
Compiler Construction

Supervision 1

Supervisor: Joe Isaacs (josi2).
All work should be submitted in PDF form 36 hours before the supervision to the email josi2@
cam.ac.uk. If you have any questions on the course please include these at the top of the
supervision work and we can talk about them in the supervision.

1. What sequences of translations from ‘higher-level’ to ‘lower-level’ languages do modern
compilers perform? Give a broad overview.

2. For each stage give an overview of the work performed? What is the input and output
from each stage.

3. What are VMs and why are they useful?

4. http://www.cl.cam.ac.uk/teaching/1617/CompConstr/Exercises_Set_2.ml

(Include commented type signatures for all functions). Remember a continuation func-
tion of

(SOMETIHING -> ’b) -> ’b

5. http://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p3q3.pdf.

6. http://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p23q4.pdf

7. Practical exercise: https://www.cl.cam.ac.uk/teaching/1920/CompConstr/practical.
txt

(a) Add a modulo1 operation to the arithmetic operations. How will you handle
modulo with zero?

Notice this is slightly different to the linked exercise. I don’t expect you to change the
parser or lexer, just extend the AST and add support for evaluation into Interp 0
and Interp 2. Then you can create you own ast.expr to test evaluation, even though
you cannot write a .slang program with the modulo operation (yet). You will add
support of this in SV4 by extending the parser.

(b) Implement simple “tuple pattern matching” in the compiler. For example,
instead of writing
let rev (p : int * int) : int * int = (snd p, fst p) in rev (21, 17) end
allow users to write
let rev (x : int, y : int) : int * int = (y, x) in rev (21, 17) end
Hint : treat this as syntax sugar – eliminate in front end by translating the
second rev into the first. Or better yet, intro let bindings for “snd p” and
“fst p”.

Again here you are not expected to change the lexer or parser, but extend the AST
and create a syntactic mapping from tuple pattern matching to let bindings or in-
stances of fst and snd.

1https://en.wikipedia.org/wiki/Modulo_operation

1

mailto:josi2@cam.ac.uk
mailto:josi2@cam.ac.uk
http://www.cl.cam.ac.uk/teaching/1617/CompConstr/Exercises_Set_2.ml
http://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p3q3.pdf
http://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p23q4.pdf
https://www.cl.cam.ac.uk/teaching/1920/CompConstr/practical.txt
https://www.cl.cam.ac.uk/teaching/1920/CompConstr/practical.txt
https://en.wikipedia.org/wiki/Modulo_operation

