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Information Theory and the IrisCode

John Daugman

Abstract—Iris recognition has legendary resistance to false
matches, and the tools of information theory can help to explain
why. The concept of entropy is fundamental to understand-
ing biometric collision avoidance. This paper analyses the bit
sequences of IrisCodes computed both from real iris images
and from synthetic white noise iris images, whose pixel values
are random and uncorrelated. The capacity of the IrisCode
as a channel is found to be 0.566 bits per bit encoded, of
which 0.469 bits of entropy per bit is encoded from natural
iris images. The difference between these two rates reflects the
existence of anatomical correlations within a natural iris, and the
remaining gap from one full bit of entropy per bit encoded reflects
the correlations in both phase and amplitude introduced by
the Gabor wavelets underlying the IrisCode. A simple two-state
hidden Markov model is shown to emulate exactly the statistics
of bit sequences generated both from natural and white noise
iris images, including their imposter distributions, and may be
useful for generating large synthetic IrisCode databases.

Index Terms— Entropy, IrisCode, hidden Markov models.

I. INTRODUCTION

NFORMATION theory [1] analyses relationships between
random variables using metrics that quantify what they
convey probabilistically about each other. Its methods are
suited for domains such as inference, communication channels,
classifiers and pattern recognition generally, but it has been
little used in the field of biometrics except in connection with
cryptographic protocols. This is odd, because many concepts
in biometrics correspond closely with the idea of a noisy
channel, its capacity or that of an encoding scheme, as well
as the entropy of a random variable or code. For example,
the randomness and complexity of biometric patterns are
generally understood to determine their uniqueness and hence
their ability to avoid collisions with others (False Matches),
but these biometric properties are rarely quantified in terms
of entropy. Now that (for example) almost a billion persons
have had their IrisCodes enrolled in a national ID deployment
across India [2], [3], each being compared with all others for
de-duplication checks, it is time that the origin of biometric
collision avoidance become more quantitatively and widely
understood. The canonical Venn diagram of Fig. 1 summarises
some key information-theoretic concepts involving uncertainty,
various entropies defined by probability distributions, and
mutual information between random variables X and Y.
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Fig. 1. Classical Venn diagram of relationships between random variables,
their entropies and mutual information. Applied to biometrics, X and Y might
be identities, images, biometric features, computed templates, or decisions.

For purposes of illustration, we might take random
variable X to represent identity of persons, and Y to represent
biometric signals. There is uncertainty about both, represented
by the overlapping ovals labelled H(X) and H(Y). If a
discrete random variable (say Y) has n possible states, and the
i of these occurs with probability p;, the information gained
by observing that state is defined to be log, p; bits. To gain
information is to lose uncertainty (entropy) by the same
amount, so entropy is defined as the negative of information
and hence is non-negative. One reason for the logarithmic
measure is to cause the information gained from observing
independent events to be additive, since the joint probability
of independent events (i, j) simply multiplies (p; p;) and thus
the information gained from their joint observation, the log of
this product, is just the sum of the information gained from
the individual observations. Summing contributions over the
entire ensemble of n possible states, weighting each by its
probability p; of occurence and with >°; p; = 1, we get the
classic Shannon measure [1] of the entropy (in bits) of this
random variable:

H(Y)= - pilog, pi (1)

i=1

H (Y) increases with the number n of possible states, and for
any given n it is maximised at log, n if all the possible states
are equiprobable: Vi, p; = 1/n. The information capacity of
a coding scheme is characterised partly by its entropy H in
bits, because 27 is an upper limit on the number of distinct
states that can be encoded in the worst case that they are
equiprobable. Larger entropy H means that more objects can
be uniquely coded (collision avoidance, i.e. distinctiveness),
but the entropy of a code is reduced by non-independence of
its bits, and the entropy of a population is reduced by
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non-uniformity in its probability distribution. There is a strong
analogy with cryptography: the strength of a cryptographic
key grows with its entropy (maximally its length in bits),
but it is weakened by any non-randomness or predictability,
as famously helped British code-breakers at Bletchley Park
in WWII routinely break German Enigma codes.

The joint entropy H (X, Y) of random variables X and Y,
as well as their conditional entropies H (X|Y) and H (Y |X) as
demarcated in Fig. 1, are defined in the same way as (1) except
that the probabilities used are instead the joint or conditional
probabilities: p(x, y), p(x|y), and p(y|x) where x and y are
the values that may be taken by the random variables X and Y.
In the present biometric context the crescent-shaped region on
the left, the conditional entropy H (X 1Y), would be interpreted
as: “how much uncertainty remains about personal identity X,
given the biometric measurements Y.” Likewise the inverse
conditional entropy H (Y|X), the crescent-shaped region on
the right, would be interpreted as: “given identity X, how
much uncertainty remains about the biometric signals Y that it
may generate.” Obviously both of these conditional entropies
should be minimised, as they are the origins of False Matches
and False non-Matches.

The area of intersection between the ovals in Fig. 1 is
the mutual information, 7(X; Y). The larger it is, the better,
since it signifies how much these two random variables convey
about each other. Ideally, biometric patterns Y should leave
no uncertainty about identities X, and likewise, identities X
should generate consistent and stable biometric patterns Y.
Departures from these ideal mappings are reflected in reduc-
tions in the mutual information. In the worst case (“biometric
uselessness”), the two ovals are disjoint and non-overlapping:
personal identity, and biometric patterns, say nothing about
each other and are independent. In the best case (“biometric
determinism”), H(X) and H(Y) are fully co-extensive with
each other and with their mutual information 7(X;Y), and
the conditional entropies H (X|Y) and H (Y|X) are both nil.

We come finally to the key idea of a channel, which is
relevant in many different biometric contexts. It has an input
(random variable X) and an output (random variable Y).
The fidelity between X and Y is measured in terms of their
mutual information 7(X; Y), which leads to one measure of
channel capacity. We could regard X and Y as identities,
or as biometric patterns, either or both. The fraught process
of biometric presentation, with inconsistent acquisition, could
itself be regarded as an internal part of the channel. For
illustration initially let us consider a channel for example just
as a biometric image coding scheme (see Fig.s 2 and 3).

The goal of this coding channel is to represent accurately
at the output what is actually present at the input. Iris images
are encoded using their projections onto 2D Gabor wavelets,
which can extract all their information in a very compact
representational format. In Fig. 3, the upper panels show
two original iris images from different ethnic groups, and
the lower panels show their corresponding reconstructions by
linear combinations of 2D Gabor wavelets drawn from a self-
similar family of wavelets having six discrete orientations,
two quadrature phases, and five sizes (or frequencies) in an
octave scaling sequence spanning four octaves. This discrete

401

2D Gabor 2D Gabor 1

encoding decodin |
\.‘ \ \»‘ 'vg @
e de] N o de

Input image

Fig. 2. The concept of a channel between input and output random variables
X and Y is central in information theory and it offers quantitative metrics
applicable to many mappings used in biometrics, whether between identities
and templates, or simply an image coding scheme.

Fig. 3. Demonstration that the image analysis scheme underlying the IrisCode
can also constitute a complete image code. The upper panels show two original
iris images, while the lower panels show their reconstruction simply by adding
together 2D Gabor wavelets, in a discrete array of orientations, sizes, and
positions, with appropriate coefficients that constitute the code.

set of wavelets on a sparse spatial lattice has a highest spatial
frequency that is lower than the pixel resolution, and so the
reconstruction is imperfect (as close inspection reveals). Image
quality metrics such as mean-squared-error or signal-to-noise
ratio would characterise this coding scheme in terms of mutual
information and channel capacity. But this paper will focus
instead on encodings for automatic biometric identification,
using the same class of wavelets that generated the image
coding in Fig. 3.

II. IrisCode PROPERTIES

All public deployments of iris recognition are based on
the IrisCode, although several alternative variants have been
proposed and studied in the academic literature. The IrisCode
and its match engine using a Hamming Distance (HD) metric
have been extensively discussed already ( [4]-[8]) and will be
only briefly summarised here. After localisation, segmentation,
and normalisation of the iris tissue, its random texture is
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Fig. 4. Graphical portrayal of the IrisCodes produced by four different eyes.
In each case, the bit streams from two different wavelets are concatenated.

encoded into a bit stream using the sign of its local projections
onto a parameterised family of 2D Gabor wavelets:

h{Re,Im) = SEN{Re 1m}
/ /¢ 1(p. $)ei@C0=8) g=0=p)/1% =@~ 1P 51
P

)

where /(re,Im) can be regarded as a complex-valued bit whose
real and imaginary parts are either 1 or 0 (signum) depending
on the sign of the 2D integral; I (p, ¢) is the iris image nor-
malised into a dimensionless pseudo-polar coordinate system;
y and f are the size parameters of multi-scale 2D Gabor
wavelets, spanning an 8-fold range corresponding to 0.15mm
to 1.2mm on the iris; @ is wavelet frequency, spanning three
octaves in inverse proportion to S such that the profiles
are roughly as shown in the wiremesh plots within Fig. 2;
and (rp, 6p) represent the central polar coordinates of each
local patch of iris tissue for which such IrisCode bits are
computed. Gabor wavelets were chosen because they optimise
information resolution simultaneously in space (location) and
in frequency: they have minimal joint uncertainty under the
Heisenberg Uncertainty Principle. Altogether 2,048 such bits
(256 bytes) are computed for encoding each iris pattern; but in
addition an equal number of masking bits are also computed to
signify whether any iris region is obscured by eyelids, contains
any eyelash occlusions, specular reflections, boundary artifacts
of hard contact lenses, or poor signal-to-noise ratio (the lowest
quartile by amplitude), and thus should be ignored as artifact.
This deployed mechanism for masking unreliable bits was first
disclosed 15 years ago [9], but in some more recent literature
it has been renamed “fragile bit” masking [10], [11].

The IrisCode bit sequences portrayed pictorially in Fig. 4
from four different eyes immediately convey the impres-
sion of large entropy, the basis for the IrisCode’s legendary

resistance to False Matches (collision avoidance). For example,
the Government of India is now two-thirds finished with its
gargantuan project to enroll the IrisCodes of all 1.2 billion
citizens within three years, requiring a million enrollments
per day across about 36,000 enrollment stations [2], [3].
Several different camera designs are deployed, which license
the IrisCode algorithm to encode iris patterns for subsequent
cross-matching. Most impressively, each new enrollee is then
compared with all existing enrollees (more than 800 million
persons now) in de-duplication checks, since incentives
exist to try to acquire multiple identities and thereby gain
fraudulent multiple access to benefits and entitlements [3].
Thus, some 800 trillion (8 x 10!%) cross-comparisons are
performed every day. This requires both the great speed of
Exclusive-OR (XOR) IrisCode matching, which executes at
millions/sec per CPU single core, but even more importantly,
the large entropy in IrisCodes [5], [6] to avoid False Matches.
Weaker biometrics such as face recognition would utterly
drown in False Matches at this scale, given the vast number
of opportunities for biometric collisions.

A. Losses in IrisCode Entropy

The bits comprising an IrisCode are far from independent.
One reason is because iris patterns contain internal correlations
of natural structure, such as radial furrows that may extend
all the way from the pupil to the limbus. In the orthogonal
(angular) direction, many features subtend a significant angle
around the pupil, as could be seen in Fig. 3, again creating
spatial correlations. But an even greater source of correlations
(and hence loss of IrisCode entropy) is the nature of the Gabor
wavelet encoders themselves. Their functional form in (2)
makes them bandpass filters, having both a lowpass aspect and
a highpass aspect. Regardless of the input, convolution with
such filters produces outputs in which neighbouring points are
correlated in amplitude because of the lowpass aspect, but
also more distant points are correlated in phase because of the
highpass aspect. This latter point becomes more intuitive if
one imagines that the bandpass region (between the highpass
and lowpass filter characteristics) is quite narrowband when
@ > 1/ in (2). Then the filter outputs are almost pure
sinusoids of frequency w regardless of the input, and hence
there is oscillation with phase coherence that persists over a
long interval. Indeed both the amplitude correlation caused
by the lowpass aspect, and this phase coherence, each have
an interval of persistence that is reciprocal to the spectral
bandwidth of the wavelets used. Later we shall quantify this
effect on entropy using “white noise” iris images whose input
pixels are random and uncorrelated.

For different images of same eyes, Fig. 5 shows this phase
coherence effect using two different wavelet frequencies. The
IrisCodes extracted from different sets of same-eye images
were scrolled relative to each other in steps around the optimal
orientation that yields the best match (lowest HD). The unit
of relative shift is 360°/256 &~ +1.41° rotation. Whereas the
best match obviously occurs when the IrisCodes are optimally
aligned (0 shift), we see that same-eye IrisCodes can become,
in a sense, “out of phase with each other” (e.g. at a relative
shift of about +6 for the lower frequency wavelet). This effect
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Fig. 5. Phase coherence effect in same-eye IrisCodes under relative rotation.
The undulatory variation in HD scores arises because the bandpass Gabor
wavelet encoders impart oscillatory phase correlations, losing some entropy.

was already observed by Matey et al. [12] for barrel shifts
of a single IrisCode, and it was also partially observed by
Rathgeb er al. [13] as increased variability for same-eye
IrisCode comparisons under circular shifts. The biphasic
coherence profiles seen in Fig. 5 occur when same-eye
IrisCodes are compared, but not those from different eyes. This
observation could be incorporated into the matching process
as rather more “distributed” evidence of identity than using
only a single best HD measurement. A somewhat paradoxical
consequence of the biphasic profiles seen in Fig. 5 is that
observing an unusually large fraction of mismatching bits (the
two troughs, where 70% of the bits disagree) is actually strong
evidence of a match, because only same-eye IrisCodes can
get coherently “out-of-phase” with each other. This is another
reflection of the key concept that iris recognition is based on
the failure of a test of statistical independence [4].

B. Redundancy of the Real and Imaginary Parts

A consequence of phase coherence within IrisCodes is that
the Re and Im parts of (2) become redundant with each other,
because their quadrature phase relationship allows each to
predict the other’s value after a shift. The upper panel of
Fig. 6 shows that without any relative shift, the IrisCode bit
streams reveal no correlation between their Re and Im parts:
the quadrature phase relationship of the wavelet parts makes
them orthogonal, with inner product 0, and so the HD scores
between them remain very close to 0.5 as expected. But under
a shift corresponding to 7 /2 in phase (lower panel) for a given
wavelet, there emerges a large correlation in the bit streams.
This is not surprising, because the Re part of a Gabor wavelet
when shifted in position by =z /2 in phase terms acquires
quite a large inner product with its corresponding Im part,
so they are doing similar work. A fundamental principle of
information theory, which arises in several different forms
in this paper, is that predictability reduces entropy. For this
reason, for more than a decade all public deployments of iris
recognition have used only the Re part, as will this analysis,
ignoring the Im part since it adds so little further entropy.

We can see in Fig. 7 the entropy-reducing effects of
bandpass encoding and quantisation when actual iris image
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Fig. 7. Pixel values extracted from a natural iris along a single mid-radius
circumference (upper trace). Gabor wavelet encoders discard slow gradients
and also higher frequency structure (middle trace). The bit stream that results
from quantisation (lowest trace) has properties of a “sticky oscillator.”

data is passed through (2) to generate an IrisCode bit stream.
The upper trace plots actual pixel values sampled from an
iris along a single (mid-radius) circumference. It contains a
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Two-State Markov Process

State 0

State 1

Fig. 8. Hidden Markov Model for generating IrisCode bit streams.

broad range of frequencies, including long-range trends caused
by illumination gradients due to the geometry of illumination
(typically from below the eye) and also from secondary
light reflected from the nose onto the nasal side of the iris.
Both those low frequency gradients, and also high frequency
structure, are removed by the Gabor wavelet encoder (in this
case a fairly low frequency cosine-phase wavelet), as shown by
its output in the second trace. Finally, the signum quantisation
of (2) into a bit stream is shown in the lowest trace of Fig. 7.
The individual bits are demarcated within each “pulse,” and
it is clear both that there tend to be significant run-lengths of
bits within each pulse (due to the lowpass aspect), but also that
these pulses themselves have an oscillatory character (due to
the highpass aspect). These two tendencies suggest modelling
IrisCode bit streams as a “sticky oscillator” Markov process.

III. MARKOV GENERATIVE MODEL OF IrisCodes

The distinctive characteristics of IrisCode bit streams as
seen in Fig. 7 can be effectively captured in a Hidden Markov
Model (HMM) having two states and a single parameter, as
depicted in Fig. 8. It may emit a ‘0’ in State 0 or a ‘1’ in
State 1, each with probability a, and return to the same state;
or with probability 1 —a it emits the other symbol and switches
to the other state. Thus it can be “sticky” or “bouncy,” two
forms of predictability, depending on a. For 0.5 < a < 1itis
“sticky,” with increasing run-lengths of the same bit as o gets
larger. For 0 < a < 0.5 this two-state Markov process resists
same-bit runs, alternating more regularly as a gets smaller.
Regardless of a, we cannot derive the states from the outputs
because either bit can be emitted in either state, and hence
this Markov process is an HMM. In the case that o = 0.5 it
reduces to a simple one-state uncorrelated Bernoulli process,
having a geometric distribution of run-lengths. For all values
of the parameter 0 < a < 1, both bits are emitted with equal
probability overall.

In order to test this model against real-world data, we
begin with 11.5 million actual comparisons between IrisCodes
generated from non-mated eyes, whose distribution of HD
scores is shown in the upper panel of Fig. 9. Such actual
IrisCode “imposter” distributions have been presented many
times in the literature, and they are always very well-fitted by
a fractional binomial distribution like the solid curve in both
panels for IrisCode comparisons in a single orientation, or by
the derived extreme-value variant of this distribution if only the
best match (lowest score) after comparisons in several relative
orientations is kept. The probability density function plotted as
the solid curve fitting the empirical scores from comparisons
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Fig. 9. Upper panel: distribution of actual HD scores obtained when IrisCodes
from different eyes are compared, without multiple rotations. Solid curve
is (3). Lower panel: Distribution of HD scores obtained between synthetic
IrisCodes generated by the HMM shown in Fig. 8, with parameter a = 0.90,
without multiple rotations. Solid curve is the same (3) as in the upper panel.

between different eyes without multiple rotations is:

fox) = m( — p)NV-m A3)

m!(N — m)! p
where x here is the fractional HD score, the fraction of bits that
disagreed between two IrisCodes from different eyes. More
generally such a binomial distribution describes the fraction
x = m/N of Bernoulli trials in which one outcome (say
“heads” in coin tosses) occurred, namely m out of N trials,
and p is the probability of any single such outcome. For
this empirical data, the parameters that produced the fitting
binomial were p = 0.5 and N = 245.

The lower panel of Fig. 9 shows the distribution of HD
scores obtained by cross-comparisons among 1,000 synthetic
IrisCodes generated by the HMM depicted in Fig. 8. Each
IrisCode had 1,536 unmasked bits after 25% of the 2,048 bits
computed were deemed “unreliable”, emulating the standard
process of bit selection when encoding real iris data. Because
the positions of those 25% discarded bits are randomly dis-
tributed, only 1,153 bits were mutually unmasked usually in
any given pair of IrisCodes being compared. In the generative
Markov Process producing these IrisCodes, various values of
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the transition probability parameter a were tried until arriving
at the value a = 0.9 which perfectly matches the distribution
obtained using actual iris images. In Fig. 9, the binomial
density function that fits both score distributions (upper panel
for actual eyes, lower panel for HMM-generated IrisCodes)
is exactly the same curve. Therefore, this paper asserts that
researchers could now generate large databases of synthetic
IrisCodes having appropriate statistics by running the HMM
of Fig. 8 with o = 0.9 for 2,048 bit emissions per IrisCode,
for purposes such as research on matching engines, indexing
schemes, and the probabilities of extreme encounters.

IV. WHY IrisCodes HAVE PROVEN SO
RESISTANT TO FALSE MATCHES

In order to test the model against vastly larger datasets of
scores, such as the 1.2 trillion iris comparisons performed by
the US National Institute of Standards and Technology (NIST),
we must incorporate the multiple rotations comparisons which
increase False Match probability (FMR). Because it cannot be
known precisely what was the amount of head tilt, camera
tilt, or eye rotation (cyclovergence) when the IrisCodes were
obtained, it is necessary to make comparisons over a reason-
able range of k relative tilts (rotations) between every pair
of IrisCodes, keeping the best match as their similarity score.
This generates an extreme value distribution that is skewed
towards lower HD scores, even for unrelated eyes, because
of the increased opportunities to get a closer match just by
chance. In effect the search space is k times larger, and the
net False Match probability (for a given threshold) is therefore
almost k times larger. Most current public deployments of iris
recognition use k = 7 relative tilt angles, but a few go as far
as k = 21 relative tilt angles when handheld cameras are used.

Let fo(x) be the density distribution obtained for match
scores x between different irides after comparing them in only
a single relative orientation. For example, fp(x) might be the
fractional binomial defined in (3) and plotted in Fig. 9, or
any other probability distribution on x > 0. Then Fy(x), the
cumulative of fp(x) from O to x, becomes the probability of
getting a False Match in such a test when using the criterion
that any dissimilarity score < x is accepted as a match:

1umzlnmmm @

or, equivalently,

d
folx) = EFO(X) )

Clearly, then, the probability of not making a False Match
when using decision criterion x is 1 — Fp(x) after a single
test, and it is [1 — F()(x)]k after carrying out k such tests
independently at k different relative orientations. It follows
that the probability of a False Match after a “best of k™ test
of agreement, when using criterion x, regardless of the actual
form of the raw unrotated distribution fy(x), is:

F(x)=1-[1—-F@]]F (©6)
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TABLE I

FALSE MATCH RATES PREDICTED BY EQT (6) AND AS MEASURED BY
NIST [15] WITH 1.16 BILLION IRIS COMPARISONS, AND [16]
WITH 1.2 TRILLION IR1S COMPARISONS

| HD Criterion | Predicted FMR, (6) | NISTI51116] Measured FMR
0.36 1 in 24,000 1 in 25,000
0.35 1 in 110,000 1 in 71,000
0.34 1 in 556,000 1 in 476,000
0.33 1 in 3 million 1 in 3.4 million
0.32 1 in 20 million 1 in 24 million
0.31 1 in 137 million 1 in 165 million
0.30 1 in 1.1 billion 1 in 2 billion
0.29 1 in 9 billion (not measured)
0.28 1 in 92 billion 1 in 40 billion
and the expected density fr(x) associated with this
cumulative is:
d
Sik(x) = —Fi(x)
dx
= kfo(x) [1 = Fo(x)*! @
Detailed numerical tabulations of these probability

densities fp(x) and fx(x), their associated cumulatives
Fo(x) and Fi(x), and the log;, of False Match probability as
a function of HD acceptance criterion x, for fy(x) defined
as in (3), are available online at [14] in both human-readable
and machine-readable formats.

Table 1 shows how remarkably well the predictions of
this model compare with actual accuracy results reported in
independent tests of the IrisCode by NIST, over a range of
more than six log units of FMR variation determined by the
decision criterion. IREX-I [15] performed 1.16 billion, and
IREX-III [16] performed 1.2 trillion, IrisCode comparisons.
To obtain such large numbers of pairings using intra-dataset
comparisons, as was done in [6], is risky because of the
inevitability of biographical ground-truth errors which can
dominate estimates of accuracy. Databases acquired within
universities using student populations recruited by payment
naively provide an incentive for such ground-truth errors.
As the director of one famous such effort eventually conceded,
after first reporting many False Matches later shown to be
illusory: “Clearly we were getting scammed by some of our
student volunteers; (being paid to enroll) they were changing
names and coming through multiple times.” Similar incentives
for persons to enroll under multiple identities exist with
detainee and expellee populations. The consequence of even a
single such subject having two identities when N subjects are
enrolled for full intra-dataset comparisons, is that the estimated
FMR can never be better than 2/N?. The measured threshold
calibration of FMR such as shown in Table I would approach
a floor FMR that cannot be reduced by any reasonable change
in threshold, and indeed NIST [15] demonstrated this problem
for intra-dataset comparisons.

Instead, performing inter-dataset comparisons can avoid
the contaminating effect of biographical ground-truth errors.
If two disjoint populations, of sizes say N and M in geo-
graphically remote regions can be biometrically enrolled, then
N x M inter-comparisons become possible without illusory
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False Matches. NIST [16] acquired enrollment datasets of two
populations “very well separated geographically and occupa-
tionally,” one having 3.9 million iris images as the gallery and
the other having 315,000 iris images as probes used to search
against this entire gallery, asserting that “the likelihood of
co-membership is considered to be identically zero.” Thereby
NIST [16] was able to perform N x M = 1,228 billion,
or 1.2 trillion, IrisCode comparisons leading to the results
shown in Table I for various HD threshold criteria. The close
confirmation of theory, over more than six log units, is striking.
At the bottom of the table, at criterion HD = 0.28 meaning
that 28% of the bits in two IrisCodes are allowed to disagree
while still accepting them as a match, even the factor of two
between the prediction of FMR =1 in 92 billion and the NIST
observation of FMR = 1 in 40 billion ([16, p. 61]) remains
impressively concordant since these two FMR probabilities
are respectively the —10.96'" and —10.60" powers of ten.
A further important feature of Table I is that for HD criteria
below about 0.33, each percentile point reduction in HD
(e.g. from 0.31 to 0.30) brings almost another order of
magnitude reduction in FMR. This high-leverage consequence
of IrisCode bit combinatorics is what enables massive pop-
ulations like India’s to be enrolled, with quadratic cross-
comparisons for de-duplication, without drowning in False
Matches.

The False Match error rates presented in Table I, with the
model closely confirmed by the recent NIST large-scale tests
[15], [16], are in fact very close to predictions made by this
author [5] in 2003. The theoretical [5, Table 1, p. 287] very
closely parallels Table I in this paper. But those performance
predictions were treated dismissively and incredulously by the
biometrics community because such FMR performance was
unheard of in other biometrics. Some researchers [17] at NIST
published papers that were even contemptuous of these claims,
saying instead that iris recognition was no more powerful
than face recognition. They compared both technologies at
the extremely undemanding criterion of FMR = 0.001, not
realising that the DET (Decision Error Tradeoff) curves for
iris are so flat that the FMR can be reduced by many orders of
magnitude through small reductions in threshold (see Table I)
while having only minuscule impact on FnMR. The slope of
such error trade-off curves is called the likelihood ratio, and it
equals the ratio of the two probability density distributions (for
same-person and different-person comparisons) at the chosen
decision criterion. As confirmed in [16], the IrisCode DET
slope is so small that its FMR can be lowered by a factor of
10,000 to 100,000 while not even doubling the FnMR.

Comparing face and iris in identical one-to-many protocols,
later researchers at NIST [16] recently concluded: “The shape
of the respective DETs indicates that iris will give at least
100,000 times fewer false positives than face, for an equal
false negative identification rate.” Likewise, at a fixed FMR,
“iris gives a factor of ten fewer misses than face. Two-iris
operation would double this improvement.” ([16, p. 8]). It is
very gratifying that these recent confirmations of the 2003
predictions [5] for IrisCode accuracy have in fact come from
NIST itself. They confirm the key biometric role of entropy,
as the source of biometric discriminating power. Later we will

study this further after using white noise analysis to separate
the properties of the “signal” from those of the “channel.”

V. THE BIOMETRIC “BIRTHDAY PROBLEM”

The familiar “birthday problem” asks how many persons
chosen at random are needed before it becomes more likely
than not that at least one pair in this group share a birthday.
As N persons have N(N — 1)/2 possible pairings, and any
given pair has probability 365/366 of not sharing birthdays,
the problem requires only that (365/366)N(V=1/2 < 0.5 for
birthday collisions to be more likely than not. Some people
find it counterintuitive and surprising that this condition is
passed when there are as few as N = 23 persons in the group.

An analogous problem exists for biometrics: given a False
Match probability FMR (determined by a chosen threshold
and how discriminating the modality is), how large can a
population become before it is likelier than not that at least
two persons in the group collide biometrically? For face
recognition with its benchmark FMR = 0.001 test standard,
the answer is again easy to calculate and perhaps surprising:
collisions are to be expected once there are just N = 38 per-
sons. The general solution is easy to derive for any FMR that is
small: biometric collisions are likelier than not among a group
of N persons once their number is N > ,/1.386/FMR. This
calculation should be done for every biometric modality at
whatever FMR is considered reasonable and achievable for that
modality. It is the reason why the “astronomical” odds against
False Matches as tabulated in [14] as per (6) and in Table I
as confirmed empirically by NIST [16], are important in real
deployments and, when amplified quadratically by using both
eyes, are critical for de-duplication cross-comparison checks
in national ID projects such as UIDAI [2].

VI. WHITE NOISE ANALYSIS OF THE IrisCode

We turn now to another important method of information
theory: white noise analysis. The IrisCode can be regarded
as a kind of a channel, and the capacity of a channel is
defined by the maximum of the mutual information between
input and output over all possible input distributions. It is
known [1], [18] that the distribution which has maximum
entropy for any given variance is Gaussian white noise: a
random signal whose samples are independent (hence uncorre-
lated) and identically distributed with values having a Gaussian
probability distribution, and whose Fourier power spectral
density is uniform (hence “white” noise). We wish to study
how the IrisCode encodes and matches such signals. One
purpose for this is to understand what portion of the corre-
lations observed within an IrisCode computed from a real iris
(see Fig.s 4 and 7) arise from iris texture itself, given the lim-
ited entropy of natural anatomical structures, and what portion
is imposed by the IrisCode as a channel even with uncorrelated
random input. Therefore, 500 artificial iris images such as
seen in Fig. 10 were synthesised using pixel values sampled
from a Gaussian white noise process (u = 128,05 = 20).
The histograms in the lower right show the count of pixels
within an artificial iris at each grey level from O to 255. All 500
such iris images were processed in the normal way to compute
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Fig. 10. Two examples of the 500 white noise iris images synthesized to
analyse the capacity of the IrisCode as a channel, without entropy reductions
from anatomical correlations at input. Iris pixel distributions are Gaussian.

White Noise Iris: Angular Signal Sample

100 120 140 160
I

100 120 140 160 180 200 220 240 260 280 300 320 340 360
Angle

0 20 40 60 80

Angular Gabor Wavelet Convolution

-100 0 100
P

100 120 140 160 180 200 220 240 260 280 300 320 340 360
Angle

0 20 40 60 80

Encoded Bit Stream in IrisCode

Fig. 11. Pixel values extracted from one synthetic white noise iris along a
mid-radius circumference (upper trace). Output from Gabor wavelet encoder
(same as for Fig. 7, middle trace) extracts just a middle-low frequency band.

their IrisCodes as shown in the upper left, and then each of
these was matched against all of the others, leading to an
“imposters” distribution of 500x499/2 = 124, 750 HD scores.

The upper trace in Fig. 11 plots the pixel values sam-
pled from one white noise iris along a single (mid-radius)
circumference, just as was done in Fig. 7 for a real iris.
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It obviously contains a higher range of frequencies than the
natural iris, but it lacks the low frequency gradients created
by illumination geometry. The middle trace showing output
from the bandpass Gabor wavelet encoder is of course quite
similar to that for the natural iris, as the same frequency
band has been extracted, but both this trace and the quantised
output bit stream in the lower trace suggest that slightly higher
frequency content remains encoded. As before, the individual
bits within each “pulse” are demarcated, and they resemble a
“sticky oscillator.”

It is important to note that the choice of variance for the
Gaussian noise process (o = 20) is immaterial for the analysis
and results presented here, because ¢ merely determines the
amplitude, or the contrast, of the noise. It controls the widths
of the pixel histograms embedded within Fig. 10, and it scales
the amplitude of the two signal traces in Fig. 11. But no
changes in ¢ can change the locations of the zero-crossings in
the second trace, which determine the output bit sequence. It is
also important to recall that the defining integral (2) which sets
bits in an IrisCode is a two-dimensional polar integral, so it is
summing convolutional inner products in both the radial and
angular coordinates. Thus the structure of the HMM bit stream
is inherently modelling radial as well as angular correlations
within regions of an iris.

The actual distribution of HD scores obtained when all
500 white noise iris images were compared against each other
(without relative rotations to seek best matches) is plotted in
the upper histogram of Fig. 12. The solid curve that fits the
distribution perfectly is again the fractional binomial of (3)
but in this case with parameters p = 0.5 and N = 337, and
thus the distribution is noticeably narrower than for natural
IrisCodes presented in Fig. 9 which used N = 245. These
values for N were chosen by measuring the standard deviation
o for these distributions, observing their mean is p = 0.5
and then noting that for a fractional binomial distribution,
o = +/p(1 = p)/N. The lower panel of Fig. 12 shows that
exactly the same distribution (fit by the same solid curve) is
obtained when comparing artificial IrisCodes created using bit
sequences emitted by the HMM model of Fig. 8, masking a
random quartile of bits deemed “unreliable” in each IrisCode
(so that typically 1,153 bits were mutually unmasked in an
IrisCode pair being compared), but not performing rotations
to seek best matches. The standard score normalisation
[6, eq. (6)] that compensates for the number of bits mutually
available for comparison between any two IrisCodes is
applied. Most importantly, the value of the parameter o
needed in the two-state Markov Process to produce this
distribution, as fit by the solid curve, is a = 0.867 which
makes it a rather less “sticky” oscillator than the HMM
needed to emulate the IrisCodes actually produced by natural
iris images (Fig. 9). Now we are finally in a position to
estimate the entropy of these processes and to estimate how
much of the intrinsic capacity of the IrisCode is used when
encoding natural iris texture.

VII. CONCLUSION: CAPACITY OF THE IrisCode

If we accept that the HMM of Fig. 8 appears well able to
emulate IrisCodes whether they are computed from real iris
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White Noise “Iris" Cross—Comparisons

0.10
L

0.08

Solid curve: Binom(p = 0.5, N = 337)

Density
0.06
L

0.04
L

0.02
L

0.00
L

T T T T T T T T T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Hamming Distance

Markov Process "IrisCode" Cross—Comparisons

0.10
|
—

0.08
L

Two-State Markov Process Solid curve: Binom(p = 0.5, N = 337)

Py

oD
State 0 State 1

o

Density
0.06
L

0.04
I

o = 0.867

0.02

0.00
L

T T T T T T T T T T T
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0

Hamming Distance

Fig. 12. Upper panel: distribution of HD scores obtained when the IrisCodes
computed for 500 white noise iris images are cross-compared, without
multiple rotations. Solid curve is (3). Lower panel: Distribution of HD scores
obtained between synthetic IrisCodes generated by the HMM of Fig. 8, with
parameter a = 0.867, without multiple rotations. Solid curve is the same (3)
as in the upper panel.

images (Fig. 9) or from white noise iris images (Fig. 12),
then it is interesting to calculate the entropy of this generative
process, in bits of entropy per bit emitted, for both cases.

The overall entropy of a multi-state Markov Process is cal-
culated by combining the entropies of all the states, weighted
by their respective state occupancy probabilities [18]. Because
both switches in the HMM of Fig. 8 are equiprobable and
the flow paths between these states are symmetrical, both
states clearly have equiprobable occupancy p(State 0) =
p(State 1) = 0.5 regardless of the value of a in 0 <
o < 1. From the definition (1) of entropy in terms of
event probabilities for pg = a, the entropy of State O is
H(a) = —alogy(a) — (1 —a)log,(1 — a). State 1 also has
the same entropy. Thus the overall entropy H(a) of this
Markov source (in bits per bit emitted) is yet again this same
expression:

H(a) = —alogy(a) — (1 —a)logy,(1 —a) ()

For a Bernoulli process (like coin-tossing) whose two out-
comes have probabilities p and 1 — p, Fig. 13 is a plot of
the Shannon entropy (1) as a function of p. In (8) we saw
that the entropy H (a) of the “sticky oscillator” HMM which

v |
o
. H(p)=-plogp—(1-p)log (1-p)
o -
\ \ T T T T T T T T T
0 01 02 03 04 05 06 07 08 09 1
p
Fig. 13.  Plot of (1) for the entropy of a Bernoulli process as a function of

its outcome probability p. This is also a plot of (8) for the entropy of the
two-state HMM in Fig. 8 whose transition probability parameter is p = a.

models IrisCodes very well also takes this same functional
form, with p = a. Note that if « = 0.5 then the HMM
of Fig. 8 simplifies to a single-state uncorrelated Bernoulli
process having maximum possible entropy: it produces 1 bit
of entropy per bit emitted. For values of & moving away from
0.5 in either direction, the entropy of the process declines,
approaching H(a) = 0 as it tends either towards complete
“stickiness” (a — 1) or complete “bounciness” (o — 0),
both of which are forms of predictability.

We conclude from Fig. 9 and (8) that IrisCodes computed
from real iris images contain an entropy of H(0.9) =
0.469 bits per bit. But the capacity of the IrisCode as revealed
in Fig. 12 when encoding white noise iris images such as
shown in Fig. 10, which have the maximum possible entropy
for any given variance, is H(0.867) = 0.566 bits per bit.
The difference between 0.566 and 0.469 bits of entropy per
encoded bit is a reflection of the existence of correlations
(non-randomness) within the anatomy of a natural iris. It is
the IrisCode’s “unused capacity” for discrimination when
encoding natural iris images.

A quantitative way to understand why the large entropy of
the IrisCode is the origin of its extreme resistance to False
Matches is to consider the monstrously large factorial terms
that dominate the combinatorial part of (3). There is a good
analogy between XOR-ing the bits in IrisCodes from different
eyes and tossing a fair coin many times in a run (say N tosses),
because all possible sequences are equiprobable (namely every
sequence has probability 27V) but there are vastly more
outcome sequences containing relatively balanced mixes of
heads and tails than less balanced mixes. This distribution of
fractions is exactly the fractional HD distribution fitted by the
solid curves in Fig.s 9 and 12, one requiring N = 245 and
the other N = 337, and their tails attenuate extremely rapidly.
For example, if tossing a fair (p = 0.5) coin N = 245 times
in a row, the tabulation of Fy(x) in [14] as per (4) reveals
that getting fewer than 27% heads is ten times less likely than
getting fewer than 28% heads. The extremely rapid attenuation
of the tail of this combinatorial distribution, namely by a
factor of ten for a mere one percentile point change in the
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Fig. 14. We can regard the entire process of biometric identification as

constituting a kind of noisy channel, with a presenting actual identity X as
the input, and an inferred identity Y as the output from biometric matching
(including L for “unknown” or “null identity”).

balance of outcomes (from 28% heads to 27% heads), mirrors
the behaviour seen in Table I as confirmed by NIST, and
it summarises the importance of large entropy for biometric
discriminating power.

In future work we will regard the human presentation and
the image acquisition process as also constituting parts of the
channel, so the input as suggested in Fig. 14 is an identity
rather than an image, and the output is also an identity
(possibly including L for “unknown”). Such an approach
depends on the “authentics” distribution and on how image
quality affects the probability of False non-Matches, whereas
the present work focused on the discriminating capacity of the
IrisCode: the properties that determine its famous resistance
to False Matches. The entire process of iris recognition from
presentation and image acquisition to matching and decision-
making is a channel between input identities and output
identities, whose mutual information we seek to maximise.
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