
Futher Java

Supervision 1

Supervisor: Joe Isaacs (josi2).
All work should be submitted in PDF form with page numbers 36 hours before the supervision
to the email josi2@cam.ac.uk. If you have any questions on the course please include these at
the top of the supervision work and we can talk about them in the supervision. Please include
all code that you think is relevant (that you want me to look at in the PDF).

A key-value store (KVS)1 is a typed (possible persistent) database used for storing values with
a associated keys. In this supervision you will build a KVS in Java. This KVS will be a service
that clients can connect to then possibly read (or write) values to (or from) this store. While
you are implementing this KVS you will be carrying out simple analysis and then evaluating
you implementation. You will implement a server which (one or more) client(s) can connect
(simultaneously) to then query the value for one or more keys and set values for one or more
keys. The state in this KVS should be serlisable (in the database sense2). The KVS should
be typed and support Strings, you should store large values in a compressed form (but not
smaller ones). Compression should be used where appropriate when the client and server are
communicating.

A future construct used to model a computation that may or may not be finished. The com-
putation will be run asynchronously, calling get on a future will either return the result of the
computation or cause the calling thread to wait until the computation is finished and then the
calling thread will continue with the result.

Tasks:

1. Implement a thread safe hash map (Do not use any thread safe standard library classes3)
Write a test to show that its implementation is indeed thread safe. There are frameworks
for writing tests JUnit4 if you can try using this. It is integrated into Intellij IDEA5.

2. Discuss the protocol which clients and servers will communicate KVS operations via with
you supervision partners. The operations should be [put, get, remove]. Describe this
protocol in your answers. How do you handle faliure?

3. Implement a KVS server and client. All on the server resources are cleaned up when a
client disconnects. For each part of the protocol in the previous question show where you
implement this in your code. How do the client and server commutative? Meet up with you
supervision parter(s) and check that both your servers and clients commutative correctly.
How does well does this server scale with multiple clients (originating from you supervision
parter(s) machine(s))? What is the queueing time for a response under different workloads,
analyse and evaluate this.

1https://en.wikipedia.org/wiki/Key-value_database
2https://en.wikipedia.org/wiki/Serializability
3However you many use other standard library classes
4https://junit.org/junit5/docs/current/user-guide/#writing-tests
5https://www.jetbrains.com/help/idea/configuring-testing-libraries.html

1

mailto:josi2@cam.ac.uk
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Serializability
https://junit.org/junit5/docs/current/user-guide/#writing-tests
https://www.jetbrains.com/help/idea/configuring-testing-libraries.html


4. Implement a future with the Future<V> interface6 ignore cancel,

• Näıvely (using threads)

• A using a thread pool where work can be submitted. Implement your own thread
pool. Use the Callable<T> interface7

Write a benchmark to show relative performance of these two implementations.

5. Add a method to your two implementations of Future<U> called
<U> thenCombine(Function<T,Future<U>>) which allows chaining together two futu-
res F1 and F2 such that when F1.isDone holds the result is passed to F2. Add this to
both implementation in the previous question. Try to only start running F2 once F1 has
completed. Can you combine a näıve thread future with a thread pool thread future?

6https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.

html
7https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.

html

2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html

