 𝑟1 = 1 ⇒ 𝑟2 = 42

We give an example illustrating more complex

reasoning about the memory event graph, on

a message passing litmus test with the receiv-

ing thread ordered by an (artificial) address

dependency. The example has two threads: one

sending, and one receiving. The sending thread

writes a value (in this case 42) to a data address in order to transfer it between threads, then writes

1 to a flag address to indicate that the data write has been completed. The flag write is a release

write to ensure that the two writes are suitably ordered (this can also be achieved in other ways,

for example with a dmb st). The receiving thread reads from the flag address to check whether a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 21. Publication date: January 2024.



20 Angus Hammond, Zongyuan Liu, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

message has been passed to it, then reads from the data location. These two reads are ordered by

using the result of the flag read to compute the address of the data read, resulting in an address

dependency between the two reads. In this example, the address dependency is artificial, but similar

shapes arise naturally when a message-passing idiom is used to transfer a pointer to a data structure

between threads.

Specification. We want to be able to prove that if the load of the flag reads 1, then the load of the

data will read 42; formally, 𝑟1
r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ 𝑑 ↬ (𝑣 = 1 → 𝑣 ′ = 42). The key statement of this

specification is tied to an event, so it is only possible to use resources gained via message passing

on events ob-after the receiving load.

We first specify the protocol used in the proof. For the data address, we pick Φ(data, 𝑣, 𝑒) ≜
Initial(𝑒) ∨ 𝑣 = 42, where Initial(𝑒) denotes that the event is an initial write that necessarily has

value 0. It is not possible to require that 𝑣 be 42 in all cases, because the initial write would then

not satisfy the protocol. For the flag address, we pick

Φ(flag, 𝑣, 𝑒) ≜ Initial(𝑒) ∨
(
𝑣 = 1 ∗ tid (𝑒) = 1 ∗ 𝑒:Wrel flag 1 ∗
∃𝑒′ . 𝑒′:W data 42 ∗ (𝑒′, 𝑒) ∈ po

)
requiring that a non-initial write to the flag address is only allowed if it is a release write of value 1,

on the sending thread (which we assign tid 1), which is po after a write of 42 to the data address.

Any other mechanism for generating ob ordering between the two writes would work, but for

simplicity we specialise to using a release write.

With the protocol in hand, we can give a proof sketch for each thread. On the sending thread,

we are required to show first that the data write 𝑎 satisfies the protocol on data, which we can do

straightforwardly because the right branch of the protocol only requires that the write have value

42. At the write of the data, we learn PoPred(𝑎) and 𝑎:W data 42. We are then required to show

that the flag write satisfies the flag protocol. We can do so by instantiating the existential on the

right hand side of the protocol with 𝑎, which is a write to data of 42, as required, and can be shown

to be po-before the current event because it is the current po-predecessor.

On the receiving thread, we read from the flag, learning 𝑟1
r↦→ 𝑣@{𝑐} and 𝑐 ↬ Φ(flag, 𝑣, 𝑏) for

some 𝑏. Finally, we consider the data read. Because we have a data dependency, we have (𝑐, 𝑑)
in the data relation, which is in ob, and so we are able to use the resources tied to 𝑐 . We learn

𝑟2
r↦→ 𝑣 ′@{𝑑} and 𝑑 ↬ Φ(data, 𝑣 ′, 𝑒) for some 𝑣 ′ and 𝑒 , and are required to prove 𝑣 = 1 → 𝑣 ′ = 42.

Case splitting on Φ(data, 𝑣 ′, 𝑒), we have 𝑣 ′ = 42 immediately in the right case. In the left case, we

derive a contradiction from Initial(𝑒) and 𝑣 = 1.

In detail, the contradiction is as follows: From Φ(flag, 1, 𝑏) we learn 𝑏:Wrel flag 1 and 𝑎:W data 42
for some 𝑎 such that (𝑎, 𝑏) ∈ po. Since 𝑒 is an initial write to the same address as 𝑎, we know

(𝑒, 𝑎) ∈ co, and since (𝑒, 𝑑) ∈ rf, we know (𝑑, 𝑎) ∈ fr and therefore (𝑑, 𝑎) ∈ ob, since 𝑑 and 𝑎 are

on different threads. Because 𝑏 is a release write po-after 𝑎, we have (𝑎, 𝑏) ∈ ob; because 𝑐 reads

from 𝑏 on a different thread, we have (𝑏, 𝑐) ∈ ob; and finally, because there is a data dependency

between 𝑐 and 𝑑 , we have (𝑐, 𝑑) ∈ ob. By transitivity of ob, we obtain (𝑎, 𝑑) ∈ ob, and together with

(𝑑, 𝑎) ∈ ob, we obtain (𝑑, 𝑑) ∈ ob, which contradicts the irreflexivity of ob.

While the only information we pass between threads here is the value of the data write, the

protocol for the data address can carry any persistent resource (including arbitrary invariants) if

they can be established at 𝑎, which would then be available tied to 𝑑 .

5.5 Supporting exclusives
Arm-A features atomic read-modify-write operations in two forms: atomic instructions (compare-

and-swap, fetch-and-add, etc.), and the combination of load-exclusive/store-exclusive pairs. The
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rules we have described so far only support ‘plain’ loads and stores. We now explain how we can

give strong rules for read-modify-writes that support transfer of non-duplicable resources: a load

exclusive 𝑎 of 𝑣 from 𝑥 should, if the subsequent store exclusive succeeds, give a non-duplicable

resource 𝑃 — not merely its duplicable portion � 𝑃 .

trylock(ℓ) ≜
𝑟1 := ldrx [ℓ]
if (𝑟1 ≠ unlocked) return false

𝑟2 := strx [ℓ] locked
dmb sy

return (𝑟2 = success)
unlock(ℓ) ≜ strrel [ℓ] unlocked

Fig. 18. Try-lock pseudocode

Our solution relies on invariants, which we implement in

§6.1 using the standard Iris construction combining higher-

order ghost state and appropriate view shifts in the definition

of weakest precondition [Jung et al. 2018]. Given a proposi-

tion 𝑃 , 𝑃 is an invariant containing 𝑃 , which is duplicable,

and which can thus be transferred using our protocols. Using

an invariant, we can then use the escrow pattern [Kaiser et al.

2017] to trade an exclusive token for the non-duplicable re-

source, with enough bookkeeping to capture the uniqueness

of a successful read-modify-write on a given write. Therefore,

the only change we need to make to support exclusives is merely to associate, in the definition of

weakest precondition, an exclusive token ex(𝑒) to each event 𝑒 , and to make that token available to

the rule for that event.

if trylock(ℓ) { if trylock(ℓ) {
str [𝑥] 1 𝑟1 := ldr [𝑥]
str [𝑦] 1 𝑟2 := ldr [𝑦]
unlock(ℓ) } unlock(ℓ) }

Fig. 19. Example of mutual exclusion,

with postcondition 𝑟1 = 𝑟2

Using our proof rules, we prove the classical specification

for simple try-lock (see Fig. 18), which we then use to prove a

basic mutual exclusion example (in Fig. 19): if a writer takes

the lock before writing to two variables, then a reader that

takes the lock and reads from the two variables has to read

the values before or after, but not a mixture.

5.6 Further examples
To validate how AxSL works generally with the memory model of Arm-A, how it is likely to

continue working with future changes, and how it could be ported to other memory models, we

verify further examples that exercise different parts of the memory model. LB+dmbsy+data relies on

the po; [dmb.full]; po clause of bob (see Fig. 4) to obtain the key lob edge on the left, but the proof

is otherwise the same as for LB+artificialdata+data in §5.3. LB+ctrls relies on the ctrl; [W] clause of
dob in both threads, but is otherwise the same. Similarly, MP+rel+dmbsy relies on bob in the right

thread, and so does MP+rel+ctrl-isb via the more complex (ctrl| (addr; po)); [ISB]; po; [R] edge
which appears incrementally, but their proofs are otherwise as in §5.4. To illustrate that AxSL can

reason about communication between many threads, we verify an iterated version of MP, namely

ISA2+rel+data+acq (Fig. 20) [Sarkar et al. 2011]; the proof is just an iterated version of the proof of

MP. Finally, to illustrate that reasoning about coherence is still possible, albeit unpleasant (which

we discuss further in §6.3), we verify two coherence tests: CoWW (Fig. 21) and CoRR (Fig. 22); the

proofs work by symbolic execution followed by discarding the executions with cycles in co.

𝑎: str [x] 42 𝑐: 𝑟1 := ldr [y] 𝑒: 𝑟2 := ldr [z]
𝑏: strrel [𝑦] 1 𝑏: str [𝑧] 𝑟1 𝑑 : 𝑟3 := ldr [𝑥]

Fig. 20. ISA2+rel+data+acq: 𝑟2 = 1 ⇒ 𝑟3 = 42

6 MODEL, SOUNDNESS, AND ADEQUACY
In this section, we present our model of AxSL, which we define in §6.1 on top of the Iris base

logic, and which is used to show soundness of the proof rules for the micro-instructions presented
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𝑎: str [x] 37
𝑏: str [x] 42

Fig. 21. CoWW: 𝑎
co→ 𝑏

𝑎: str [x] 42 𝑏: 𝑟1 := ldr [x]
𝑐: 𝑟2 := ldr [x]

Fig. 22. CoRR: 𝑟1 = 42 =⇒ 𝑟2 = 42

earlier. Afterwards, in §6.2, we prove the adequacy of AxSL (relying on the adequacy of the Iris

base logic [Jung et al. 2018]). While we only provide an overview, this section does presuppose

some knowledge of Iris. Finally, in §6.3, we discuss the challenge posed by coherence.

6.1 Semantics of Hoare Triples
State interpretation. As usual (and as briefly mentioned in §3), Iris ghost state is used to capture

a logical interpretation of the physical semantics state, but in a way that can be fragmented into

components of resources. The logical state interpretation LSI relates some logical state to the

corresponding part of physical state for thread-local execution. It contains, among other things,

the full view of a thread state’s register map regs as •regs , using the authoritative ghost state

constructor of Iris [Jung et al. 2018]. Following usual Iris practice, the predicate 𝑟 r↦→ rv (where

rv is a 𝑣, 𝐸 pair), which we use for local reasoning, is then defined as a fragmental view of regs:
◦[𝑟 ↦→ rv] . With these definitions, we obtain the following two key rules:

SI-reg-agree

•regs ∗ ◦[𝑟 ↦→ rv] −∗ regs(𝑟 ) = rv

SI-reg-update

•regs ∗ ◦[𝑟 ↦→ rv] ⇛ •regs[𝑟 ↦→ rv′] ∗ ◦[𝑟 ↦→ rv′]
SI-reg-agree states that the two views (authoritative and fragmental) agree on the value of 𝑟 , and

rule SI-reg-update allows us to update them with a view shift.

For a complete thread state 𝑇 = ⟨𝑇 .p,𝑇 .r⟩, the rest of LSItid (𝑇 .r) is defined in the same spirit,

and in such a way that view shifts LSItid (𝑇 .r) ⇛ LSItid (𝑇 ′ .r) (as found in the weakest precondition

below) can mirror transitions from 𝑇 .r to 𝑇 ′ .r in the opax semantics.

While LSItid is a thread-local predicate which only involves assertions of thread tid (for Iris

experts, thread-local assertions use distinct ghost names), we use the same idea to connect global

states to global resources (both graph resources and tied-to assertions) in the weakest precondition

definition below.

Hoare triples. Following many other Iris-based separation logics, we define the meaning of our

Hoare triples for microinstruction program 𝑝 using a notion of weakest precondition plus a thin

abstraction layer:

{𝑃} 𝑝 {𝑄}tid,Φ = �(∀𝑇 . (LSItid (𝑇 .r) ∗𝑇 .p = 𝑝) −∗ 𝑃 −∗ wp (Ctd 𝑇 ) {𝑇 ′ . 𝑄}tid,Φ).
Here, the � is used to enforce that Hoare triples are persistent (thus duplicable) knowledge. The

rest of the definition is quantified over an ongoing local execution state 𝑇 of the opax semantics.

Intuitively, the weakest precondition wp (Ctd 𝑇 ) {𝑇 ′ . 𝑄}tid,Φ asserts that the opax state Ctd 𝑇 can

run the program 𝑇 .p safely, and that, when the execution terminates with 𝑇 ′
, the post condition

𝑄 holds. When showing the weakest precondition, we get to assume not only the precondition 𝑃

from the Hoare triple, but also that the microinstruction is indeed linked to the local execution

state (𝑇 .p = 𝑝), and that we have thread-local logical resource LSItid (𝑇 .r) interpreting 𝑇 .r.

Weakest preconditions. We now turn to the definition of the weakest precondition predicate. There

are two aspects of its definition which are somewhat non-standard compared to other Iris-based
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definitions of weakest precondition predicates: the first is that it maintains consistency between

the execution of the thread in the opax semantics and the global execution graph, to ensure sound

graph reasoning; the second is that it keeps track of all tied-to assertions, to enable sound transfer

of tied resources between events (this latter aspect is somewhat reminiscent of how invariants are

tracked in the weakest precondition for the standard Iris program logic [Jung et al. 2018]). We do

not include the full formal definition, but explain the key ideas of the definition:

wp 𝑠 {𝑄}tid,Φ ≈
if 𝑠 = Done ⟨_⟩ then PullOutTied(tid, 𝑄)

else ∀𝑇, 𝑒,X , 𝐼 .
©«
𝑠 = Ctd 𝑇 −∗ 𝑒 = 𝑇 .e −∗ Valid(X ) −∗
(� SIG (X , 𝐼 )) −∗ · · · −∗ ∀𝑠′,𝑇 ′ . 𝑠

tid,X ,𝐼−−−−−→h 𝑠
′ −∗(

∀𝜎. SIT (𝜎) ⇛ ∃𝜎 ′ .
(
FlowImpX ,Φ (𝑒, 𝜎, 𝜎 ′) ∗ SIT (𝜎 ′) ∗
· · · ∗ LSItid (𝑇 ′ .r) ∗ wp 𝑠′ {𝑄}tid,Φ

))ª®®®®¬
PullOutTied(tid, 𝑄) ≈ ∀𝜎. SIT (𝜎) −∗

(
SIT (𝜎) ∗

(∗{𝑅 | (𝑒 ↦→𝑅) ∈𝜎∧Local(tid,𝑒 ) } 𝑅 ⇛ 𝑄
) )

The definition makes a case distinction on whether the thread tid terminates with opax state 𝑠 .

In the terminating case, when 𝑠 = Done ⟨_⟩, we basically require that postcondition 𝑄 holds,

modulo the unusual PullOutTied predicate, which we we will elaborate on below. In the other

case, if the thread can take a step in the opax semantics and reach a new 𝑠′, then the weakest

precondition should hold recursively for 𝑠′ — the weakest precondition predicate is defined as the

least fixed point satisfying the recursive equation. Our definition does not require that 𝑠 can take a

step in that case; thus, our definition does not enforce progress.

Besides the local state interpretation LSItid , which we have already seen above, the definition

contains two global interpretations SIT and SIG for the full authoritative view of all tied assertions

𝜎 (𝜎 is a logical map from event IDs to propositions) and the shared execution graph 𝑋 with the

instruction memory 𝐼 , respectively. The predicate SIT is defined in such a way that it, together with

the fragmental tied-to-assertions, enjoys similar agreement and update rules as for the register

map shown above (the rules are slightly different since 𝜎 is higher-order, in the sense that it maps

to predicates). In contrast, the predicate SIG is persistent (decorated with �), and then there are no

update rules for it, due to the immutability of the graph and of the instruction memory.

The first line of the definition deals with a terminated thread, in which case we have to show

PullOutTied(tid, 𝑄), which requires us to establish the postcondition 𝑄 , assuming that the predi-

cates pulled out from local tied assertions hold — we have already seen an example of how this is

used, namely in the final reasoning step (in each thread) in Fig. 14. Technically, the definition of

PullOutTied(tid, 𝑄) makes use of the agreement rule for a local event 𝑒 , which roughly says that

SIT (𝜎) ∗ 𝑒 ↬ 𝑅 implies that 𝑒 ↦→ 𝑅 is in 𝜎 and thus that 𝑅 holds (this is an approximate description,

the formal details are a bit more subtle because of the higher-order nature of the 𝜎 map mentioned

above).

The step case universally quantifies over the local state 𝑇 of 𝑠 = Ctd 𝑇 , the event ID of the event

𝑒 associated with the head microinstruction (equals to 𝑇 .e), and a global execution graph X , which
is assumed to be valid (i.e., well formed and consistent) as expressed by the Valid predicate. The

reduction step 𝑠
tid,X ,𝐼−−−−−→h 𝑠

′
of the opax semantics on the third line ensures that X is aligned with

the foremost micro-instruction of 𝑇 .p. Then, in the last line, after a view shift to reflect the state

transition, the weakest precondition has to hold recursively for 𝑠′ and, moreover, the thread-local

logical resources predicate LSItid (𝑇 ′ .r) also has to hold. Finally, the fourth line is a view shift, which

essentially allows us to update a fragment of 𝜎 (to 𝜎 ′) and the associated tied assertions. Crucially,

for the sake of the soundness proof, the update has to follow the flow implication FlowImp, which

we explain below.
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Flow implication. The FlowImpX ,Φ (𝑒, 𝜎, 𝜎 ′) predicate regulates the flow and update of resources

that may happen at memory event 𝑒 . (The flow implications we have seen in proof rules earlier are

instances of this one.) Intuitively, the rule expresses that the sum of resources pushed to 𝑒 along its

incoming ob edges implies (with a view shift) the resources given out along outgoing ob edges,

plus the leftovers tied to 𝑒 . In more detail, we define the predicate as follows:

FlowImpX ,Φ (𝑒, 𝜎, 𝜎 ′) ≜
∃𝜎in, 𝜎res, 𝑅.DetachX (𝜎, 𝜎in, 𝑒) = 𝜎res ∗( (∗(𝑒 ↦→𝑅in ) ∈𝜎in 𝑅in

)
∗
(∗𝑒obs∈ObsPred(𝑒,X ) �GiveRes(𝑒obs,Φ)

)
⇛ 𝑅 ∗ �GiveRes(𝑒,Φ)

)
∗

𝜎 ′ = 𝜎res [𝑒 ↦→ 𝑅]

We divide the update from resource map 𝜎 to resource map 𝜎 ′ into a sequence of three actions:

detach, exchange, and tie. The first line captures the detachment: 𝜎 is split into 𝜎in and 𝜎res , where

𝜎in is a fragment of 𝜎 which represents the resources detached from the lob predecessors of 𝑒 ,

as determined by the user-provided tied assertions and 𝜎res is the remaining global map, after

detaching 𝜎in. The second line does the resource exchange, using a view shift. Given the resources

of 𝜎in, one may update and exchange resources with other threads. Specifically, persistent resource

specified by �GiveRes(𝑒obs,Φ) may flow from obs predecessors 𝑒obs to 𝑒 , and �GiveRes(𝑒,Φ) has
to be given away to potential obs successors. GiveRes(𝑒obs,Φ) is essentially defined as the protocol

resource Φ on 𝑒 , plus a thin layer to resolve the type mismatch. The third line does the tying: the

remaining resource 𝑅 is tied to 𝑒 , by extending the map 𝜎res .

Supporting framing and invariants. Recall that splitting of tied assertions is useful for proving

examples (cf. Fig. 8). Modeling such splitting is, however, quite challenging due to its higher-

order nature. We addressed this challenge by first implementing a splitting with the help of the

interpretation SIT: 𝑒 ↬ (𝑃 ∗ 𝑄) −∗ (∀𝜎. SIT (𝜎) ⇛ (SIT (𝜎) ∗ 𝑒 ↬ 𝑃 ∗ 𝑒 ↬ 𝑄))). Here, the view
shift allows us to update tied assertions and the interpretation without changing the value of the

global map 𝜎 . Then, the view shift structure is hidden by tweaking the definition of the weakest

precondition to close it under this pattern.

Supporting invariants, on the other hand, only requiresminor updates to theweakest precondition

definition: we just replace the plain view shift in FlowImpwith an Iris built-in variant (a combination

of the later and the fancy update modality) that allows opening and closing of invariants, similar to

[Jung et al. 2018].

Infinite executions. Because of the open problem with infinite executions in the memory model,

our definition of weakest precondition in §6.1 does not take measures to handle infinite executions

either, and is defined using a least fixpoint for ease of definition (as described, it still uses the later

operator for higher-order ghost state).

Soundness. Using the model, we can now prove soundness of the proof rules for microinstructions:

Theorem 6.1. The AxSL proof rules for microinstructions are sound.

6.2 Adequacy
The soundness of AxSL is expressed by the following meta-level adequacy theorem, which combines

valid program executions and thread-local proofs in AxSL, and shows that the conjunction of the

threads’ postconditions is valid at the meta level:
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Theorem 6.2 (Adeqacy). For initial thread states ®s, meta-level propositions ®𝑃 (one for each thread),
and valid execution graph X , we have(∧𝑛

tid=1 ®s(tid)
tid,X ,𝐼−−−−−→∗

h
Done _

)
⇒(

∃Φ. ⊢ (� InitRes(Φ)) ∗ . . . ∗ (� SIG (X , 𝐼 )) ∗ ∗𝑛tid=1
(
. . . ∗ wp ®s(tid)

{⌈
®𝑃 (tid)

⌉}
tid,Φ

))
⇒(∧𝑛

tid=1
®𝑃 (tid)

)
Here ®s is a sequence of initial thread states (one for each thread). The first hypothesis ensures

that the memory graph X reflects the behaviours of a complete program by assuming terminating

executions of all threads starting from ®𝑠 . The second hypothesis assumes that we have proofs in

AxSL of weakest preconditions, one for each thread, using the same protocol Φ. This is where we
require that the same protocol Φ is agreed upon between the thread-local proofs of the weakest

preconditions for each thread, as well as agreement about the execution graph 𝑋 and instruction

memory 𝐼 via the global state interpretation (the rest of the state interpretation requires some further

plumbing, which we elide). The post conditions are assumed to be the meta-level propositions ®𝑃 ,
lifted to AxSL by ⌈_⌉. (This lifting is similar to what happens in other Iris-based program logics:

it simply embeds a proposition 𝑃 from the meta-level as the corresponding proposition in AxSL.)

From these, adequacy tells us that ®𝑃 hold in the meta-logic as well. The importance of this adequacy

theorem lies in the fact that is means that we do not have to trust or even understand all the

intricacies of AxSL — once we have proved weakest preconditions for each thread using the AxSL

proof rules, then the theorem guarantees that the postconditions ®𝑃 do indeed hold at the meta-level

(assuming each thread’s execution terminates).

Overview of the proof. The crux of the adequacy proof is to compose thread-local reasoning results,

specified as weakest preconditions. For classic concurrent separation logics (including most Iris-

based program logics using the standard weakest precondition construction, including iGPS), the

proof of adequacy works by induction on the program execution trace. This is possible in their

setups because resources are annotated on program points (or, interchangeably, on po edges),

and their weakest preconditions, from our perspective, essentially use flow implications to flow

resources between program points in program order on the fly.
In AxSL, resources are used to annotate ob, but the weakest precondition still has to collect the

flow implications in po. This mismatch poses the main challenge to the proof of adequacy, since

one cannot do induction on the potentially cyclic po ∪ ob. We resolve this tension by stratifying
the proof into two phases: phase one collects flow implications along po, and phase two applies

them along ob. In the rest of the section, we sketch the two phases in more detail, and leave the

discussion on the relation to RSL/FSL soundness proofs to related work.

Phase one. Roughly, phase one constructs a valid annotation on every ob edge of the execution

graph by collecting and chaining flow implications from all events. The edge annotation records

the history of how resources evolve and are transferred soundly along ob in a complete program

execution, as inspired by RSL/FSL. Thanks to our definition of weakest precondition, the local

edge annotations for an event, which is essentially a resource transformer, can be easily derived

from the corresponding tied-to map update from 𝜎 to 𝜎 ′ specified by the flow implication FlowImp.

Furthermore, the fact that every such update follows the flow implication guarantees that these

local annotations can be composed both vertically (in po) and horizontally (between threads) to get

a global edge annotation, as follows.
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In each thread, the vertical composition is done by induction on the thread’s trace to unfold the

recursively defined weakest precondition. This allows us to collect local annotations along po to

obtain an annotation for the thread. Next, the derived annotations are glued horizontally (between

threads) to obtain a global annotation for ob edges, which is possible since all resource exchange

across threads (as annotated on obs) are specified by the same rely-guarantee protocol Φ.

Phase two. Given the edge annotation from phase one, phase two stitches the flow implications by

induction on ob. For the base case of the induction, we require the user to show that the resources

specified by Φ for the initial events of all memory locations can be established. The allocated

resources are then used as the starting point for the application of the flow implications along

(an order extension of) ob. The resources at the end of the process are the sum of those tied to all

events, which we can combine to show the postconditions. Finally, we apply the soundness result

of the Iris base logic to conclude that ®𝑃 holds in the meta-logic.

Proof effort
Much of the effort was in the overall design of the logic to overcome the challenge to soundness

posed by load buffering. Shaping the idea to fit Iris, and detailing the model of assertions and the

definition of weakest preconditions, took over a person-year, but the result has been robust to small

changes, for example to add exclusives. The adequacy theorem has the most significant proof: it

took two or three person-months to mechanise after initial design work, and it stands around a

thousand lines of Coq. Writing and proving an instruction proof rule takes about half a person-day

now that we have enough of them that flesh out a pattern. Finding an overall proof structure for a

new shape of litmus test takes a few person-days; in fact, it is very similar to what is needed for

example in RSL. Adapting a proof from one variant of a litmus test to another is just a few hours’

work, and less than a hundred lines of Coq. Overall, the mechanisation is divided as follows:

Item LoC
Prelude (incl. outcome interface and infrastructure) ∼6000
Language definition and lemmas ∼1500
Definition of axiomatic model and lemmas ∼3500
Iris CMRAs ∼800
WPs and lemmas ∼4000
Proof rules and their soundness proofs ∼3000
Adequacy ∼1000
Examples ∼1500

6.3 Coherence
The memory model of Arm-A involves two main axioms: external, which requires ordered-before

to be acyclic, and internal, which requires po-loc|ca|rf to be acyclic, which effectively enforces

per-location sequential consistency (the atomicity axiom is much more ‘local’ and easier to use, as

per §5.5). This latter order is sometimes also called coherence, or (to avoid confusion with the co

relation, which is merely part of it) extended coherence.

The way AxSL is defined in Iris above the opax semantics using the Fig. 4 memory model means it

captures both axioms. However, it focuses on the external axiom, and leverages the acyclicity of ob

to allow sound transfer of resources along ob. This means that AxSL cannot soundly allow transfer

resources along the potentially cyclic combination of ob and extended coherence. It is always

possible to reason about extended coherence by brute force in AxSL, by explicit graph reasoning,

but this is unsatisfactory. This is a definite limitation of AxSL, as many common programming and

reasoning idioms rely on reasoning about coherence, in particular the notion of non-atomics.
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7 RELATEDWORK
The Lace logic [Bornat et al. 2015] shares the same core idea of explicitly tracking ordering between

memory events (which they call ‘laces’), and of flowing assertions along edges (which they call

‘embroidery’) of an axiomatic memory model. Their setup looks quite different on the surface, as

their approach to ordering is top-down (in the style of Crary and Sullivan [Crary and Sullivan

2015]), stating which instructions they require ordering from, rather than our bottom-up approach,

in which we infer order from the instructions of the program. The main difference is that they try

to talk about variables (memory locations), and so, to soundly flow assertions along edges, they

need to check for interference on said variables, which is a whole-program check. In addition, they

leave supporting separation as future work, and thus feature no notion of transfer of resources.

However, Lace features modalities to ease reasoning about coherence, whereas it has to be done by

graph reasoning in our logic. Lace was implemented using a custom proof checker, with no proof

of its soundness.

The Ogre and Pythia invariance proof method [Alglave and Cousot 2017] refines Owicki-Gries

without auxiliary variables (which are unsound for relaxed memory [Lahav and Vafeiadis 2015]) by

working with memory events (via program counters), and their “pythia” variables keep track of

the values of reads. Their method is parameterised by an axiomatic memory model expressed by

relational algebra in the .cat format [Alglave et al. 2014]. They show that their proof method is

sound and relatively complete, but their invariants are whole-program, and they leave development

of abstractions that make proofs tractable as future work.

Our flow implications are inspired by those of RSL and FSL. However, thanks to the phrasing of

the memory model of Arm-A, we give a single, generic definition, instead of one based on case

analysis of instructions. In addition, the pervasive effect of undefined behaviour (stemming from

data races on non-atomics and uninitialised reads) in C11, substantially complicates the definition

of flow implications of RSL and FSL.

The proofs of adequacy of RSL and FSL are somewhat similar to ours, being also based on

chaining flow implications along a global acyclic synchronisation relation, C11’s happens-before
(hb). However, thememorymodel of C11 is substantially different from that of Arm, and in particular,

despite a similar role, hb is substantially different from ob: it is defined as hb ≜ (sb ∪ sw)+, where
sb is C11’s counterpart to po, and sw is C11’s loose counterpart to obs. This allows them to freely

persist resources along program order, and so their flow implications refer to immediate program

order successors and predecessors of instructions, which means that they have their postcondition

immediately in hand, and do not need to collect tied resources. It also means that, unlike ours, their

proof of adequacy can be along program order.

FSL [Doko and Vafeiadis 2016] extends RSL to make it possible to transfer resources using C11

‘relaxed’ access that are suitably fenced by guarding resources with modalities: a relaxed load,

which imposes little order by itself, merely obtains ∇𝑃 , which is not usable by itself, but which an

acquire fence turns into 𝑃 . Symmetrically, 𝑃 itself cannot be sent away by a mere relaxed store,

but a release fence turns 𝑃 into Δ𝑃 , which a relaxed store can send away. Our 𝑎 ↬ 𝑃 assertion can

be seen as an indexed version of ∇𝑃 , keeping track of the source of the assertion in a way that is

compatible with ghost state, even with cycles in po ∪ rf.

SLR [Svendsen et al. 2018] targets the Promising Semantics [Kang et al. 2017] designed to fix

the out-of-thin-air problem of C11. SLR takes advantage of the extra strength to enable coher-

ence (sc-per-location) reasoning on relaxed accesses, but does not allow resource transfer using

relaxed accesses. SLR features an assertion to keep track of writes that is somewhat similar to our

NoLocalWrites and LastLocalWrite assertions:𝑊 𝜋 (𝑥, 𝑋 ) imposes a lower bound 𝑋 on the set of
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writes done so far to location 𝑥 ; however, they use it for coherence reasoning, rather than to bound

internal reads.

Compass [Dang et al. 2022] is a specification framework for the ORC11 memory model (which

forbids load buffering) that gives programs specifications in terms of event graphs the inter-thread

edges of which are induced by data structure operations, for example from an enqueue to the

dequeue of the same value, which generalises rf.

We conjecture that the unpublished extension of ribbon proofs to relaxed memory mentioned

in [Wickerson et al. 2013] would have had some similarities to our setup, with unclosed ribbons

standing for tied assertions, and flow implications imposing conditions on when ribbons can be

joined.

8 CONCLUSION
The very relaxed concurrency memory models of the Arm-A hardware architecture, in which

execution order (ob) does not follow program order, makes syntax-directed and thread-modular

reasoning challenging. The need to program it directly for performance and for access to systems

features makes this challenge unavoidable. Our logic, AxSL, addresses this challenge through

assertions that track how ob is induced by the program text, and makes reasoning tractable

by flowing higher-order ghost state along ob. This allows us to capture and thus validate key

synchronisation idioms of Arm-A. Moreover, our approach relies essentially just on the acyclicity

of ob, and should therefore generalise to similar hardware architectures.

This opens up a potential approach for reasoning about a wide range of axiomatic models, and

there are many important extensions to explore, e.g. to integrate with the full Arm-A or RISC-V

ISAs, to cover mixed-size accesses, and to cover systems features including instruction-fetch and

virtual memory. An important challenge is to tackle reasoning involving not only ob but also

coherence, in particular as leveraged by non-atomics, even though their union can have cycles.

A FURTHER PROOF RULES
A.1 MemWrite rule

ht-micro-memwrite

(1) (LastLocalWrite(x, 𝑣last) ∨ NoLocalWrites(x)) ∗ 𝑑 = (dom(regs), ∅) ∗
PoPred(𝑒po) ∗ CtrlPreds(srcsctrl) ∗∗
(𝑟 ↦→𝑣@𝐸 ) ∈regs

𝑟 r↦→ 𝑣@𝐸 ∗ ∗
(𝑒lob ↦→𝑃lob ) ∈𝑚

(𝑒lob ↬ 𝑃lob) ∗

∀𝑒.
(

(2)GraphFacts′ (os, vr, x, 𝑣, 𝑒, 𝑒po, srcsctrl, 𝑑, regs) −∗(
Lob(dom(𝑚), 𝑒) ∗ (3)Flow′

Φ (𝑒, x, 𝑣,𝑚, 𝑃)
) )


MemWrite os vr x 𝑣 𝑑(), 𝐸.

∃𝑒. 𝐸 = {𝑒} ∗ (4)LastLocalWrite(x, 𝑣) ∗ PoPred(𝑒) ∗ CtrlPreds(srcsctrl) ∗
(5) ∗
(𝑟 ↦→𝑣@𝐸 ) ∈regs

𝑟 r↦→ 𝑣@𝐸 ∗ (6)GraphFacts′ (os, vr, x, 𝑣, 𝑒, 𝑒po, srcsctrl, 𝑑, regs)∗

(7)𝑒 ↬ 𝑃 (x, 𝑣)

tid,Φ

Fig. 23. A proof rule of AxSL for the MemWrite microinstruction. As for the MemRead rule in Fig. 12 the user

provides𝑚, a thread-local map from events to the resources consumed.

Perhaps surprisingly, the basic rule for MemWrite is extremely similar to that for MemRead

given in Fig. 12, so we only highlight the key differences here. Unlike the read rule, the write rule is
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not affected by the presence of previous local writes, and so can take either a NoLocalWrites or a

LastLocalWrite resource in (1). Because a new local write is produced, whichever resource is passed

in (1), a LastLocalWrite carrying the new event is returned (4). The definition of GraphFacts
′
at (2)

and (6) differs from the version used in Fig. 12 because write events induce a different collection of

incoming edges, most importantly lacking an incoming rf edge. Similarly the definition of Flow
′

(3) is changed from showing the incoming tied resources and protocol imply the new tied resource

to showing the incoming tied resources imply the new tied resource and the outgoing protocol.

Finally we note that the produced tied resource (7) is parameterised only on the value written and

the identifier of the new node, not on the identifier of some write event being read from.

A.2 MemRead rule with local writes

ht-micro-memread-rdep-ext-local

(1)LastLocalWrite(x, 𝑣 ′) ∗ 𝑑 = (dom(regs), ∅) ∗
PoPred(𝑒po) ∗ CtrlPreds(srcsctrl) ∗∗
(𝑟 ↦→𝑣@𝐸 ) ∈regs

𝑟 r↦→ 𝑣@𝐸 ∗ ∗
(𝑒lob ↦→𝑃lob ) ∈𝑚

(𝑒 ↬ 𝑃lob) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(
GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤, 𝑒po, srcsctrl, 𝑑, regs) −∗
(Lob(dom(𝑚), 𝑒) ∗ FlowΦ (𝑒, x, 𝑣, 𝑒𝑤,𝑚, 𝑃))

)


MemRead os vr x 𝑑𝑣, 𝐸.
∃𝑒, 𝑒𝑤 . 𝐸 = {𝑒} ∗ (2)LastLocalWrite(x, 𝑣 ′) ∗ PoPred(𝑒) ∗ CtrlPreds(srcsctrl) ∗
GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤, 𝑒po, srcsctrl, 𝑑, regs) ∗ ∗

(𝑟 ↦→𝑣@𝐸 ) ∈regs
𝑟 r↦→ 𝑣@𝐸∗

(3) ((𝑒 ↬ 𝑃 (x, 𝑣, 𝑒𝑤)) ∨ 𝑣 = 𝑣 ′)

tid,Φ

Fig. 24. A proof rule of AxSL for theMemReadmicroinstruction, similar to that shown in Fig. 12, but specialised

to handle the case where the current thread contains a previous local write to the address being read from.

Fig. 24 shows a variant of the MemRead rule in Fig. 12 which allows for a previous local

write to the address being read from. The prerequisites of the rule differ only in that it requires

LastLocalWrite (1) instead of NoLocalWrites, which is still returned unchanged (2). The conclusion
becomes a disjunction (3), if an external write is read from then the rule produces the expected

tied resource. However if the local write is read from no resource transfer takes place, because

thread local reads do not provide ob ordering, so we learn only that the value read is equal

to the value written in the most recent local write. While this does not provide as powerful a

mechanism for resource transfer as might be desired, we do expect it to allow some reasoning since

in synchronisation primitives it will generally be necessary for an external thread to write distinct

values to those written by the local thread.
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