
Futher Java

Supervision 1

Supervisor: Joe Isaacs (josi2).
All work should be submitted in PDF form with page numbers 36 hours before the supervision
to the email josi2@cam.ac.uk. If you have any questions on the course please include these at
the top of the supervision work and we can talk about them in the supervision. Please include
all code that you think is relevant (that you want me to look at in the PDF).

A key-value store (KVS)1 is a typed (possible persistent) database used for storing values with
a associated keys. In this supervision you will build a KVS in Java. This KVS will be a service
that clients can connect to then possibly read (or write) values to (or from) this store. While
you are implementing this KVS you will be carrying out simple analysis and then evaluating
you implementation. You will implement a server which (one or more) client(s) can connect
(simultaneously) to then query the value for one or more keys and set values for one or more
keys. The state in this KVS should be serlisable (in the database sense2). The KVS should be
typed and support Strings.

A future construct used to model a computation that may or may not be finished. The com-
putation will be run asynchronously, calling get on a future will either return the result of the
computation or cause the calling thread to wait until the computation is finished and then the
calling thread will continue with the result.

Tasks:

1. Implement a thread safe hash map (Do not use any thread safe standard library classes3)
Write a test to show that its implementation is indeed thread safe. There are frameworks
for writing tests JUnit4 if you can try using this. It is integrated into Intellij IDEA5.

2. Discuss the protocol which clients and servers will communicate KVS operations via with
you supervision partners. The operations should be [put, get, remove]. Describe this
protocol in your answers. How do you handle faliure?

get for example could either return a value or an error if no value is present.

3. Implement a KVS server and client. Ensure that all on the server resources are cleaned
up when a client disconnects. For each part of the protocol in the previous question show
where you implement this in your code. How do the client and server commutative?

4. (a) Implement a future with the Future<V> interface6 ignore cancel,

• using threads 7

1https://en.wikipedia.org/wiki/Key-value_database
2https://en.wikipedia.org/wiki/Serializability
3However you many use other standard library classes
4https://junit.org/junit5/docs/current/user-guide/#writing-tests
5https://www.jetbrains.com/help/idea/configuring-testing-libraries.html
6https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.

html
7you will need to add another method void run()

1

mailto:josi2@cam.ac.uk
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Serializability
https://junit.org/junit5/docs/current/user-guide/#writing-tests
https://www.jetbrains.com/help/idea/configuring-testing-libraries.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html


• using a thread pool8 where work can be submitted. Implement your own thread
pool. Use the Callable<T> interface9 in the thread pool. Can the builder pat-
tern10 allow for a cleaner API for the creation of many futures for a given thread
pool?

(b) Compare the benefits of using futures implemented using thread against thread pools.
What sort of workloads would I use for each and why?

8Have a list of thread and a list of callable’s
9https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.

html
10https://en.wikipedia.org/wiki/Builder_pattern

2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://en.wikipedia.org/wiki/Builder_pattern

