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Probing the Uniqueness and
Randomness of IrisCodes:
Results From 200 Billion
Iris Pair Comparisons
Chances are assessed of making false matches using iris recognition

when huge numbers of individuals are enrolled and massive

database searches are performed.

By John Daugman

ABSTRACT | Recent large-scale deployments of iris recogni-

tion for border-crossing controls enable critical assessment of

the robustness of this technology against making false

matches, since vast numbers of cross comparisons become

possible within large databases. This paper presents results

from the 200 billion iris cross comparisons that could be

performed within a database of 632 500 different iris images,

spanning 152 nationalities. Each iris pattern was encoded into

a phase sequence of 2048 bits using the Daugman algorithms.

Empirically analyzing the tail of the resulting distribution of

similarity scores enables specification of decision thresholds,

and prediction of performance, of the iris recognition

algorithms if deployed in identification mode on national

scales.
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I . INTRODUCTION

Governments in a number of countries are contem-

plating schemes for biometrically-enabled national iden-

tity cards. One purpose would be to detect fraudulent

multiple identities. Other purposes include expedited

immigration controls using biometric passports, allowing

automated border crossing; and security screening,

searching against watch-lists at ports of entry. Some of

these applications require Ball-against-all[ exhaustive
comparisons, such as the search for multiple identities

across a national population, which entails a total num-

ber of cross comparisons that scales as the square of the

national population. In a country like the U.K., with

about 60 million persons, such a search for multiple

enrolled identities would entail 1800 trillion ð1.8 � 1015Þ
different pairings, or almost 2 peta-comparisons. Can any

biometric identification system possibly survive so many
comparisons between different pairings of persons, with-

out making false matches?

Other biometric deployment applications are some-

what less ambitious numerically, yet still daunting. The

U.K. has launched Project IRIS (Iris Recognition Immi-

gration System), in which at least 1 million frequent

travelers to the U.K. from abroad will be routinely able to

enter the country without presenting a passport or
explicitly asserting their identity. Instead, their iris pat-

terns are captured by video cameras for comparison

exhaustively against the enrolled database of authorized

persons. That application will thus require a trillion iris

comparisons by the time each enrolled traveler has used

the system just once. Another application that has been

introduced in the Middle East involves Bwatch-list screen-

ing,[ in which foreigners entering a country through all
ports of entry are compared exhaustively against all

persons registered in a watch-list. The daily volume of

such cross comparisons during periods of high travel
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approaches 10 billion per day. How can any biometric
identification system survive such large numbers of op-

portunities for making erroneous matches?

Clearly this question hinges on the precise nature of

the tail of the distribution of similarity scores obtained

when different persons are compared biometrically. In

effect one is drawing samples from that distribution

billions of times per day, in the application last mentioned,

and the key issue is the likelihood of drawing samples
sufficiently far out along the tail to constitute false matches

due to accidental similarity between different biometric

templates. Extreme value theory (and common statistical

intuition) teaches that the likelihood of drawing extreme

samples from the tail of a probability distribution accu-

mulates with the number of samples drawn. The cumu-

latives under the tail of that distribution, up to the imposed

similarity threshold for match decisions, constitute the
probability of making false matches. The purpose of this

paper is to probe those questions in the case of a particular

biometric method that was developed by the author, iris

recognition, using a large database from the Middle East

which allowed 200 billion different pair comparisons to

be made.

II . THE DATABASE

In 2001 the United Arab Emirates (UAE) launched a

national border-crossing security system that is today

deployed at all 27 of the UAE’s air, land, and sea ports. All

foreign nationals who possess a visa to enter the UAE

must look at an iris camera, installed at immigration

desks. Algorithms developed by the author locate the eyes

and compute IrisCodes from the random texture that is
visible in the iris, when illuminated by infrared light in

the near-IR band (700–900-nm). The database against

which the visitors are checked is a Bnegative watch-list[ of

persons deemed untrustworthy or who have been denied

entry for a variety of reasons, including security concerns,

past violations, previous imprisonment, traveling under

false documents, or work permit violations. Most persons

who reside and work in the UAE are not UAE nationals
but foreign nationals. Many who had overstayed their

work permits or committed other violations were ex-

pelled, under an amnesty program in lieu of other sanc-

tions. The total number of persons in the watch-list as of

June 2005 was about 316 250, spanning 152 nationalities.

Both irises of each person were enrolled in the database,

which thus consisted of about 632 500 different iris

patterns.
On a typical day some 6000 persons enter the UAE

who must submit to the iris recognition check with both

eyes. This generates about 7.2 billion iris comparisons

daily. Since the start of the deployment, nearly 5 trillion

(5 million million) iris comparisons have been performed,

over a networked architecture (BIrisFarm,[ developed by

IrisGuard UK) that computes IrisCodes at the local ports

of entry and sends them over a variety of communication
channels to the central cold storage database at the Abu

Dhabi Police General Directorate for exhaustive compar-

ison. All iris images enrolled in this database were cap-

tured using LG-2200 and LG-3000 iris cameras from LG

(Korea). In live operation, each presenting iris is com-

pared exhaustively against all in the watch-list database in

less than 2 s. To date, some 47 000 persons have been

caught trying to enter the UAE under false travel docu-
ments, by this iris recognition system. The Abu Dhabi

Directorate of Police report that so far there have been no

matches made that were not eventually confirmed by

other data.

It was desired to exploit this large enrollment database

of IrisCodes in order to understand better the statistical

powers of iris recognition. For example, by computing the

similarities between all possible pairings of different irises
in the database, much could be learned about the ro-

bustness of these algorithms against making any false

matches, when there are such vast numbers of opportu-

nities for error. The total number of different pairings of

irises that can be made in a database of 632 500 is more

than 200 billion: 200 027 808 750. The UAE Minister of

Interior, H.R.H. Sheikh Saif Bin Zayyed, therefore made

the enrollment database of IrisCodes available to the
University of Cambridge for detailed analysis and dissem-

ination of results.

III . THE ALGORITHMS

The iris recognition algorithms that are used in all

public deployments of this technology to date, such as

the UAE deployment, have been described previously by

Daugman [2], [3], [5], [6] and they will be only briefly

summarized here. The basic principle behind these al-

gorithms is the failure of a test of statistical independence.
Persons are recognized by their iris patterns because they

uniquely fail a test of independence against earlier

enrolled descriptions (BIrisCodes[) derived from them-

selves, but they are statistically guaranteed to pass that

same test of independence against everybody else.

A. Iris Texture
The key to biometric identification is random variation

among different persons, since this is the origin of unique-

ness, and the basis for discrimination. Facial appearance

does vary among people, but the basic geometry of facial

features is always the same; the residual distinguishing
dimensions are secondary modulations that are not signi-

ficantly larger than the within-person variations due to

illumination geometry, emotional expression, pose angle,

or aging. Fingerprints show more between-person varia-

tion; but rather than having a multiscale texture like iris

patterns, their scale of structuring is fixed by the (roughly

0.5 mm) spacing of the ridge flow.
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In contrast, the iris displays a rich two-dimensional

random structure [4] spanning several octaves in scales

of analysis. If imaged with visible wavelengths of light,

the most striking and rich patterns are seen in persons

(mainly of European origin) whose apparent eye color is

blue, gray, or green, while little structure seems evident
in the 90% or more of the world’s peoples who have

dark brown eyes. But when illuminated with near-

infrared light in the 700–900-nm band (used in all

current iris recognition cameras), even dark brown irises

reveal rich texture. Fig. 1 illustrates the almost lunar

surface appearance of such an iris, whose anterior layer

is richly cratered with relief features as well as the

arching ligaments of connective tissue more typically
visible in light-colored eyes. The eyelashes which occlude

parts of the iris are readily detected by statistical in-

ference of bimodality in the iris pixel histogram, allowing

those pixels that are deemed to form a separate darker

population of pixels to be excluded from influencing the

computed code for iris texture. The resolution of current

iris cameras is typically in the range of 5 lp/mm, with

the imaged iris diameter usually in the range of 150–
220 pixels. Acquisition distances range from several cen-

timeters to, recently, 3 m or more (see accompanying

paper: BIris on the Move[).

B. Segmentation and Normalization
Critical steps in iris recognition include segmentation

or extraction of the visible iris portion of the image, with

exclusion of any obscuring elements such as eyelids,
eyelashes (notable in Fig. 1 above), and reflections from the

cornea or possibly from eyeglasses. These steps are per-

formed using a variety of boundary and region detection

and active contour techniques. The eyelid boundaries may

be described as quadratic or cubic splines, whose para-

meters can be estimated by statistical model-fitting tech-

niques. Fig. 2 illustrates detection and demarcation of the

four boundaries of the iris (pupil, limbus, upper and lower
eyelids).

Both the inner and outer boundaries of the iris are
often significantly nonround. Both boundaries may be

oval or pear-shaped, and pupils can have particularly

irregular shapes. It is therefore important not to force

them to be described as circles, despite the simplifications

which that would allow in the coordinate system. Fortu-

nately, in infrared light, the pupillary boundary is always a

very strong, high-contrast signal (unlike the case for dark-

eyed persons in visible light). On the other hand, the
outer boundary of the iris is generally a very weak, low-

contrast signal in infrared light (again, unlike the case for

visible wavelengths), because the sclera contains much

blood, and hemoglobin in blood absorbs strongly in the

near infrared spectrum, making the sclera often as dark as

the iris.

A fundamental principle of shape description in

computer vision teaches that one should use weak
constraints when the data is strong, and strong constraints

when the data is weak. Therefore, the pupillary boundary is

fitted with an active contour or Bsnake[ [1], [9] having

many degrees of freedom, whereas the iris outer boundary

is fitted by a snake having comparatively few degrees of

Fig. 1. Even dark brown eyes reveal rich iris texture when illuminated

in near-infrared light (700–900-nm band). The randomness of this

texture and its complexity, spanning at least 3 octaves in usable scales

of analysis, enables the discriminating power of the IrisCode.

Fig. 2. Isolation of the iris from the rest of the image. The white

graphical overlays signify detected iris boundaries resulting from

the segmentation process. For these images, circular inner

and outer iris boundaries were assumed, but this is an overly

restrictive assumption.
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freedom. The points between these inner and outer
boundary contours are interpolated linearly by a homo-

geneous rubber sheet model, which automatically reverses

the iris pattern deformations caused by pupillary dilation

or constriction. Under assumptions of uniform iris elas-

ticity (which may be questionable), this normalization

maps the iris tissue into a doubly-dimensionless coordi-

nate system.

The homogeneous rubber sheet model assigns to each
point in the iris, regardless of iris size in the image and of

pupillary dilation, a pair of dimensionless real coordinates

ðr; �Þ where r lies in the unit interval [0,1] and � is the

angular variable, cyclic over ½0; 2��. The remapping or

normalization of the iris image Iðx; yÞ from raw coordi-

nates ðx; yÞ to a doubly dimensionless and nonconcentric

coordinate system ðr; �Þ can be represented as

I xðr; �Þ; yðr; �Þð Þ ! Iðr; �Þ (1)

where xðr; �Þ and yðr; �Þ are defined as linear combinations

between the set of pupillary boundary points ðxpð�Þ; ypð�ÞÞ
determined by the internal active contour, and the set of

outer boundary points along the limbus ðxsð�Þ; ysð�ÞÞ
determined by the external active contour describing the

iris/sclera boundary

xðr; �Þ ¼ ð1 � rÞxpð�Þ þ rxsð�Þ (2)

yðr; �Þ ¼ ð1 � rÞypð�Þ þ rysð�Þ: (3)

This homogeneous rubber sheet model maps the iris

into a dimensionless, normalized coordinate system that is

size-invariant, and therefore invariant to changes in the

target distance and the optical magnification factor, as well

as invariant to the position of the eye in the image, and

invariant to the pupil dilation (assuming uniform iris

elasticity). It is not strictly polar, because it makes no
assumption that the pupil and iris are concentric (indeed

the pupil’s actual center is usually nasal, and inferior, to

the center of the iris), nor even that their boundaries are

circular. These flexible contours are illustrated in Fig. 3.

An important aspect of this method of segmentation and

normalization is that it does not introduce unnecessary

cuts in the intrinsically continuous and cyclic angular

variable, which would interrupt subsequent convolution,
as occurs in other methods that explicitly unwrap the iris

into a rectangular domain.

C. The IrisCode
The normalized and dimensionless iris mapping is

encoded into an IrisCode through a process of demod-

ulation that extracts phase sequences. This encoding

process is illustrated in Fig. 4. It amounts to a patch-

wise phase quantization of the iris pattern, by iden-
tifying in which quadrant of the complex plane each

resultant phasor lies when a given area of the iris is

projected onto complex-valued two-dimensional (2-D)

Gabor [7] wavelets

hfRe;Img ¼ sgnfRe;Img

Z
�

Z
�

Ið�; �Þe�i!ð�0��Þ

� e�ðr0��Þ2=	2

e�ð�0��Þ2=
2

�d�d�: (4)

Fig. 3. Illustration of Bsnakes,[ or active contours, to fit the inner

and outer boundaries of the iris. These are generally noncircular,

as illustrated by the curvature maps in the lower left; those would

be flat and straight if the iris inner and outer boundaries

were circles.

Fig. 4. Extracting phase sequences to encode iris patterns. Local

regions of an iris are projected (4) onto quadrature 2-D Gabor

wavelets, generating complex-valued coefficients whose real and

imaginary parts specify the coordinates of a phasor in the

complex plane.
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where hfRe;Img can be regarded as a complex-valued bit
whose real and imaginary parts are either 1 or 0 (sgn)

depending on the sign of the 2-D integral; Ið�; �Þ is the

raw iris image in the dimensionless coordinate system; 	
and 
 are the multiscale 2-D wavelet size parameters,

spanning an eightfold range from 0.15 to 1.2 mm on the

iris; ! is wavelet frequency, spanning three octaves in

inverse proportion to 
; and ðr0; �0Þ represent the di-

mensionless coordinates of each region of iris for which
the phasor bits hfRe;Img are computed. Such phase quadrant

coding sequences are portrayed by the barcode-like bit

streams in Figs. 2 and 3. A desirable feature of the encod-

ing as indicated in Fig. 4 is that it is a cyclic, or Gray code:

in rotating between any adjacent phase quadrants, only a

single bit changes, unlike a binary code in which two bits

may change, making some errors arbitrarily more costly

than others. Altogether 2048 such phase bits (256 bytes)
are computed for each iris; but in addition an equal

number of masking bits are also computed to signify

whether any iris region is obscured by eyelids, contains any

eyelash occlusions, specular reflections, boundary artifacts

of hard contact lenses, or poor signal-to-noise ratio, and

thus should be ignored as artifact.

D. Matching Engine
In comparing any two IrisCodes, the phase data bits

are Exclusiveor’ed ð
N

Þ to detect disagreement and

thereby to assess the similarity between the two iris

patterns. But the masking bits are also and’ed ð
T
Þ with

this xor combination in order to restrict the comparison
to those bits that for both irises are deemed not to be

corrupted by eyelashes, eyelids, or reflections. The norms

ðk kÞ of the resultant xor’ed data vectors and of the

and’ed mask vectors are then computed in order to derive

the raw Hamming distance HDraw, as the fraction of bits

(deemed significant) that disagree between two irises. For

any two different irises, statistical independence creates

the expectation HDraw ¼ 0:5 for this score. If we denote
the two iris phase data vectors as fcodeA; codeBg and

their associated mask vectors as fmaskA;maskBg, then

their raw dissimilarity score is

HDraw ¼ ðcodeA
N

codeBÞ
T

maskA
T

maskBk k
kmaskA

T
maskBk : (5)

But different people expose different amounts of iris

between their eyelids, and the amount visible depends also

on occluding eyelashes, reflections, and other circum-

stances. Therefore, the number of bits available for com-
parison between two different IrisCodes is quite variable. A

close match (say a Hamming distance of HDraw ¼ 0:10)

based on only few compared bits is much less indicative

of identity than an apparently poorer match (say

HDraw ¼ 0:20) based on a large number of compared

bits. This requires a renormalization of any observed raw
Hamming distance score HDraw into one HDnorm whose

deviation from statistical independence ðHDraw ¼ 0:50Þ
has been rescaled for statistical significance, based on the

number of bits n that were actually compared between the

two IrisCodes

HDnorm ¼ 0:5 � ð0:5 � HDrawÞ
ffiffiffiffiffiffiffi

n

911

r
: (6)

The parameters in the above equation influence the

standard deviation of the distribution of normalized

Hamming distance scores, and they give the distribution

a stable form which permits a stable decision rule to be

employed.

E. Execution Speed of the Algorithms
Execution of all the image processing steps, from

localizing the iris and all of its boundaries (including the

eyelids), to eyelash exclusion and computing the IrisCode,

occurs faster than the video frame rate. On a 3-GHz PC,

slightly more than 30 frames/s are fully processed. The

match search speed with a memory-resident database of

IrisCodes exceeds 1 million IrisCodes/sec in an unguided

exhaustive search.

IV. RESULTS FROM UNROTATED
IRIS PAIR COMPARISONS

Fig. 5 shows all cross comparison similarity scores
obtained from making all possible pair comparisons

among the 632 500 different irises. N different objects

can generate a total of N 
 ðN � 1Þ=2 different pairings,

which for the UAE database means 200 027 808 750, or

about 200 billion different pair comparisons. The vast

majority of IrisCodes from different eyes disagreed in

roughly 50% of their bits, as expected since the bits are

equiprobable and uncorrelated between different eyes.
Very few pairings of IrisCodes could disagree in fewer

than 35% or more than 65% of their bits, as is evident

from the distribution in Fig. 5. The smallest and largest

Hamming distances found in this set of 200 billion simple

comparisons of different IrisCodes were around 0.26 and

0.75 respectively.

The solid curve that fits the data very closely in Fig. 5 is a

binomial probability density function. This theoretical
form was chosen because comparisons between bits from

different IrisCodes are Bernoulli trials, or conceptually

Bcoin tosses,[ and Bernoulli trials generate binomial distri-

butions. If one tossed a coin whose probability of Bheads[ is

p in a series of N independent tosses and counted the

number m of Bheads[ outcomes, and if one tallied this

fraction x ¼ m=N in a large number of such repeated runs
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of N tosses, then the expected distribution of x would be as

per the solid curve in Fig. 5

fðxÞ ¼ N!

m!ðN � mÞ! pmð1 � pÞðN�mÞ: (7)

The analogy between tossing coins and comparing bits

between different IrisCodes is deep but imperfect, because

any given IrisCode has internal correlations arising from
iris features, especially in the radial direction. Further

correlations are introduced by the 2-D Gabor wavelet

filters: their lowpass aspect introduces correlations in

amplitude, and their bandpass aspect introduces correla-

tions in phase, both of which linger to an extent that is

inversely proportional to the filter bandwidth. The effect

of these correlations is to reduce the value of the dis-

tribution parameter N to a number significantly smaller
than the number of bits that are actually compared

between two IrisCodes; N becomes the number of

effectively independent bit comparisons. The value of p
is very close to 0.5 (empirically 0.499 for the UAE

database), because the states of each bit are equiprobable a
priori, and so any pair of bits from different IrisCodes are

equally likely to agree or disagree.

The apparently binomial functional form that de-
scribes the distribution of dissimilarity scores [Fig. 5 and

(7)] for comparisons between different iris patterns is

key to the robustness of this technology in large-scale

search applications. The tails of the binomial attenuate

extremely rapidly, because of the dominating central

tendency caused by the factorial terms in (7). Rapidly
attenuating tails are critical for a biometric to survive the

vast numbers of opportunities to make false matches

without actually making any, when applied in an Ball-

against-all[ mode of searching for matching or multiple

identities, as is contemplated in some national ID card

projects in the U.K. and elsewhere in Europe.

V. CLOSEST MATCH SCORES AFTER
MULTIPLE ROTATIONS

When IrisCodes are compared in a search for a match, it

cannot be known precisely what was the amount of head

tilt, camera tilt, or eye rotation when the IrisCodes were

obtained. Therefore, it is necessary to make comparisons

over a reasonable range of relative tilts (rotations) between

every pair of IrisCodes, keeping the best match as their
similarity score. This generates an extreme value distribu-
tion that is skewed towards lower Hamming distances,

even between unrelated irises, because of the increased

opportunities to get a closer match just by chance.

The new distribution after k rotations of IrisCodes in

the search process still has a simple analytic form that can

be derived theoretically. Let f0ðxÞ be the raw density dis-

tribution obtained for the HDnorm scores between different

Fig. 5. Distribution of HDnorm Hamming distance scores for 200 billion different pairings of iris patterns, without relative rotations.

The solid curve fitting the histogram is a binomial distribution (7).
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irises after comparing them in only a single relative
orientation; for example, f0ðxÞ might be the binomial

defined in (7). Then F0ðxÞ, the cumulative of f0ðxÞ from

0 to x, becomes the probability of getting a false match

in such a test when using an HDnorm acceptance criterion

at x

F0ðxÞ ¼
Zx

0

f0ðxÞdx (8)

or equivalently

f0ðxÞ ¼ d

dx
F0ðxÞ (9)

Clearly, then, the probability of not making a false match

when using decision criterion x is 1 � F0ðxÞ after a single

test, and it is ½1 � F0ðxÞ�k after carrying out k such tests

independently at k different relative orientations. It
follows that the probability of a false match after a Bbest

of k[ test of agreement, when using HDnorm criterion x,

regardless of the actual form of the raw unrotated dis-

tribution f0ðxÞ, is

FkðxÞ ¼ 1 � 1 � F0ðxÞ½ �k (10)

and the expected density fkðxÞ associated with this
cumulative is

fkðxÞ ¼ d

dx
FkðxÞ

¼ kf0ðxÞ 1 � F0ðxÞ½ �k�1 (11)

(11) for the extreme value distribution is the solid curve

in Fig. 6, fitting the distribution of the set of 200 billion

IrisCode comparisons after k ¼ 7 relative rotations of
each pair.

VI. OBSERVED FALSE MATCH RATES

The cumulative scores under the left tail of the distribution

shown in Fig. 6, up to various Hamming distance thresh-

olds, reveal the false match rates among the 200 billion iris

comparisons if the identification decision policy used those
thresholds. These rates are provided in the following

Table 1. No such matches were found with Hamming dis-

tances below about 0.26; but the table has been extended

down to 0.22 using (7)–(10) for the theoretical cumulative

of the extreme value distribution of multiple samples from

the binomial (plotted as the solid curve in Fig. 6), in order

to extrapolate the theoretically expected false match rates

for such decision policies. These false match rates,
whether observed or theoretical, also serve as confidence

levels that can be associated with a given quality of match.

Fig. 6. Distribution of dissimilarity scores between the same 200 billion iris pair comparisons as given in Fig. 5, but showing only the best match

after seven relative rotations of each pair because of uncertainty about actual iris orientation. The solid curve is (11).
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The U.S. Department of Homeland Security (DHS)
recently sponsored independent testing in the USA of the

same Daugman algorithms as reported here for the UAE

database. In a total of 1 707 061 393 (1.7 billion) cross

comparisons between different irises, the smallest Ham-

ming distance observed in the DHS test [8] was in the

range of 0.28, consistent with the above table for that

number of comparisons.

VII. CONCLUSION AND DECISION
POLICY RECOMMENDATIONS

The requirements of biometric operation in Bidentifica-

tion[ mode by exhaustively searching a large database are

vastly more demanding than operating merely in one-to-

one Bverification[ mode (in which an identity must first be

explicitly asserted, which is then verified in a yes/no deci-
sion by comparison against just the single nominated

template).

If P1 is the false match probability for single one-to-one

verification trials, then ð1 � P1Þ is the probability of not

making a false match in single comparisons. The likelihood
of successfully avoiding this in each of N independent

attempts is therefore ð1 � P1ÞN , and so PN, the probability

of making at least one false match when searching a

database containing N different patterns, is

PN ¼ 1 � ð1 � P1ÞN: (12)

Observing the approximation that PN � NP1 for small

P1 � ð1=NÞ � 1, when searching a database of size N an

identifier needs to be roughly N times better than a
verifier to achieve comparable odds against making false

matches. In effect, as the database grows larger and

larger, the chance probability of making a false match also

grows almost in proportion. These chances also grow in

proportion to the number of independent searches that

are conducted against the database. To survive success-

fully so many opportunities to make false matches, the

decision threshold policy must be adaptive to both of
these factors. Fortunately, the algorithms for iris recog-

nition generate extremely rapidly attenuating tails for the

HDnorm distribution fkðxÞ because of the underlying

binomial combinatorics. This felicitous property enables

very large databases to be accommodated, and large

numbers of searches to be conducted against them. The

rule to be followed for decision policy threshold selection

is to multiply the size of the enrolled database times the
number of searches to be conducted against it in a given

interval of time, and then to determine from Table 1 what

Hamming distance threshold will correspond to the risk

level that is deemed to be acceptable.

For example, in the U.K. with a national population of

about 60 million, an Ball-against-all[ comparison of

IrisCodes (totaling about 1015 pairings) as envisioned to

detect any multiple identities when issuing the proposed
biometric identity cards, could be performed using a

decision threshold as high as 0.22 without expecting to

make any accidental false matches. At this threshold, the

false nonmatch rate, using today’s better iris cameras

(assuming good acquisition and cooperative subjects)

would be below 1%. In everyday biometric transactions

in which an identity is first asserted and then verified

without exhaustive database search, matches with a very
forgiving Hamming distance as high as about 0.32 could be

accepted safely. h
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