
Automatic generation of Synchronization Primitives for
Multithreaded Programs

Short Description
Reasoning about synchronization mechanisms in multithreaded software is hard. This work aims
to create an approach that would free developers from this hard challenge by generating optimal
synchronization mechanisms for the software under consideration. During this work, it will be
necessary to create an approach that reasons about concurrency bugs, potential synchronization
mechanisms, and developer’s synchronization intentions. It will be necessary to create a
conceptual solution for this challenge, an algorithm for generation of synchronization
mechanisms, and a prototype of a tool that demonstrates the benefits of this approach.

Abstract

In the era of multithreaded software, threads execute concurrently and independently. Input data
and the interaction between concurrent threads determine the result of the concurrent software. In
order for software to perform correctly, it is necessary to synchronize the interaction between
threads. However, due to the nondeterministic nature of multicore hardware (e.g. shared cache,
shared memory bus); it is hard to predict order of interactions between threads, as they do not
progress uniformly. Developers find it very challenging to reason about necessary
synchronization between the threads, as it is an np-hard problem. Eventually, developers either
over synchronize their software (downgrading parallel programs by introducing many sequential
sequences), or do not properly synchronize thread operations (leading to concurrency bugs).

The main issue behind synchronization perils is transformation of developer’s synchronization
intentions into synchronization mechanisms. Developers, at all time, need to understand two
things: i) which memory locations are shared among threads, and ii) how threads can access
shared memory locations (different execution paths, different operations). While developers
should understand what memory locations thread share, it is very hard for them to understand
possible interleavings of thread operations on shared memory. Existing approaches that try to
solve this problem (either try to find concurrency bugs, or try to introduce automatic
synchronization) start by identifying shared memory. This is not an easy task because: i) static
analysis often introduces false warnings, and ii) dynamic analysis is often not complete for
reasoning about shared memory. Even if an approach answers these two questions, the challenge
still remains: Which synchronization mechanism is optimal (in terms of responsiveness,
performance, and memory consumption) for accessing a certain shared memory location?

The idea of this work is to offer developers interfaces and functions for accessing shared
memory. Developers would use these to express their intentions for accessing shared memory.
Then, it will be necessary to trace the execution of these interfaces and functions to create
execution traces and reason which threads share which memory location, and reason about
operations they perform on these locations. Finally, the idea is to process performed operations
and generate optimal synchronization mechanisms for different threads when accessing shared
memory. The assumption is that developers, whenever they are trying to access shared memory,

would have to use these interfaces. In order to generate optimal synchronization mechanisms, it
will be necessary to reason about code coverage (or other type of analysis, e.g., static analysis)
that can guarantee appropriate completeness of trace (or other representation of software).

The interfaces solution would solve the challenge with automatic identification of shared
memory locations. Furthermore, once all accesses to shared memory are running through a
known set of interfaces and functions, it is easy to either create a tracing mechanism within the
interfaces or use external tools (e.g., binary instrumentation) to trace those executions. One of the
problems is that sometimes developers change their threads and their shared locations so that
previously shared memory becomes exclusive to a single thread. However, because they are
unaware of this, they still keep synchronization mechanisms, leading to performance overhead.
The approach proposed in this work would solve this challenge as it would generate
synchronization mechanisms based on profiling the application. Developers can choose between
many synchronization mechanisms (e.g., lock-free, mutex, barriers, static scheduling). However,
they are not always aware of the influence of these mechanisms on the responsiveness,
performance, and memory consumption of their applications. With this approach, we will offer a
possibility to generate synchronization mechanisms for a specific quality property of the
software under consideration.

List of actions:
- Understand different synchronization mechanism types.
- Understand concurrency bugs.
- Design generic interface for accessing shared memory location (regardless of data type)

in C/C++.
- Generate execution trace of these interfaces.
- Apply existing algorithms for identification of shared memory between threads (e.g.,

Lockset memory model).
- Create an algorithm for the analysis of execution trace in order to generate optimal

synchronization between threads (do this considering these parameters: average
performance, responsiveness, memory consumption).

- Select and prepare benchmarks to test (e.g., remove existing synchronization
mechanisms).

- Apply the solution on the benchmarks.
- Use existing tools (e.g., Thread Sanitizer, Helgrind) in order to find concurrency bugs

(compare original version with existing synchronization mechanisms, and the new one
generated using this approach in terms of: concurrency bugs, average performance,
responsiveness, and memory consumption).

Expected contributions:
- Interfaces for accessing shared memory (Read/Write).
- Automatic generation of optimal synchronization mechanisms.
- Discussion of a necessary code coverage and completeness of execution traces and their

relation with the completeness of the approach.

Keywords: Multithreaded Software, Synchronization Mechanisms, Concurrency Bugs.

