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Multi-stage programming using typed code quotation is an established technique for writing optimizing code

generators with strong type-safety guarantees. Unfortunately, quotation in Haskell interacts poorly with type

classes, making it difficult to write robust multi-stage programs.

We study this unsound interaction and propose a resolution, staged type class constraints, which we formalize

in a source calculus 𝜆J⇒K that elaborates into an explicit core calculus 𝐹 JK. We show type soundness of both

calculi, establishing that well-typed, well-staged source programs always elaborate to well-typed, well-staged

core programs, and prove beta and eta rules for code quotations.

Our design allows programmers to incorporate type classes into multi-stage programs with confidence.

Although motivated by Haskell, it is also suitable as a foundation for other languages that support both

overloading and quotation.
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1 INTRODUCTION

Producing code with predictable performance is a difficult task that is greatly assisted by staging

annotations, a technique which has been extensively studied and implemented in a variety of
languages [Kiselyov 2014; Rompf and Odersky 2010; Taha and Sheard 2000] and used to eliminate
abstraction overhead in many domains [Jonnalagedda et al. 2014; Krishnaswami and Yallop 2019;
Schuster et al. 2020; Willis et al. 2020; Yallop 2017]. These annotations give programmers fine
control over performance by instructing the compiler to generate code in one stage of compilation
that can be used in another.
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The classic example of staging is power n k, where the value 𝑛𝑘 can be efficiently computed for
a fixed 𝑘 by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a fixed value at
compile time, it remains a value of type Int.

power :: Int → Int → Int

power 0 n = 1

power k n = n ∗ power (k − 1) n

qpower :: Int → Code Int → Code Int

qpower 0 qn = J 1 K

qpower k qn = J $(qn) ∗ $(qpower (k − 1) qn) K

Then in the definition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ∗ (n ∗ (n ∗ (n ∗ (n ∗ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int → Int

power5 n = $(qpower 5 J n K) -- power5 n = n ∗ n ∗ n ∗ n ∗ n ∗ 1

The code above is restricted to a fixed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the benefits of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a definition to be reused for any type that is qualified to be numeric:

npower :: Num a ⇒ Int → a → a

npower 0 n = 1

npower k n = n ∗ power (k − 1) n

qnpower :: Num a ⇒ Int → Code a → Code a

qnpower 0 qn = J 1 K

qnpower k qn = J $(qn) ∗ $(qnpower (k − 1) qn) K

Thanks to type class polymorphism, this works when n has any fixed type that satisfies the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ⇒ a → a

npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the definition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
qualified types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we offer the following contributions:

• We formalize a source calculus 𝜆J⇒K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (ğ3).

• We formalize a core calculus 𝐹 JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (ğ4). Splice environments, a key innovation

in 𝐹 JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from 𝜆J⇒K to 𝐹 JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (ğ5).
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• We prove key properties of our formalism: (a) 𝐹 JK enjoys type soundness (ğ4.4), (b) well-typed,
well-staged source programs always elaborate to well-typed, well-staged core programs, and

thus 𝜆J⇒K also enjoys type soundness (ğ5.4) and (c) splices and quotations are dual, building

on the axiomatic semantics of 𝐹 JK (ğ6).

ğ7 provides a detailed comparison of our work here to the current implementation of Template
Haskell in GHC. The full proofs of the stated lemmas and theorems are available in the appendix.
While this work has been motivated by Typed Template Haskell, we believe our work will be useful
to designers and implementors of other languages which combine similar features and share many
of the same challenges.

2 OVERVIEW

This section gives an overview of our work. We start by introducing the fundamental concepts of
multi-staged programming, in the context of Typed Template Haskell.

2.1 Multi-stage Programming

Multi-stage programming provides two standard staging annotations that allow construction and
combination of program fragments:

• A quotation expression J e K is a representation of the expression e as program fragment in a
future stage. If e :: a, then J e K :: Code a.

• A splice expression $(e) extracts the expression from its representation e. If e :: Code a, then
$(e) :: a. By splicing expressions inside quotations we can construct larger quotations from
smaller ones.

Given these definitions, it may seem that quotes and splices can be used freely so long as the
types align; well-typed problems don’t go wrong, as the old adage says. Unfortunately, things are
not so simple: type soundness in multi-staged programming also requires programs to be well-staged.

2.2 The Level Restriction

The definition of well-stagedness depends on the notion of a level. Levels indicate the evaluation
order of expressions, and well-stagedness ensures that program can be evaluated in the order of
their levels, so that an expression at a particular level can only be evaluated when all expressions
it depends on at previous levels have been evaluated. Formally, the level of an expression is an
integer given by the number of quotes that surround it, minus the number of splices. In other words,
starting from level zero, quotation increases the level of an expression while splicing decreases it.
The level of an expression indicates when the expression is evaluated: (1) programs of negative
levels are evaluated at compile time; (2) programs of level 0 are evaluated at runtime; and (3)
programs of positive levels are at future unevaluated stages.

In the simplest setting, a program is well-staged if each variable is used only at the level in which
it is bound (hereafter referred to as the level restriction). Using a variable in a different stage may
simply be impossible, or at least require special attention. The following three example programs
are all well-typed, but only the first, timely, is well-staged:

timely :: Code (Int → Int)

timely = J 𝜆x → x K

hasty :: Code Int → Int

hasty = 𝜆y → $(y)

tardy :: Int → Code Int

tardy = 𝜆z → J z K

In timely, the variable x is both introduced and used at level 1. (Similarly, in the well-staged example,
qpower , in the introduction, the variables qpower , k and qn are introduced and used at level 0.) In
the second program, hasty, the variable y is introduced at level 0, but used at level −1. Evaluating
the program would get stuck, because its value is not yet known at level −1. In the third program,
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tardy, the variable z is introduced at level 0, but used at level 1. Using a variable at a later stage in
this way requires additional mechanisms to persist its value from one stage to another.

Relaxing the level restriction. Designers of multi-stage languages have developed several mecha-
nisms for relaxing the level restriction to allow references to variables from previous stages [Hanada
and Igarashi 2014; Taha and Sheard 1997]. Lifting makes a variable available to future stages by
copying its value into a future-stage representation. Since lifting is akin to serialisation, it can be
done easily for first-order types such as strings and integers, but not higher-order types. Cross-stage
persistence (CSP) is more general than lifting: it supports embedding references to heap-resident
values into quotations. Since it does not involve serialisation, CSP also supports persisting non-
serialisable values such as functions and file handles. Path-based persistence is a restricted form
of CSP for top-level1 identifiers. Rather than persisting references to heap values, path-based
persistence stores identifiers themselves, which can be resolved in the same top-level environment
in future stages. For example, the top-level function power can be persisted in this way.
This work considers only path-based persistence. Fully-general CSP is limited to systems in

which all stages are evaluated in the same process, since it requires sharing of heaps between stages;
it is not available in systems such as Typed Template Haskell. Lifting is more broadly applicable,
but it is straightforward to add separately as a local rewriting of programs. For example, GHC
provides the Lift type class with a method lift, and instances of Lift for basic types like Int. Using
these facilities, the ill-staged tardy can be rewritten into the well-staged timelyLift:

class Lift a where

lift :: a → Code a

timelyLift :: Int → Code Int

timelyLift = 𝜆x → J $(lift x) K

2.3 Type Classes and the Level Restriction

The examples in the previous section demonstrate the importance of levels in a well-staged program
in the simplest setting. However, other features found in real-world languages sometimes interact
in non-trivial ways with multi-stage programming support. One such feature is type classes [Wadler
and Blott 1989], a structured approach to overloading. Unfortunately, naive integration of type
classes and staging poses a threat to type soundness. This section presents the problem, after a
brief introduction to type classes and their dictionary-passing elaboration.

Type classes and dictionary-passing elaboration. The following presents the elements of type
classes: the Show class offers an interface with one method show, the Show Int instance provides an
implementation of Show for the type Int with a primitive primShowInt, and the print function uses
the class method show; its type indicates that it can be used at any type a that has a Show instance.

class Show a where

show :: a → String

instance Show Int where

show = primShowInt

print :: Show a ⇒ a → String

print x = show x

Type classes do not have direct operational semantics; rather, they are implemented by dictionary-
passing elaboration into a simpler language without type classes (e.g. System F). After elaboration, a
type class definition becomes a dictionary (i.e. a record type with a field for each class member), an
instance becomes a value of the dictionary type, and each function that uses class methods acquires
an extra parameter for the corresponding dictionary:

data ShowDict a = ShowDict

{ show ′ :: a → String }

showInt = ShowDict

{ show ′
= primShowInt }

print ′ :: ShowDict a → a → String

print ′ dShow x = show dShow x

1Do not confuse this use of łtop-levelž with the staging level.
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The problem of staging type class methods. Constraints introduced by type classes have the
potential to break type soundness, as implicit dictionary passing may not adhere to the level
restriction. For example, in the following program, the class method show appears inside a quotation.
Note the change of the function return type from a → String to Code (a → String)2.

print1 :: Show a ⇒ Code (a → String)

print1 = J show K
(C1)

Is print1 well-staged? It appears so, since print1 only uses the top-level class method show, which
is path-based persisted. However, a subtle problem reveals itself after type class elaboration:

print1′ :: ShowDict a → Code (a → String)

print1′ dShow = J show dShow K

After elaboration, print1′ takes an additional dictionary argument dShow :: ShowDict a. Notice that
the dictionary variable dShow is introduced at level 0, but is used at level 1! Naively elaborating
without considering the levels of constraints has introduced a cross-stage reference, making print1
ill-staged. As ğ2.2 outlined, one possible remedy is to persist dShow between stages, a solution
once advocated by [Pickering et al. 2019]. Although dictionaries are typically higher-order, they
are ultimately constructed from path-persistable top-level values. However, the additional run-time
overhead associated with this approach has led its erstwhile advocates to abandon it as impractical.
In contrast, the following monomorphic definition of printInt remains well-staged even after

dictionary-passing elaboration into printInt ′, since the constraint is resolved to a global instance
showInt (which can be path-based persisted) rather than abstracted as a local variable. But of course
this version does not enjoy all the benefits of type classes.

printInt :: Code (Int → String)

printInt = J show K

printInt ′ :: Code (Int → String)

printInt ′ = J show showInt K
(C2)

The problem of splicing type class methods. The interaction of splicing and dictionary-passing
elaboration can also be subtle. In particular, splices that appear in top-level definitions may require
class constraints to be used at levels prior to the ones where they are introduced. Consider the
definition of topLift:

data C = C
topLift :: Lift C ⇒ C

topLift = $(lift C)

topLift ′ :: LiftDict C → C

topLift ′ dLift = $(lift dList C) (TS1)

As with C1, although topLift appears to be well-staged, elaboration reveals that it is not, since it
produces a future-stage reference inside the splice: the dictionary dLift is introduced at level 0 but
is used at level −1. Unlike the case of C1, there is no remedy here, and the code should be rejected,
as dLift is not known until runtime, and thus cannot be used in compile-time evaluation.

2.4 Staging Type Classes: An Exploration of the Design Space

Up to this point we have focused on the problems of type unsoundness arising from the interaction
between quotation/splicing and type classes. We now turn to an exploration of potential solutions.
Since there is little formal work in this area, our remarks here focus on designs that have been
implemented in GHC. This section discusses the problems with each of these designs, and ğ7
includes a more detailed comparison with GHC.

Delaying type class elaboration until splicing. One approach to resolving Example C1 is to delay
dictionary-passing elaboration until the program is spliced. With this approach, code values

2This example is an eta-reduced version of print1 = J 𝜆x → show x K. For simplicity, we omit the argument x.
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represent source programs rather than elaborated programs. For C1 this means that print1 is
not elaborated, and so the problem with its ill-staged elaboration print1′ does not arise. Instead,
splicing print1 first inserts its source code and then performs dictionary-passing elaboration, at
which point we can provide the dictionary as per normal.

universe :: String

universe = $(print1) 42

universe′ :: String

universe′ = show showInt 42

However, as Pickering et al. [2019] observe, not preserving dictionary information in quotations
can also threaten soundness. For example, the readInt function below uses the built-in function
read :: Read a ⇒ String → a, which converts a String into some Read instance (e.g. Int).

printInt :: Code (Int → String)

printInt = J show K

readInt :: Code (String → Int)

readInt = J read K

Like Example C2, we expect that the global instance readIntPrim can be used to resolve Read Int in
readInt. If so, then the following function composition would have a clear meaning, which trims
spacing around a string representing an integer by first reading it into an integer and then print it:

trim :: Code (String → String)

trim = J $(printInt) · $(readInt) K
(A1)

Unfortunately, if dictionary information is not preserved in quotations, and we only do dictionary-
passing elaboration when splicing trim, i.e., in $(trim), then any use of $(trim) would be rejected,
as its spliced result print · read is a typical example of an ambiguous type scheme [Jones 1993], i.e.,
print · read is of type (Show a, Read a) ⇒ Code (String → String), where the dictionary to be used
cannot be decided deterministically. Moreover, even when there is no such ambiguity, this approach
may still accidentally change the semantics of a program, for example when the definition site and
the splicing site have different instances3.

Excluding local constraints for top-level splices. One tempting solution to address the problem
of splicing-type-class-methods mentioned above (Example TS1) is to exclude local constraints
from the scope inside top-level splices. After all, top-level splices require compile time evaluation,
and local constraints will not be available during compile time. While this approach can correctly
reject TS1, it unfortunately cannot handle the combination of quotations and splices properly. In
particular, programs like the following may be unnecessarily rejected.

cancel :: Show a ⇒ a → String

cancel = $(J show K)
(A2)

In this case, the body of the top-level splice is a simple quotation of the show method. This method
requires an Show constraint which is provided by the context on cancel. The constraint is introduced
at level 0 and also used at level 0, as the splice and the quotation cancel each other out. It is therefore
perfectly fine to use the dictionary passed to cancel to satisfy the requirements of Show.

Impredicativity. Forthcoming versions of GHC are expected to feature impredicativity, allowing
type variables to be instantiated by polymorphic types [Serrano et al. 2020]. At a first glance,
impredicativity appears to resolve the difficulty; furthermore, it naturally extends to include other
features such as quantified constraints [Bottu et al. 2017].

For our example, impredicativity allows print to be given the following type, indicating that the
code returned is polymorphic in the Show instance:

3In GHC, this requires language pragmas for overlapping instances, which allows resolving class constraints using more

specific instances, and is not uncommon in practice. For example, a module can have both instance Eq [ Int ] and

instance Eq [a ], and the former will be used to resolve Eq [ Int ] , and the latter can resolve, for example, Eq [Bool ].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



Staging with Class 61:7

printImp :: Code (Show a ⇒ a → String)

printImp = J show K

At a small scale, this neatly solves the problem: the type indicates that the constraint Show a

elaborates to a level 1 parameter, making the generated code well-staged. However, in larger
examples, using impredicativity in this way severely limits the flexibility of staged functions. For
example, here is an alternative definition of qnpower using impredicativity:

qnpowerImp :: Int → Code (Num a ⇒ a) → Code (Num a ⇒ a)

qnpowerImp 0 qn = J 1 K

qnpowerImp k qn = J $(qn) ∗ $(qnpowerImp (k − 1) qn) K

As with printImp, the types indicate that qnpowerImp is well-staged: the positions of the Num a

constraints beneath Code indicate that they elaborate to level 1 parameters. Unfortunately, the type
of the parameter qn now places additional demands on callers. The unstaged polymorphic npower
function accepts an expression of any numeric type a as its second argument, and it would be
convenient for its staged counterpart to accept an expression of any future-stage numeric type
Code a. Instead, qnpowerImp demands an argument of type Code (Num a ⇒ a): even if it is called
at a monomorphic type such as Int, the argument must still have type Code (Num Int ⇒ Int). This
requirement has unfortunate effects on usability: such arguments cannot be of type Code Int, since
Code Int is not a subtype of Code (Num Int ⇒ Int) (in the latest GHC). This is a significant loss of
flexibility for callers. Further studies, beyond the scope of this paper, would be needed to support
such subtyping while preserving impredicativity. Moreover, the requirement also leads to reduced
control over generated code, which will be strewn with many additional dictionary abstractions
and applications in generated code involving type classes. It may be possible to eliminate some of
these in subsequent compiler passes but many of those passes are based on heuristics. Relying on
compiler optimizations does not produce predictable program performance: it is almost impossible
to tell by inspection how a program will be optimized.

2.5 Our Proposal: Staged Type Class Constraints

As we have seen, the interaction of staging and type-class elaboration is complicated, which cannot
be managed by simply imposing additional restrictions on either one. A targeted solution that
properly combines the two processes and restores type soundness is therefore needed.
Our proposal is to introduce staged type class constraints, a new constraint form CodeC C

indicating that the constraint C has been staged. That is, we can use the staged constraint CodeC C

to prove a constraint C in the next stage. With staged type class constraints, we can establish type
soundness by enforcing well-stageness of constraints and dictionaries, and thus ill-staged use of
constraints (e.g. print1 and topLift) can be correctly rejected. To illustrate the idea, let us reconsider
the problematic example print1 in C1. We rewrite the example to print2 with a staged type class
constraint in its new type signature as follows.

print2 :: CodeC (Show a) ⇒ Code (a → String) -- originally Show a ⇒ Code (a → String)

print2 = J show K
(S1)

This example illustrates the key idea of staged type class constraints. First, during typing, we
use the CodeC (Show a) constraint to resolve the Show a constraint raised by show. Notably, the
CodeC (Show a) constraint is introduced at level 0 but the Show a constraint is resolved at level 1.
That means, staged type classes have the static semantics that a constraint CodeC C at level n is

equivalent to a constraint C at level n + 1.
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Second, in order to elaborate the expression with dictionary-passing, we need a dictionary
representation of CodeC C. Fortunately, we already have all necessary machinery within the
language ś since dictionaries become regular data structures after elaboration, staging annotations
can effectively convert between a dictionary for CodeC C and a dictionary for C. That means,
staged type class constraints have the simple elaboration semantics that a dictionary for a constraint
CodeC C is a representation of the dictionary for a constraint C.

Applying this elaboration semantics to print2 produces the following code:

print2′ :: Code (ShowDict a) → Code (a → String)

print2′ cdShow = J show $(cdShow) K

The type Code (ShowDict a) is the elaboration of the constraint CodeC (Show a), and so cdShow is
the representation of a dictionary, and can be spliced inside the quote as the dictionary argument
to show. Crucially, the reference to cdShow is at the correct level, and so the program is type-safe.

The power function revisited. Recall the qnpower example in the introduction (ğ1):

qnpower :: Num a ⇒ Int → Code a → Code a

Just as print1 in Example C1, the definition had to be rejected because of the ill-stagedness of the
constraints. Using staged class constraints, we argue that the function power should instead have
the constraint CodeC (Num a), which then gets elaborated to Code (NumDict a):

qnpower :: CodeC (Num a) ⇒

Int → Code a → Code a

qnpower 0 cn = J 1 K

qnpower k cn =

J $(cn) ∗ $(qnpower (k − 1) cn) K

qnpower ′ :: Code (NumDict a) →

Int → Code a → Code a

qnpower ′ cdNum 0 cn = J 1 K

qnpower ′ cdNum k cn =

J (∗) $(cdNum) $(cn) $(qnpower (k − 1) cn) K

(S2)

The elaboration of npower5 then shows how C can be converted into CodeC C by quoting:

npower5 :: Num a ⇒ a → a

npower5 n = $(qnpower 5 J n K)

npower5 ′ :: NumDict a → a → a

npower5 ′ dNum n = $(qnpower ′ J dNum K 5 J n K)

In this case, by quoting dNum, the argument to qnpower ′ is a representation of a dictionary (i.e.,
J dNum K :: Code (NumDict a)) as will be required by the elaborated type of CodeC (Num a).
Moreover, all variables in the definitions are well-staged.

2.6 Staging with Levels at Runtime

Besides formalizing staged type class constraints, our work also offers a guideline for implementa-
tion. In order to provide a robust basis for real-world languages such as Typed Template Haskell,
we want our formalism to be easy to implement and to stay close to existing implementations.

One question, then, is how to evaluate staging programs. The level of an expression, described
earlier, indicates when the expression is evaluated: expressions with negative levels are evaluated at
compile time, those with level 0 at runtime, and those with positive levels in future stages. Ensuring
a well-staged evaluation order involves access the level information during evaluation. For example,
evaluating the following expression at runtime (level 0) involves evaluating e1 and e3, but not e2:

(e1, J e2 $(e3) K)

This is often done by level-indexing the reduction relation [Calcagno et al. 2003; Taha and Sheard
1997]. For example, during evaluation, we can traverse the quotation J e2 $(e3) K, modifying the
level (initially 0) when quotations or splices are encountered, looking for expressions of level 0 to
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be difficult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments

We present a formalism that is easy to implement and reason about, by introducing quotations

with splice environments in our core calculus 𝐹 JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J𝑒K𝜙 , where 𝑒 is a quoted expression and 𝜙 the
splices it contains. 𝜙 consists of a list of splice variables, with each splice variable 𝑠 represented as

a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in 𝐹 JK

(assuming 𝑒1, 𝑒2 and 𝑒3 contain no other splices).

(𝑒1, J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 )

There are several points to note. First, the splice $(𝑒3) is replaced by a fresh splice variable 𝑠 ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,

so that quotations no longer contain splices; in fact, 𝐹 JK has no splices, only splice environments.
Second, the splice variable 𝑠 captures four elements:

(1) the spliced expression (𝑒3).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 𝑒3 is of level 0.
(4) the type (𝜏) after splicing. If 𝑒3 is of type Code𝜏 then $(𝑒3) is of type 𝜏 .

Those elements imply that the splice variable 𝑠 , representing $(𝑒3), is at level 1 and of type 𝜏 .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.
Now evaluation can be described straightforwardly, without the need to track levels or inspect

quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J𝑒K𝜙 , rather than inspecting 𝑒 , it evaluates its splice environments 𝜙 , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 𝑒1, then proceeds to the quotation J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 and moves to its splice

environment • ⊢0 𝑠 : 𝜏 = 𝑒3, which in turn evaluates 𝑒3. As this description makes clear, evaluating
the expression evaluates 𝑒1 and 𝑒3 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice definitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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top-level splices. Since splices of negative levels are exactly those expressions that are evaluated at
compile-time, we lift the corresponding splice environments to top-level as splice definitions

spdef • ⊢−1 𝑠 : 𝜏 = 𝑒

and put them before the rest of the program. This also gives meaning to compile-time evaluation in
our formalism, where it is modeled using top-level splice definitions, whose evaluation happens
before the rest of the program. We might also imagine a post-elaboration process which partially
evaluates a program to a residual by computing and removing these splice definitions. Such a
process can be easily implemented separately, so we do not include it in the formalism.

3 𝜆J⇒K: MULTI-STAGE PROGRAMMING WITH TYPE CLASSES

We present 𝜆J⇒K, which has been designed to incorporate the essential features of a language with
staging and qualified types, with the key novelty in the formalism of staged type class constraints.

3.1 Syntax

Figure 1 presents the syntax of our source calculus 𝜆J⇒K. The syntax of type classes follows closely
that of Bottu et al. [2017]; Chakravarty et al. [2005]; Jones [1994].
A source program pgm is a sequence of top-level definitions D, type class declarations C, and

instance definitions I, followed by an expression 𝑒 . Top-level definitions D (k = 𝑒) model path-
based cross-stage persistence: only variables previously defined in a top-level definition can be
referenced at arbitrary levels. The syntax of type class declarations C is largely simplified to avoid
clutter in the presentation. In particular, type class definitions TC awhere {k : 𝜌} have precisely

one method and no superclasses. Instance definitions 𝐶i
i
⇒ TC𝜏 where {k = 𝑒} are permitted

to have an instance context, which is interpreted that 𝜏 is an instance of the type class TC with

the method implementation k = 𝑒 , if 𝐶i
𝑖
holds. The expression language 𝑒 is a standard 𝜆-calculus

extended with multi-stage annotations, and includes literals 𝑖 , top-level variables k, variables x,
lambdas 𝜆x : 𝜏 .𝑒 , applications 𝑒1 𝑒2, as well as quotations J𝑒K and splicing $𝑒 .
Following Jones [1994], the type language distinguishes between monotypes 𝜏 , qualified types

𝜌 , and polymorphic types 𝜎 . Monotypes 𝜏 include type variables a, the integer type Int, function
types 𝜏1 → 𝜏2 and code representation Code𝜏 . Qualified types 𝜌 qualify over monotypes with a list
of constraints (𝐶 ⇒ 𝜌). Polymorphic types 𝜎 are qualified types with universal quantifiers (∀a.𝜎).
Finally, type class constraints are normal constraints TC𝜏 , or staged constraints CodeC𝐶 .
The program theory Θ is a context of type information for names introduced by top-level

definitions k : 𝜎 , and the type class axioms introduced by instance declarations ∀ai
i .𝐶j

j
⇒ 𝐶 .

The context Γ is used for locally introduced information, including value variables x : (𝜏, 𝑛), type
variables a, and local type class axioms (𝐶,𝑛). The context keeps track of the (integer) level 𝑛 that
value and constraint variables are introduced at; the typing rules will ensure that the variables are
only used at the current level.

3.2 Typing Expressions

Figure 1 also presents the typing rules for expressions. The judgment Θ; Γ ⊢𝑛 𝑒 : 𝜎 says that under
the program theory Θ, the context Γ, and the current level 𝑛, the expression 𝑒 has type 𝜎 . The
gray parts are for elaboration (ğ5) and can be ignored until then.

Most typing rules are standard [Bottu et al. 2017; Chakravarty et al. 2005], except that rules are
indexed by a level. As emphasized before, level-indexed typing rules ensure that variables and
constraint can only be used at the level they are introduced. Literals and top-level variables can
be used at any level (rules s-lit and s-kvar), as they can be persisted. Importantly, rule s-var
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program pgm F def D; pgm | classC; pgm | instI; pgm | 𝑒

definition D F k = 𝑒

class C F TC awhere {k : 𝜌}

instance I F 𝐶i
i
⇒ TC𝜏 where {k = 𝑒}

expression 𝑒 F 𝑖 | k | x | 𝜆x : 𝜏 .𝑒 | 𝑒1 𝑒2 | J𝑒K | $𝑒

monotype 𝜏 F a | Int | 𝜏1 → 𝜏2 | Code𝜏
qualified type 𝜌 F 𝐶 ⇒ 𝜌 | 𝜏

polymorphic type 𝜎 F ∀a.𝜎 | 𝜌

constraint 𝐶 F TC𝜏 | CodeC𝐶

program context Θ F • | Θ, k : 𝜎 | Θ,∀ai
i .𝐶j

j
⇒ 𝐶

context Γ F • | Γ, x : (𝜏, 𝑛) | Γ, a | Γ, (𝐶,𝑛)

Θ; Γ ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙 (Typing expressions)

s-lit

Θ; Γ ⊢𝑛 𝑖 : Int { 𝑖 | •

s-kvar

k : 𝜎 ∈ Θ

Θ; Γ ⊢𝑛 k : 𝜎 { k | •

s-var

x : (𝜏, 𝑛) ∈ Γ

Θ; Γ ⊢𝑛 x : 𝜏 { x | •
s-abs

Θ; Γ, x : (𝜏1, 𝑛) ⊢
𝑛 𝑒 : 𝜏2 { 𝑒 | 𝜙1

Γ ⊢ 𝜏1 { 𝜏 ′1 𝜙1 ++ x : (𝜏 ′1, 𝑛) { 𝜙2

Θ; Γ ⊢𝑛 𝜆x : 𝜏1 .𝑒 : 𝜏1 → 𝜏2 { 𝜆x : 𝜏 ′1 .𝑒 | 𝜙2

s-app

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 { 𝑒1 | 𝜙1

Θ; Γ ⊢𝑛 𝑒2 : 𝜏1 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2 { 𝑒1 𝑒2 | 𝜙1, 𝜙2
s-tabs

Θ; Γ, a ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙1 𝜙1 ++ a { 𝜙2

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { Λa.𝑒 | 𝜙2

s-tapp

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜎 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′

Θ; Γ ⊢𝑛 𝑒 : 𝜎 [a ↦→ 𝜏] { 𝑒 𝜏 ′ | 𝜙
s-cabs

Θ; Γ, 𝑒𝑣 : (𝐶,𝑛) ⊢𝑛 𝑒 : 𝜌 { 𝑒 | 𝜙1 Γ ⊢ 𝐶 { 𝜏 𝜙1 ++ 𝑒𝑣 : (𝜏, 𝑛) { 𝜙2 fresh 𝑒𝑣

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝜆𝑒𝑣 : 𝜏 .𝑒 | 𝜙2
s-capp

Θ; Γ ⊢𝑛 𝑒 : 𝐶 ⇒ 𝜌 { 𝑒1 | 𝜙1 Θ; Γ |=𝑛 𝐶 { 𝑒2 | 𝜙2

Θ; Γ ⊢𝑛 𝑒 : 𝜌 { 𝑒1 𝑒2 | 𝜙1, 𝜙2
s-qote

Θ; Γ ⊢𝑛+1 𝑒 : 𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛 J𝑒K : Code𝜏 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

s-splice

Θ; Γ ⊢𝑛−1 𝑒 : Code𝜏 { 𝑒 | 𝜙 Γ ⊢ 𝜏 { 𝜏 ′ fresh 𝑠

Θ; Γ ⊢𝑛 $𝑒 : 𝜏 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 ′ = 𝑒)

Fig. 1. Syntax and typing rules of 𝜆J⇒K

says that if a variable x is introduced at level 𝑛, then it is well-typed at level 𝑛. Rules s-cabs and
s-capp handle generalization and instantiation of type class constraints. If an expression 𝑒 can be
type-checked under a local type class assumption 𝐶 , then 𝑒 has a qualified type 𝐶 ⇒ 𝜌 . Otherwise,
if a constraint 𝐶 can be resolved (ğ3.3), then an expression of type 𝐶 ⇒ 𝜌 can be typed 𝜌 .
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Γ ⊢ 𝜎 { 𝜏 (Well-formed types)

s-k-tvar

a ∈ Γ

Γ ⊢ a { a

s-k-arrow

Γ ⊢ 𝜏1 { 𝜏1 Γ ⊢ 𝜏2 { 𝜏2

Γ ⊢ 𝜏1 → 𝜏2 { 𝜏1 → 𝜏2

s-k-carrow

Γ ⊢ 𝐶 { 𝜏1 Γ ⊢ 𝜌 { 𝜏2

Γ ⊢ 𝐶 ⇒ 𝜌 { 𝜏1 → 𝜏2
s-k-forall

Γ, a ⊢ 𝜎 { 𝜏

Γ ⊢ ∀a.𝜎 { ∀a.𝜏

s-k-code

Γ, a ⊢ 𝜏 { 𝜏 ′

Γ ⊢ Code𝜏 { Code𝜏 ′

Γ ⊢ 𝐶 { 𝜏 (Well-formed constraints)

s-k-tc

TC awhere {k : 𝜌} Γ ⊢ 𝜌 [a ↦→ 𝜏] { 𝜏 ′

Γ ⊢ TC𝜏 { 𝜏 ′

s-k-codec

Γ ⊢ 𝐶 { 𝜏

Γ ⊢ CodeC𝐶 { Code𝜏

Θ; Γ |=𝑛 𝐶 { 𝑒 | 𝜙 (Constraint Resolution)

s-solve-global

ev : ∀a.𝐶i
i
⇒ 𝐶 ∈ Θ Γ ⊢ 𝜏 { 𝜏 ′ Θ; Γ |=𝑛 𝐶i [a ↦→ 𝜏] { 𝑒i | 𝜙 i

i

Θ; Γ |=𝑛 𝐶 [a ↦→ 𝜏] { ev 𝜏 ′ 𝑒i
i | 𝜙 i

i

s-solve-local

𝑒𝑣 : (𝐶,𝑛) ∈ Γ

Θ; Γ |=𝑛 𝐶 { 𝑒𝑣 | •
s-solve-incr

Θ; Γ |=𝑛−1 CodeC𝐶 { 𝑒 | 𝜙 Γ ⊢ 𝐶 { 𝜏 fresh 𝑠

Θ; Γ |=𝑛 𝐶 { 𝑠 | 𝜙, (• ⊢𝑛−1 𝑠 : 𝜏 = 𝑒)

s-solve-decr

Θ; Γ |=𝑛+1 𝐶 { 𝑒 | 𝜙

Θ; Γ |=𝑛 CodeC𝐶 { J𝑒K𝜙.𝑛 | ⌊𝜙⌋𝑛

Fig. 2. Well-formed types, well-formed constraints and constraint resolution in 𝜆J⇒K

Rules s-qote and s-splice type-check staging annotations. In particular, rule s-qote increases
the level by one and gives J𝑒K type Code𝜏 when 𝑒 has type 𝜏 , while rule s-splice decreases the
level by one and gives 𝑒 type 𝜏 when $𝑒 has type Code𝜏 .

Well-formed types and constraints. Typing rules (e.g., rule s-abs) refer to well-formed rules for
types and for constraints as given in Figure 2. The type well-formedness judgment Γ ⊢ 𝜎 simply
checks that all type variables are well-scoped. The constraint well-formedness constraint Γ ⊢ 𝐶

checks that the class method type is well-formed after substituting the variable a with 𝜏 .

3.3 Constraint Resolution

The typing rule (rule s-capp) also makes use of constraint resolution, whose rules are given at
the bottom of Figure 2. The judgment Θ; Γ |=𝑛 𝐶 reads that under the program theory Θ, the
context Γ, and the current level 𝐶 , the type class constraint 𝐶 can be resolved. The definition of

constraint resolution in 𝜆J⇒K has two key novelties: (1) level-indexing, which allows us to guarantee
well-stagedness of constraints; (2) resolution of staged type class constraints.

Rule s-solve-global resolves a type class constraint using an instance definition. If Θ contains

the instance definition ∀a.𝐶i
i
⇒ 𝐶 , we can resolve 𝐶 [a ↦→ 𝜏] by resolving 𝐶i [a ↦→ 𝜏]

𝑖
. Rule s-

solve-local resolves a constraint using the local type class axiom.
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Θ ⊢ pgm : 𝜎 (Typing programs)

s-pgm-def

Θ1 ⊢ D ⊣ Θ2 Θ2 ⊢ pgm : 𝜎

Θ1 ⊢ def D; pgm : 𝜎

s-pgm-cls

Θ1 ⊢ C ⊣ Θ2 Θ2 ⊢ pgm : 𝜎

Θ1 ⊢ classC; pgm : 𝜎

s-pgm-inst

Θ1 ⊢ I ⊣ Θ2 Θ2 ⊢ pgm : 𝜎

Θ1 ⊢ instI; pgm : 𝜎

s-pgm-expr

Θ; • ⊢0 𝑒 : 𝜎 { 𝑒 | 𝜙 • ⊢ 𝜎 { 𝜏 𝑒 : 𝜏 ⊢−1 𝜙 { 𝜌gm

Θ ⊢ 𝑒 : 𝜎 { 𝜌gm

Θ1 ⊢ D ⊣ Θ2 (Typing definitions)

s-def

Θ; • ⊢0 𝑒 : 𝜎

Θ ⊢ k = 𝑒 ⊣ Θ, k : 𝜎

Θ1 ⊢ C ⊣ Θ2 (Typing class declarations)

s-cls

a ⊢ 𝜌

Θ ⊢ TC awhere {k : 𝜌} ⊣ Θ, k : ∀a.TC a ⇒ 𝜌

Θ1 ⊢ I ⊣ Θ2 (Typing class instances)

s-inst

TC awhere {k : 𝜌}

bj
j
= ftv (𝜏) bj

j
⊢ 𝐶i

i

Θ; bj
j
, (𝐶i, 0)

i
⊢0 𝑒 : 𝜌 [a ↦→ 𝜏]

Θ ⊢ 𝐶i
i
⇒ TC𝜏 where {k = 𝑒} ⊣ Θ,∀bj

j
.𝐶i

i
⇒ TC𝜏

Fig. 3. Program typing in 𝜆J⇒K

Rules s-solve-decr and s-solve-incr are specific to our system. In particular, rule s-incr says
that a staged type class constraint CodeC𝐶 at level 𝑛 − 1 can be used to resolve 𝐶 at level 𝑛, which
is essentially what enables us to have constraint inside quotations. Similarly, rule s-decr says that
a normal type class constraint 𝐶 at level 𝑛 + 1 can be used to resolve CodeC𝐶 at level 𝑛. We can
thus use these two rules to convert back and forth between CodeC𝐶 and 𝐶 .

Example 3.1 (𝜆J⇒K typing). Let us illustrate the typing rules and the constraint resolution rules by
revisiting the example J show K (Example S1). Below we give its typing derivation. For this example
we assume the primitive type String, and the program environment Θ to contain the type of show.

Θ = show : ∀a.Show a ⇒ a → String

Γ = a, (CodeC (Show a), 0)

show : ∀a.Show a ⇒ a → String ∈ Θ

Θ; Γ ⊢1 show : ∀a.Show a ⇒ a → String
s-kvar

Θ; Γ ⊢1 show : Show a ⇒ a → String
s-tapp

(CodeC (Show a), 0) ∈ Γ

Θ; Γ |=0 CodeC (Show a)
s-solve-local

Θ; Γ |=1 Show a
s-solve-incr

Θ; Γ ⊢1 show : (a → String)
s-capp

Θ; Γ ⊢0 JshowK : Code (a → String)
s-qote

Θ; a ⊢0 JshowK : CodeC (Show a) ⇒ Code (a → String)
s-cabs

Θ; • ⊢0 JshowK : ∀a.CodeC (Show a) ⇒ Code (a → String)
s-tabs

Let us go through the derivation bottom-up. First, by applying rules s-tabs and s-cabs, we introduce
the type variable a and the staged type class constraint CodeC (Show a) at level 0 into the context.
Then by rule s-qote, our goal becomes Θ; Γ ⊢1 show : (a → String) at level 1. At this point,
rule s-kvar allows us to use show from Θ at level 1, but we need to further apply rule s-tapp and
s-capp, and the latter requires us to prove Show a at level 1. To this end, rule s-solve-local first
gets CodeC Show a at level 0, and rule s-solve-incr then converts it into Show a at level 1.
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3.4 Program Typing

As we have seen from the syntax, a program is a sequence of top-level definitions, class and
instance declarations followed by an expression. Figure 3 presents the typing rules for programs.
The judgment Θ ⊢ pgm : 𝜎 reads that under the program theory Θ, the source program pgm has
type 𝜎 . Most rules are standard. Top-level definitions (rule s-pgm-def) and declaration forms (rules s-
pgm-cls and s-pgm-inst) extend the program theory Θ which is used to type-check subsequent
definitions. Rule s-pgm-expr makes it clear that the top-level of the program is level 0 and that the
expression is checked in an empty local environment.
Rules s-def, s-cls, and s-inst type-check top-level definitions, class and instance declarations,

respectively. Rule s-def extends the list of top-level definitions available at all stages. Rule s-cls
extends the program theory with the qualified class method. Rule s-inst checks that the class
method is of the type specified in the class definition.

4 𝐹 JK: MULTI-STAGE CORE CALCULUS WITH SPLICE ENVIRONMENTS

We describe an explicitly typed core language 𝐹 JK, which extends System F with quotations, splice

environments and top-level splice definitions. 𝐹 JK does not contain splices themselves as they are
modeled using the splice environments, which are attached to quotations, and top-level splice

definitions. As such, quotations can be considered opaque until spliced, and 𝐹 JK serves as a suitable
compilation target for multi-staging programming.

4.1 Syntax

The syntax for 𝐹 JK is presented at the top of Figure 4. To reduce notational clutter, we reuse notation

from 𝜆J⇒K for expressions and types, making it clear from the context which calculus we refer to.
A program (𝜌gm) is a sequence of top-level definitions (D) and top-level splice definitions (S)

followed by an expression (𝑒). Top-level definitions k : 𝜏 = 𝑒 are the same as for 𝜆J⇒K, except

that, since 𝐹 JK is explicitly typed, k is associated with its type 𝜏 . There is no syntax for type
classes or instances, which will be represented using top-level definitions after dictionary-passing
elaborations. Top-level splice definitions Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 are used to support compile-time evaluation,
where the splice variable 𝑠 captures the local type environment Δ, the level 𝑛, the type after splicing
𝜏 , and the expression to be spliced 𝑒 . As we will see, the typing rules will ensure that that expression
𝑒 has type Code𝜏 at level 𝑛 under type context Δ. The purpose of the environment Δ is to support
open code representations which lose their lexical scoping when floated out from the quotation.
Expressions 𝑒 include literals 𝑖 , top-level variables k, splice variables 𝑠 , variables x, lambdas

𝜆x : 𝜏 .𝑒 , applications 𝑒1 𝑒2, type abstractions Λa.𝑒 and type applications 𝑒 𝜏 , and quotations with
splice environment J𝑒K𝜙 , which are quotations with an associated splice environment. The splice
environment 𝜙 is essentially a list of splice definitions (Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒), which binds a splice variable
𝑠 for each splice point within the quoted expression. A splice point is where the result of evaluating
a splice will be inserted. One example we have seen from ğ2.7 is that the expression J e2 $(e3) K can
be represented in 𝐹 JK as J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 which, when spliced, will insert the result of splicing 𝑒3 in the
place of the splice variable 𝑠 .
The program context Θ records the type of top-level definitions k : 𝜏 and top-level splice

definitions 𝑠 : (Δ, 𝜏, 𝑛). We distinguish between two type contexts Δ and Γ, where Γ is Δ extended
with types for splice variables. The syntax distinction makes it clear that splice definitions (S) and
environments (𝜙) only capture Δ, which are type contexts elaborated from the source language
and so contain no splice variables.
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program 𝜌gm F def D; 𝜌gm | spdef S; 𝜌gm | 𝑒 : 𝜏

definition D F k : 𝜏 = 𝑒

splice definition S F Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒

expression 𝑒 F 𝑖 | k | 𝑠 | x | 𝜆x : 𝜏 .𝑒 | 𝑒1 𝑒2 | Λa.𝑒 | 𝑒 𝜏 | J𝑒K𝜙
splice environment 𝜙 F • | 𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒

type 𝜏 F a | Int | 𝜏1 → 𝜏2 | ∀a.𝜏 | Code𝜏
program context Θ F • | Θ, k : 𝜏 | Θ, 𝑠 : (Δ, 𝜏, 𝑛)

context Δ F • | Δ, x : (𝜏, 𝑛) | Δ, a

Γ F • | Γ, x : (𝜏, 𝑛) | Γ, a | Γ, 𝑠 : (Δ, 𝜏, 𝑛)

Θ ⊢ 𝜌gm (Typing programs)

c-pgm-def

Θ1 ⊢ D ⊣ Θ2 Θ2 ⊢ 𝜌gm

Θ1 ⊢ def D; 𝜌gm

c-pgm-spdef

Θ1 ⊢ S ⊣ Θ2 Θ2 ⊢ 𝜌gm

Θ1 ⊢ spdef S; 𝜌gm

c-pgm-expr

Θ; • ⊢0 𝑒 : 𝜏

Θ ⊢ 𝑒 : 𝜏

Θ1 ⊢ D ⊣ Θ2 (Typing definitions)

c-def

Θ; • ⊢0 𝑒 : 𝜏

Θ ⊢ k : 𝜏 = 𝑒 ⊣ Θ1, k : 𝜏

Θ1 ⊢ S ⊣ Θ2 (Typing splice definitions)

c-spdef

Θ;Δ ⊢𝑛 𝑒 : Code𝜏 Δ ¤> 𝑛

Θ ⊢ Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ⊣ Θ, 𝑠 : (Δ, 𝜏, 𝑛 + 1)

Θ; Γ ⊢𝑛 𝑒 : 𝜏 (Typing expressions)

c-lit

Θ; Γ ⊢𝑛 𝑖 : Int

c-var

x : (𝜏, 𝑛) ∈ Γ

Θ; Γ ⊢𝑛 x : 𝜏

c-kvar

k : 𝜏 ∈ Θ

Θ; Γ ⊢𝑛 k : 𝜏

c-svar

𝑠 : (Δ, 𝜏, 𝑛) ∈ Γ Δ ⊆ Γ

Θ; Γ ⊢𝑛 𝑠 : 𝜏
c-top-svar

𝑠 : (Δ, 𝜏, 𝑛) ∈ Θ Δ ⊆ Γ

Θ; Γ ⊢𝑛 𝑠 : 𝜏

c-abs

Θ; Γ, x : (𝜏1, 𝑛) ⊢
𝑛 𝑒 : 𝜏2

Θ; Γ ⊢𝑛 𝜆x : 𝜏1.𝑒 : 𝜏1 → 𝜏2
c-app

Θ; Γ ⊢𝑛 𝑒1 : 𝜏1 → 𝜏2 Θ; Γ ⊢𝑛 𝑒2 : 𝜏1

Θ; Γ ⊢𝑛 𝑒1 𝑒2 : 𝜏2

c-tabs

Θ; Γ, a ⊢𝑛 𝑒 : 𝜏

Θ; Γ ⊢𝑛 Λa.𝑒 : ∀a.𝜏

c-tapp

Θ; Γ ⊢𝑛 𝑒 : ∀a.𝜏2

Θ; Γ ⊢𝑛 𝑒 𝜏1 : 𝜏2 [a ↦→ 𝜏1]
c-qote

Θ; Γ ⊢𝑛 𝜙 Θ; Γ, 𝜙Γ ⊢𝑛+1 𝑒 : 𝜏

Θ; Γ ⊢𝑛 J𝑒K𝜙 : Code𝜏
𝜙Γ converts 𝜙 into a context.

•Γ = •

(𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒)Γ = 𝜙Γ, 𝑠 : (Δ, 𝜏, 𝑛 + 1)

Θ; Γ ⊢𝑛 𝜙 ≜ Θ; Γ ⊢ 𝜙 ∧ 𝜙 � 𝑛 Θ; Γ ⊢ 𝜙 (Typing splice environments)

c-s-empty

Θ; Γ ⊢ •

c-s-cons

Θ; Γ ⊢ 𝜙 Θ; Γ,Δ ⊢𝑛 𝑒 : Code𝜏 Δ ¤> 𝑛

Θ; Γ ⊢ 𝜙, (Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒)

Fig. 4. Syntax and typing in 𝐹 JK

4.2 Typing Rules

Figure 4 presents the typing rules for 𝐹 JK. The judgment Θ ⊢ 𝜌gm type-checks a core program. As
before, top-level definitions (rule c-pgm-def) and top-level splice definitions (rule c-pgm-spdef)
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extend the program theory Θ which is used to type-check subsequent definitions. Rule c-pgm-expr
type-checks the expression.

Rule c-spdef checks top-level splice definitions Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 by checking that 𝑒 has type Code𝜏
at level 𝑛 under the current program context Θ and the context Δ. Notice that the program context
Θ is extended with 𝑠 : (Δ, 𝜏, 𝑛 + 1). The level of 𝑠 is 𝑛 + 1 as it represents the spliced expression. In
the example of J𝑒2 𝑠K•⊢0𝑠 :𝜏=𝑒3 which expresses J e2 $(e3) K, the splice variable 𝑠 stands for $(e3). The
precondition Δ ¤> 𝑛 ensures that all variables in Δ have levels greater than 𝑛 (ğ4.4.1). We use dotted
binary operators (e.g., ¤>, � etc) to indicate level comparison.
The expression typing rules for the core expressions are for the most part the same as those in

the source language. One observation is that since the language does not contain splicings, the
level during typing can only increase (when typing quotations in rule c-qote) but never decrease.
Rules c-svar and c-top-svar retrieve the type of splice variables from the context. Note that,

as with expression variables, splice variables must be used at the level where they are introduced.
Moreover, the local type context Δ captured by 𝑠 must be a subset of the current type context Γ
so that all free variables in 𝑒 remain well-typed after substituting 𝑠 with 𝑒 . Γ may contain more
variables, including splice variables that are not in Δ.

Rule c-qote, which type-checks quotations with splice environments, is of particular interest.
First, it checks that a splice environment is well-typed by the judgment Θ; Γ ⊢𝑛 𝜙 , which is based
on the judgment Θ; Γ ⊢ 𝜙 but in addition requires 𝜙 to contain only splice variables of level 𝑛
(ğ4.4.1). An empty splice environment is always well-typed (rule c-s-empty). Otherwise the splice
environment is well-typed if each of definition is well-typed (rule c-s-cons), where the context Γ is
extended with the local type context Δ to type-check 𝑒 .
After type-checking 𝜙 , rule c-qote converts the splice environment 𝜙 into a list of splice

variables 𝜙Γ . The definition of 𝜙Γ is straightforward and is given in the same figure. Then, rule c-

qote adds all those splice variables 𝜙Γ into the context Γ, as they may be used inside 𝑒 . One way
to think about splice environments is that they attach splice variable bindings to the quotation
whose body is 𝑒 . And thus their concrete names do not matter and we can consider quotations
equivalent up to alpha-renaming, e.g., J𝑠KΔ⊢𝑛𝑠 :𝜏=𝑒1 =𝛼 J𝑠 ′KΔ⊢𝑛𝑠′:𝜏=𝑒1 . Finally, the rule type-checks 𝑒 at
level 𝑛 + 1, and concludes with the type Code𝜏 .

4.3 Dynamic Semantics

Figure 5 presents the definition of values and dynamic semantics in 𝐹 JK. Note that evaluation is not
level-indexed, as splice environments make the evaluation order of the core calculus evident.
Values 𝑣 include literals 𝑖 , lambdas 𝜆x : 𝜏 .𝑒 , type abstractions Λa.𝑒 , and quotations with splice

environments J𝑒K𝜙𝑣
. Notably, quotation values (J𝑒K𝜙𝑣

) can quote arbitrary expressions (𝑒), but
require the splice environment to be a value (𝜙𝑣). A splice environment value 𝜙𝑣 simply requires all
bindings to be values (i.e. Δ ⊢𝑛 𝑠 : 𝜏 = 𝑣). As we will see from the dynamic semantics shortly, this
avoids the need to look inside quotations, as the splice environment corresponds exactly to the
splices inside quotations that need to be evaluated.
The program evaluation judgment (𝜌gm1 −→ 𝜌gm2) evaluates declarations in turn from top to

bottom. Top-level definitions are evaluated (rule ce-pgm-def) to values and substituted into the
rest of the program (rule ce-pgm-dbeta). Similarly, rule ce-pgm-spdef evaluates a top-level splice
definition to a value of the form J𝑒K𝜙 . We must then insert splices back into the program, which is
done in rule ce-pgm-spbeta by substituting 𝑠 with [𝜙𝑣]𝑒 . The notation [𝜙𝑣]𝑒 , defined at the top of
the figure, further inserts splices in 𝜙𝑣 back into the expression 𝑒 . To understand the process, let us
first consider the case when 𝜙𝑣 is empty, giving us [•]𝑒 = 𝑒 , and suppose 𝑛 = −1 then we have:

spdef Δ ⊢−1 𝑠 : 𝜏 = J𝑒K•; 𝜌gm −→ 𝜌gm[𝑠 ↦→ 𝑒]
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value 𝑣 F 𝑖 | 𝜆x : 𝜏 .𝑒 | Λa.𝑒 | J𝑒K𝜙𝑣

splice environment value 𝜙𝑣 F • | 𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑣

[𝜙𝑣]𝑒 inserts splices in 𝜙𝑣 back into 𝑒 .
[•]𝑒 = 𝑒

[𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒 ′K𝜙𝑣
′]𝑒 = [𝜙𝑣] (𝑒 [𝑠 ↦→ [𝜙𝑣

′]𝑒 ′])

𝜌gm1 −→ 𝜌gm2 (Program reduction)

ce-pgm-def

D −→ D ′

def D; 𝜌gm −→ def D ′; 𝜌gm

ce-pgm-dbeta

def k : 𝜏 = 𝑣 ; 𝜌gm −→ 𝜌gm[k ↦→ 𝑣]

ce-pgm-expr

𝑒 −→ 𝑒 ′

𝑒 : 𝜏 −→ 𝑒 ′ : 𝜏
ce-pgm-spdef

S −→ S′

spdef S; 𝜌gm −→ spdef S′; 𝜌gm

ce-pgm-spbeta

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙𝑣
; 𝜌gm −→ 𝜌gm[𝑠 ↦→ ([𝜙𝑣]𝑒)]

D1 −→ D2 (Definition reduction)

ce-def

𝑒 −→ 𝑒 ′

k : 𝜏 = 𝑒 −→ k : 𝜏 = 𝑒 ′

S1 −→ S2 (Splice definition reduction)

ce-spdef

𝑒 −→ 𝑒 ′

Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′

𝑒1 −→ 𝑒2 (Reduction)ce-beta

(𝜆x : 𝜏 .𝑒1) 𝑒2 −→ 𝑒1 [x ↦→ 𝑒2]

ce-tbeta

(Λa.𝑒) 𝜏 −→ 𝑒 [a ↦→ 𝜏]
ce-app

𝑒1 −→ 𝑒 ′1

𝑒1 𝑒2 −→ 𝑒 ′1 𝑒2

ce-tapp

𝑒 −→ 𝑒 ′

𝑒 𝜏 −→ 𝑒 ′ 𝜏

ce-qote

𝜙 −→ 𝜙 ′

J𝑒K𝜙 −→ J𝑒K𝜙′

𝜙1 −→ 𝜙2 (Splice environment reduction)

ce-s-head

𝜙 −→ 𝜙 ′

𝜙,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙 ′,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒

ce-s-tail

𝑒 −→ 𝑒 ′

𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 −→ 𝜙𝑣,Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 ′

Fig. 5. Values and dynamic semantics in 𝐹 JK

Essentially, Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K• corresponds to the expression $J𝑒K in the source level, whose splicing
result is bound to 𝑠 . The position of 𝑠 inside 𝜌gm indicates where the source program $J𝑒K was
originally found, and by substituting 𝑠 with 𝑒 we successfully insert the splicing result back into
that position. Rule ce-pgm-spbeta deals with the more general case where 𝜙𝑣 can be non-empty,
which corresponds to nested splices, i.e., the source expression 𝑒 (as in $J𝑒K) may itself contain more
splices, and those splices (of the corresponding level, in this case −1) are reflected as the splice
environment 𝜙𝑣 associated to J𝑒K𝜙𝑣

. In this case, we need to first insert those splice definitions back
into the expression, i.e., as [𝜙𝑣]𝑒 , and then we conclude by substituting 𝑠 with [𝜙𝑣]𝑒 .

After we evaluate all definitions and splice definitions, we can then start evaluating the expression
(rule ce-pgm-expr). Expression reductions (𝑒1 −→ 𝑒2) are mostly standard. Rule ce-beta uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule ce-qote, which says that to evaluate J𝑒K𝜙 , we leave 𝑒 as is, and all we need to do is
to evaluate 𝜙 , which simply evaluates all expressions it binds (rules ce-s-head and ce-s-tail).
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Note that there is no reduction rule which reduces inside a quotation. Now the benefits of splice
environments become clear: we can treat a quoted expression (the 𝑒 part in J𝑒K𝜙 ) opaquely, giving
the implementation freedom about its concrete form.

4.4 Well-Stagedness and Type Soundness

In this section, we discuss the metatheory of 𝐹 JK. Before we present the type soundness result, we
first discuss well-stagedness of splice environments.

4.4.1 Well-Staged Splice Definitions and Environments. Our typing rules are designed carefully to
allow only well-staged programs. As splice definitions and environments are novel in this calculus,
great care needs to be taken to guarantee their well-stagedness. To this end, the typing rules have
imposed the following restrictions on levels of splice definitions and environments:

(1) A splice definition Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 requires Δ ¤> 𝑛 as in rule c-spdef (similarly, rule c-s-cons).
That is, all splice variables in the local type context captured by a splice variable must have a
level greater than that of the expression captured by the splice variable.

(2) A well-staged quotation Θ;Δ ⊢𝑛 J𝑒K𝜙 requires Θ; Γ ⊢𝑛 𝜙 , as in rule c-qote, which implies

𝜙 � 𝑛,. That is, all splice variables that bind level 𝑛 are introduced at level 𝑛.4

Example 4.1 (Counterexamples to well-staged splices). The following examples are rejected.

(a) •; • ⊢0 J𝑒Kx:(Code Int,0)⊢0𝑠 :Int=x : Code𝜏 breaks (1) as x : (Code Int, 0) ̸ ¤> 0

(b) •; • ⊢0 JJ𝑒K•⊢0𝑠 :Int=(𝜆y:Code Int.y) (J2K•)K• : Code (Code𝜏) breaks (2) as • ⊢0 𝑠 : Int ̸� 1

Essentially, the first restriction applies the level restriction of variables described in ğ2.1 to splice
definition and environments; and the second lifts the level restriction to splice variables. In particular,
consider the counterexample (a). What happens is that in the splice environment x is used at level
0, but inside 𝑒 we can never introduce x at level 0 (recall that during typing the level monotonically
increases)! So such an example is rejected because x is not well-staged.5

The level restriction to splice variables requires that a splice variable that binds level 𝑛 is
introduced at level 𝑛. The splice variable level restriction ensures that splice variables are evaluated
at the right stage. Consider counterexample (b). If we evaluate the program at level 0, then because
the splice environment is a value and we do not inspect inside the quotations, we will conclude that
it is a value. But note that 𝑠 is bound at level 0, which means the expression (𝜆y : Code Int.y) (J2K•)
is at level 0 and so should get reduced when the expression is evaluated at level 0! We thus reject
this example as 𝑠 is not well-staged.

4.4.2 Type Soundness. With well-staged splice definitions and environments, we can now prove

that 𝐹 JK enjoys type soundness, by proving type preservation and progress.
First, we show that any reduction preserves the type information. For space reasons, we only

present the theorem for expressions and programs, but the theorem holds for all other forms.

Theorem 4.2 (Progress). (1) If •; • ⊢𝑛 𝑒 : 𝜏 , then either 𝑒 is a value, or 𝑒 −→ 𝑒 ′ for some 𝑒 ′.

(2) If • ⊢ 𝜌gm, then either 𝜌gm is 𝑣 : 𝜏 , or 𝜌gm −→ 𝜌gm′ for some 𝜌gm′.

4An alternative is to represent a splice environment entry as Δ ⊢ 𝑠 : 𝜏 = 𝑒 (i.e. without levels), and then rule c-qote, just

like rule c-abs, could directly take the current level from the typing judgment (which also means 𝜙Γ would need to take a

level as input). However, that representation does not work for global splice variables (i.e. in rule c-spdef where typing is

not level-indexed). Moreover, the representation of 𝜙 is also used during elaboration, where it is important to track the

levels. Therefore, we prefer to have a consistent representation and preserve the level information in the core.
5It may seem like we can introduce x outside of the quotation, making x well-staged. However, if x is introduced outside of

the quotation (and thus the splice environment), then it should not be captured by the splice variable, as it is in the scope

of the splice environment (i.e. is not local). For example, the well-typed source program 𝜆x : Code Int.J$xK elaborates to
𝜆x : Code Int.J𝑠K•⊢0𝑠 :Int=x , while the source program J𝜆x : Int.$JxKK elaborates to J𝜆x : Code Int.𝑠Kx:(Int,1)⊢0𝑠 :Int=JxK•

.
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𝜙1 ++Δ { 𝜙2 (Injection)

s-inj-empty

• ++Δ { •

s-inj-cons

𝜙1 ++Δ2 { 𝜙2

𝜙1,Δ1 ⊢
𝑛 𝑠 : 𝜏 = 𝑒 ++Δ2 { 𝜙2, (Δ2,Δ1 ⊢

𝑛 𝑠 : 𝜏 = 𝑒)

𝜌gm1 ⊢
𝑛 𝜙 { 𝜌gm2 (Collapse)

s-clap-empty

𝜌gm ⊢𝑛 • { 𝜌gm

s-clap-rec

spdef 𝜙.𝑛; 𝜌gm1 ⊢
𝑛−1 ⌊𝜙⌋𝑛 { 𝜌gm2

𝜌gm1 ⊢
𝑛 𝜙 { 𝜌gm2

Fig. 6. Auxiliary definitions used in elaboration: injection used in Figure 1, and collapse used in Figure 3

Nowwe show that well-typed programs cannot gowrong, by proving that a well-typed expression
(and definition / program respectively) is either a value, or can take a step.

Theorem 4.3 (Type Preservation). (1) If Θ;Δ ⊢𝑛 𝑒 : 𝜏 , and 𝑒 −→ 𝑒 ′, then Θ;Δ ⊢𝑛 𝑒 ′ : 𝜏 .

(2) If Θ ⊢ 𝜌gm, and 𝜌gm −→ 𝜌gm′, then Θ ⊢ 𝜌gm′.

5 ELABORATION FROM 𝜆J⇒K TO 𝐹 JK

In this section we describe the process of type-directed elaboration from the source language 𝜆J⇒K

into the core language 𝐹 JK. There are three key aspects of the elaboration procedure:

(1) Splices are removed in favour of a splice environment. The elaboration process returns a
splice environment which is attached to the quotation form (ğ5.1).

(2) Type class constraints are converted to explicit dictionary passing. We describe how to
understand staged type class constraints CodeC C in terms of quotation (ğ5.2).

(3) Splices at non-positive levels that are not attached to a corresponding quotation are elaborated
to top-level splice definitions, which are put before the rest of the program (ğ5.3).

5.1 Elaborating Expressions with Splice Environments

The elaboration of expressions appears in gray with the source typing rules in Figure 1. The

judgment Θ; Γ ⊢𝑛 𝑒 : 𝜎 { 𝑒 | 𝜙 states that, under the program context Θ and the context Γ, the

source expression 𝑒 at level 𝑛 with type 𝜎 is elaborated into a core expression 𝑒 whilst producing
the splice environment 𝜙 . As we will see, since splices at level 𝑛 create splice variables at level 𝑛 − 1,
and quotations at level 𝑛 capture all inner splice variables at level 𝑛, we maintain the invariant on
the judgment that 𝜙 ¤< 𝑛 (ğ5.4.1).

At a high level, all splice variables are initially added to the splice environment when elaborating
splices (rule s-splice), and then propagated through the rules, until captured by quotations (rule s-
qote); uncaptured splice variables are discussed in ğ5.3. Let us first take a look at rule s-splice. To
elaborate a source splice $𝑒 , rule s-splice generates a fresh splice variable 𝑠 which is returned as the
elaboration result. It then extends the splice environment 𝜙 with 𝑠 that binds an empty local context
(as every variable is still in the scope of the splice at this moment), the level of the expression 𝑛 − 1,
the core type 𝜏 ′, and the core expression 𝑒 . This way we effectively insert 𝑠 as a splice point, with
the expression to be spliced bound to 𝑠 in the splice environment. Splice environments are captured
by quotations in rule s-qote. In particular, a quotation at level 𝑛 captures only the splices at level
𝑛; the notation 𝜙.𝑛 denotes the projection of the splices contained in 𝜙 at level 𝑛. We then truncate
𝜙 by removing 𝜙.𝑛 from it using the notation ⌊𝜙⌋𝑛 .
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Importantly, we need to ensure well-scopedness of splice environments during this process.
When a splice variable gets out of a scope, e.g. in rule s-abs, we cannot directly return 𝜙1, as 𝜙1

may refer to x and directly returning 𝜙1 would cause it to be ill-typed! To this end, whenever a
splice variable gets out of a scope, it captures the scope in its local context. In other words, a splice
variable captures the local context from its introduction point up to the point where it is bound by a

quotation. This is done by the injection judgment 𝜙1 ++Δ { 𝜙2, defined at the top of Figure 6, and
is used in for example rule s-abs. Specifically, the judgment 𝜙1 ++Δ { 𝜙2 inserts Δ into the local
context of each splice variable in 𝜙1, producing a new splice environment 𝜙2. As we will prove, the
injection process is crucial to establish elaboration soundness.

The remaining rules elaborate source expressions in an expected way, while propagating splice
environments, e.g. rule s-app elaborates a source application into a core application, and collects
splice environments from preconditions. We talk more about elaborating type classes (rules s-cabs
and s-capp) in the next section.

5.2 Dictionary-Passing Elaboration of Constraints

Figure 2 presents the elaboration of types and constraints. Well-formed source types elaborate to
well-formed core types (Γ ⊢ 𝜎 { 𝜏 ).

Type classes are translated away by dictionary-passing elaboration [Jones 1994]. In particu-
lar, well-formed constraints elaborate to well-formed core types (Γ ⊢ 𝐶 { 𝜏 ). Note that a class
constraint TC𝜏 elaborates to its method type, as an instance of the constraint provides an imple-
mentation of the method.6 Accordingly, rule s-cabs elaborates an expression with a constraint into
a dictionary-taking function, and rule s-capp elaborates class resolution as function applications.

The last judgment Θ; Γ |=𝑛 𝐶 { 𝑒 | 𝜙 is of particular interest: resolving a type class constraint𝐶

returns an expression 𝑒 as evidence for the constraint, with a splice environment 𝜙 . Rules s-solve-
global and s-solve-local are standard elaboration rules of normal type class resolution, where
the former uses an instance declaration in the program context, and the latter uses a local instance
(as introduced in rule s-cabs).

Rules s-solve-incr and s-solve-decr concern staged type class constraints. Rule s-solve-decr
elaborates staged type class constraints into values of type Code𝜏 . Therefore resolution elaboration
of staged type class constraints must be understood in terms of quotations. Rule s-solve-decr is
implemented by a simple quotation and thus similar to typing quotations (i.e., rule s-qote). Rule s-
solve-incr conceptually introduces a splice; as in rule s-splice, it achieves this by extending the
splice environment, since the core language does not have splices. These rules explain the necessity
of level-indexing constraints in the source language: the elaboration would not be well-staged if
the stage discipline was not enforced.

5.3 Elaborating Programs with Top-Level Splice Definitions

We elaborate programs as shown in gray in Figure 3. For space reasons, we only present the
elaboration for programs of the form 𝑒 : 𝜏 (rule s-pgm-expr); elaborations of other forms apply
the same idea to the standard elaboration of type class and instance declarations [Bottu et al. 2017;
Jones 1994]. The full rules can be found in the appendix.

If a splice occurs at a non-positive level without corresponding surrounding quotations, then it
should be evaluated at compile time, and in our formalism, it becomes a top-level splice definition.7

6This is a simplification of elaboration for multi-method type classes, which produces a record with a field for each method.
7In general, non-positive splices can still have surrounding quotations. There are two cases. (1) The quotation is not

at the corresponding level, then the splice is lifted to top-level splice definition. For example, J$($𝑒)K elaborates to

spdef • ⊢−1 𝑠2 : Code Int = 𝑒 ; J𝑠1K•⊢0𝑠1 :Int=𝑠2 : Code Int, where 𝑠2 has a surrounding quotation but becomes a spdef . (2) The

quotation is at the corresponding level, then the splice will be attached to a quotation even if it is non-positive. For example,
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This process can be seen from rule s-pgm-expr, where we start by elaborating the source expression
𝑒 at the default level 0, which returns the core expression 𝑒 and the splice environment 𝜙 . As we
have mentioned in ğ5.1, elaborating expression at level 𝑛 maintains the invariant 𝜙 ¤< 𝑛 (ğ5.4.1).
Since in this case the expression is elaborated at level 0, we have 𝜙 ¤< 0; namely, the result 𝜙 returned
from elaborating the expression contains non-positive splice variables that should be evaluated at
compile time. Hence, we turn those splice environments into top-level splice definitions and put
them before 𝑒 : 𝜏 , using the collapse judgment 𝜌gm1 ⊢

𝑛 𝜙 { 𝜌gm2, given in Figure 6. The collapse
process takes the current program 𝜌gm1, and creates top-level splice declarations for each splice
in 𝜙 , generating 𝜌gm2. To guarantee a stage-correct execution, the splices are inserted in order
of their levels, decreasing from n; for rule s-pgm-expr, we have n = −1. Now 𝜌gm returned from
rule s-pgm-expr contains exactly what we want: a sequence of top-level splice definitions, followed
by the elaborated core expression.

Example 5.1 (Elaboration). The derivation below shows the elaboration of a source program
$(k), where k is a top-level definition defined as JshowK whose typing derivation has been given in
Example 3.1. This illustrates two particular points of interest: CodeC (Show a) is elaborated into
quoted evidence using rule c-solve-decr, and the injection ensures the splices are well-typed.

Θ = k : ∀a.CodeC (Show a) ⇒ Code (a → String)

Γ = a, 𝑒𝑣 : (Show a, 0)

𝜙1 = • ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•

𝜙2 = 𝑒𝑣 : (a → String, 0) ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•

𝜙3 = a, 𝑒𝑣 : (a → String, 0) ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•

k : ∀a.CodeC (Show a) ⇒ Code (a → String) ∈ Θ

Θ; Γ ⊢−1 k : ∀a.CodeC (Show a) ⇒ Code (a → String) { k | •
s-kvar

Θ; Γ ⊢−1 k : CodeC (Show a) ⇒ Code (a → String) { k a | •
s-tapp

𝑒𝑣 : (Show a, 0) ∈ Γ

Θ; Γ |=0 Show a { 𝑒𝑣 | •
s-solve-local

Θ; Γ |=−1 CodeC (Show a) { J𝑒𝑣K• | •
s-solve-decr

Θ; Γ ⊢−1 k : Code (a → String) { k a J𝑒𝑣K• | •
s-capp

Θ; Γ ⊢0 $(k) : a → String { 𝑠 | 𝜙1

s-splice

𝜙1 ++𝑒𝑣 : (a → String, 0) { 𝜙2

s-inj-cons

Θ; a ⊢0 $(k) : Show a ⇒ a → String { 𝜆𝑒𝑣 : a → String.𝑠 | 𝜙2

s-cabs

𝜙2 ++ a { 𝜙3

s-inj-cons

Θ; • ⊢0 $(k) : ∀a.Show a ⇒ a → String { Λa.𝜆𝑒𝑣 : a → String.𝑠 | 𝜙3

s-tabs

Having obtained the main expression, we can apply rule s-pgm-expr and use collapse to turn 𝜙3
into a top-level splice definition and form the resulting program:

(Λa.𝜆𝑒𝑣 : a → String.𝑠) : ∀a.(a → String) → a → String ⊢−1 𝜙3 { spdef a, 𝑒𝑣 : (a → String, 0) ⊢−1 𝑠 : a → String = k a J𝑒𝑣K•;

(Λa.𝜆𝑒𝑣 : a → String.𝑠) : ∀a.(a → String) → a → String

5.4 Elaboration Soundness

In this section, we prove that elaboration preserves types, which, together with type soundness of

𝐹 JK, establishes type soundness of 𝜆J⇒K. To this end, we first need to show how the well-stagedness

restrictions in 𝐹 JK (ğ4.4.1) are satisfied during elaboration.

5.4.1 Well-Staged Splice Environments. The first restriction says that every Δ ⊢𝑛 𝑠 : 𝜏 = 𝑒 has Δ ¤> 𝑛

(rules c-spdef and c-s-cons). During elaboration, we have seen that a splice variable captures
the local context from its introduction point up to the point where it is bound by a quotation.
The restriction holds trivially when a splice variable is created with an empty local context, but
since the local context can later be extended by injection we must prove that injection respects the

$J$𝑒K elaborates to spdef • ⊢−1 𝑠4 : Int = J𝑠3K•⊢−1𝑠3 :Int=𝑒 ; 𝑠4 : Int, where 𝑠3 appears at non-positive level but is attached to a

quotation. Note that the evaluation order is still correct: since 𝑠4 is evaluated at level −1, its splice environment is evaluated

at −1, and thus 𝑠3 is evaluated at −1.
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restriction. This can be shown by first proving the invariant that the splice environment produced
from typing has level smaller than the current typing level:

Lemma 5.2 (Level Correctness of 𝜙). If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , then 𝜙 ¤< 𝑛.

This can be easily seen from rule s-splice that produces only splice variables with smaller levels;
and rule s-qote captures all splices at the current level.

We then use Lemma 5.2 to show that injection produces well-staged splice environments. Con-
sider rule s-abs as an example. By Lemma 5.2 we have 𝜙1

¤< 𝑛, and therefore 𝜙1
¤< x : (𝜏, 𝑛), so

injection as in 𝜙1 ++ x : (𝜏, 𝑛) { 𝜙2 preserves the restriction. Formally, we can prove

Lemma 5.3 (Context Injection). If Θ;Δ1,Δ2 ⊢ 𝜙1, and 𝜙1
¤< Δ2, and 𝜙1 ++Δ2 { 𝜙2, then Θ;Δ1 ⊢ 𝜙2.

The second restriction requires that an elaborated quotation Θ;Δ ⊢𝑛 J𝑒K𝜙 has Θ; Γ ⊢𝑛 𝜙 . We
generate quotations at rule s-qote. As the rule binds 𝜙.𝑛 which by construction has level 𝑛, we
only need to show Θ;Δ ⊢ 𝜙 , which can be proved making use of Lemma 5.3. In the following

lemma statement, the notations Θ { Θ and Γ { Δ elaborate contexts in a unsurprising way;
their definitions can be found in the appendix.

Lemma 5.4 (Well-staged 𝜙). If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , and Θ { Θ , and Γ { Δ , then Θ;Δ ⊢ 𝜙 .

5.4.2 Elaboration Soundness. Now that we have established the key well-stagedness properties of

splice environments, we are ready to prove that 𝜆J⇒K is type-safe by proving elaboration soundness,
which formally establishes our goal: well-typed, well-staged source programs always elaborate to
well-typed, well-staged core programs.

Theorem 5.5 (Elaboration Soundness).

(1) If Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙 , and Θ { Θ , and Γ { Δ , and Γ ⊢ 𝜏 { 𝜏 , then Θ;Δ, 𝜙Γ ⊢𝑛 𝑒 : 𝜏 .

(2) If Θ ⊢ pgm : 𝜎 { 𝜌gm , and Θ { Θ , then Θ ⊢ 𝜌gm.

6 AXIOMATIC SEMANTICS

Our goal in designing 𝜆J⇒K and 𝐹 JK is to provide a theoretical foundation for multi-stage pro-
gramming. It is thus important to show that our formalism enjoys desirable properties. One such
property is that splices and quotations are dual to each other, which provides a simple reasoning
principle for multi-stage programming, and allows programmers to cancel splices and quotations
out without worrying about changing the semantics of programs.
In this section, we prove this crucial property by establishing axioms and axiomatic semantics

of 𝜆J⇒K and 𝐹 JK respectively, and show that canceling out splices and quotations leads to contex-
tually equivalent programs. The definitions of axiomatic semantics and the proofs in this section

follow Taha et al. [1998] and Taha [1999], with key novelties in that (1) 𝜆J⇒K has elaboration-based

semantics, and thus the correctness of its axioms are built on that of 𝐹 JK, and this indirection poses

extra complexities in the proofs; and (2) for 𝐹 JK, we define the axiomatic semantics and extend the
proofs for our novel splice environments and top-level splice definitions.

6.1 Duality of Splices and Quotations in 𝜆J⇒K

The property we seek to establish is captured by the two axioms of 𝜆J⇒K given in Figure 7a, which
state that splicing a quotation or quoting a splice is equivalent to the original expression: they
respectively represent eta and beta laws for Code. These axioms form part of the equational theory

of 𝜆J⇒K; they can be thought of as context-independent pattern-based rewriting rules.

Consider an axiomatic equivalence relation between 𝜆J⇒K programs that is the contextual and
equivalence closure of the axioms, which we denote as pgm1 =𝑎𝑥 pgm2. Our goal now is to prove
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J$𝑒K =𝑎𝑥 𝑒

$J𝑒K =𝑎𝑥 𝑒

(a) Axioms

Θ; Γ ⊢𝑛 𝑒 : Code𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛+1 $𝑒 : 𝜏 { 𝑠 | 𝜙, • ⊢𝑛 𝑠 : 𝜏 = 𝑒
s-splice

Θ; Γ ⊢𝑛 J$𝑒K : Code𝜏 { J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 | 𝜙
s-qote

(b) Quote splices

Θ; Γ ⊢𝑛 𝑒 : 𝜏 { 𝑒 | 𝜙

Θ; Γ ⊢𝑛−1 J𝑒K : Code𝜏 { J𝑒K𝜙.𝑛−1 | ⌊𝜙 ⌋𝑛−1
s-qote

Θ; Γ ⊢𝑛 $J𝑒K : 𝜏 { 𝑠 | ⌊𝜙 ⌋𝑛−1, • ⊢𝑛−1 𝑠 : 𝜏 = J𝑒K𝜙.𝑛−1

s-splice

(c) Splice quotations

Fig. 7. Axioms and elaboration derivations in 𝜆J⇒K

axiomatically equivalent source programs are contextually equivalent, i.e. they always produce the

same result and thus can be used in an interchangeable way. As the dynamic semantics of 𝜆J⇒K is

defined based on elaboration to 𝐹 JK, we build the proofs based on the axiomatic semantics of 𝐹 JK.

6.2 Axiomatic Semantics of 𝐹 JK

The axiomatic semantics of 𝐹 JK is guided by the elaboration of the 𝜆J⇒K axioms. Supposing source
𝑒 elaborates to core 𝑒 with 𝜙 , Figures 7b and 7c present elaboration derivations of J$𝑒K and J$𝑒K
respectively. Looking first at Figure 7b, what is needed to show the first 𝜆J⇒K axiom is a 𝐹 JK axiom
that models the equivalence between expression J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 with 𝜙 (the elaboration result of J$𝑒K)
and 𝑒 with 𝜙 (the elaboration result of 𝑒). Since the two 𝜙s are the same, it is sufficient to introduce
a core axiom J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 =𝑎𝑥 𝑒 .

The case for splicing quotations (Figure 7c) is more challenging: in this case we cannot directly
compare the elaborated expressions, as the generated splice environments are different. Instead,
we need to consider equivalence between two core quotations where the splice environments
are bound. To derive the axiom, let us first consider the case where both expressions are bound
immediately to a quotation. That leads to J𝑠K ⌊𝜙 ⌋𝑛−1,•⊢𝑛−1𝑠 :𝜏=J𝑒K𝜙.𝑛−1

=𝑎𝑥 J𝑒K ⌊𝜙 ⌋𝑛−1,𝜙 .𝑛−1. Abstracting

over the specific shape of splice environments gives us J𝑠K𝜙1,•⊢
𝑛𝑠 :𝜏=J𝑒K𝜙 =𝑎𝑥 J𝑒K𝜙1,𝜙

. In the case when

𝑠 is not immediately bound, we then have J𝑒1K𝜙1,•⊢
𝑛𝑠 :𝜏=J𝑒K𝜙 =𝑎𝑥 J𝑒1 [𝑠 ↦→ 𝑒]K𝜙1,𝜙

. However, there are

still some wrinkles to this axiom. First, 𝑠 could have a non-empty splice environment 𝜙2 to its right,
as until 𝑠 is bound there can be more splices. Second, 𝑠 could have a non-empty local context Δ,
as until 𝑠 is bound it may have got out of some scopes and so have applied the injection process.
Finally, if 𝑠 has a non-empty local context, then after it is substituted away on the right hand side,
we cannot directly discard its local context Δ and leave 𝜙 , since 𝜙 now becomes ill-typed as it loses
the scope of the variables from Δ. Therefore, we need to inject Δ into 𝜙 .

Summarizing our discussion, we end up with the axiomatic semantic of 𝐹 JK as defined below.
Note that splicing quotations also leads to the equivalence axiom between spdef .

Definition 6.1 (Axiomatic Semantics of 𝐹 JK). Axiomatic semantics of 𝐹 JK models 𝛽-equivalence, as

well as the following axioms.

J𝑠K•⊢𝑛𝑠 :𝜏=𝑒 =𝑎𝑥 𝑒

J𝑒1K𝜙1,Δ⊢
𝑛𝑠 :𝜏=J𝑒K𝜙 ,𝜙2

=𝑎𝑥 J𝑒1 [𝑠 ↦→ 𝑒]K𝜙1,𝜙
′,𝜙2

where 𝜙 ++Δ { 𝜙 ′

spdef Δ ⊢𝑛 𝑠 : 𝜏 = J𝑒K𝜙 ; 𝜌gm =𝑎𝑥 spdef 𝜙 ′; 𝜌gm[𝑠 ↦→ 𝑒] where 𝜙 ++Δ { 𝜙 ′

Now consider an axiomatic equivalence relation between 𝐹 JK programs that is the contextual
and equivalence closure of the axioms, denoted as:

Θ ⊢ 𝜌gm1 ⋍𝑎𝑥 𝜌gm2 ≜ Θ ⊢ 𝜌gm1 ∧ Θ ⊢ 𝜌gm2 ∧ 𝜌gm1 =𝑎𝑥 𝜌gm2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



61:24 Ningning Xie, Matthew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our definition of axiomatic semantics of 𝐹 JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (𝜆J⇒K
=𝑎𝑥 to 𝐹 JK ⋍𝑎𝑥 ). If pgm1 =𝑎𝑥 pgm2, where Θ ⊢ pgm1 : 𝜎 { 𝜌gm1 , and Θ ⊢

pgm2 : 𝜎 { 𝜌gm2 , and Θ { Θ , then Θ ⊢ 𝜌gm1 ⋍𝑎𝑥 𝜌gm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence

We define contextual equivalence in 𝐹 JK as below.

Definition 6.3 (Contextual Equivalence in 𝐹 JK).

•; Γ ⊢𝑛 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏 ≜ •; Γ ⊢𝑛 𝑒1 : 𝜏 ∧ •; Γ ⊢𝑛 𝑒2 : 𝜏

∧ (∀C : •; Γ ⊢𝑛 𝜏 ⇝ •; • ⊢0 Int, C[𝑒1] −→
∗ 𝑖 ⇐⇒ C[𝑒2] −→

∗ 𝑖)

Θ ⊢ 𝜌gm1 ⋍𝑐𝑡𝑥 𝜌gm2 : 𝜏 ≜ Θ ⊢ 𝜌gm1 ∧ Θ ⊢ 𝜌gm2 ∧ (∀Si,Dj
𝑖, 𝑗

: Θ ⊢ 𝜏 −→ • ⊢ 𝜏,

(spdefSi; defDj
𝑖, 𝑗
; 𝜌gm1 −→

∗ 𝑒1 : 𝜏 ⇐⇒ spdefSi; defDj
𝑖, 𝑗
; 𝜌gm2 −→

∗ 𝑒2 : 𝜏)

∧ (•; • ⊢0 𝑒1 ⋍𝑐𝑡𝑥 𝑒2 : 𝜏))

Expression contextual equivalence says that two core expressions 𝑒1 and 𝑒2 are contextually equiv-
alent, if for any computation context C, C[𝑒1] and C[𝑒2] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[𝑒] to plug in the expres-
sion 𝑒 into the hole of C. The notation C : •; Γ ⊢𝑛 𝜏 ⇝ •; • ⊢0 Int means that if •; Γ ⊢𝑛 𝑒 : 𝜏 then
•; • ⊢𝑛 C[𝑒] : Int. Program contextual equivalence is defined in a similar manner and is built using
expression contextual equivalence.

The final piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to

build parallel reduction of 𝐹 JK to prove the Church-Rosser property, which is then used to prove

equivalence between 𝐹 JK axiomatic semantics and operational semantics.

Lemma 6.4 (𝐹 JK ⋍𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If Θ ⊢ 𝜌gm1 ⋍𝑎𝑥 𝜌gm2, then Θ ⊢ 𝜌gm1 ⋍𝑐𝑡𝑥 𝜌gm2 : 𝜏 .

Combining Lemma 6.2 and Lemma 6.4 yields our final goal:

Theorem 6.5 (𝜆J⇒K
=𝑎𝑥 to 𝐹 JK ⋍𝑐𝑡𝑥 ). If pgm1 =𝑎𝑥 pgm2, where Θ ⊢ pgm1 : 𝜎 { 𝜌gm1 , and

Θ ⊢ pgm2 : 𝜎 { 𝜌gm2 , and Θ { Θ , and • ⊢ 𝜎 { 𝜏 , then Θ ⊢ 𝜌gm1 ⋍𝑐𝑡𝑥 𝜌gm2 : 𝜏 .

7 TODAY’S TYPED TEMPLATE HASKELL

The behavior of Typed Template Haskell in GHC differs from our calculus. Table 1 summarizes the

key examples from ğ2, comparing the results from the latest GHC (9.0.1) to 𝜆J⇒K. The Haskell code
examples are in the appendix.
At a high level, GHC’s implementation is close to the description in ğ2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is sufficient to
accept the definitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
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Table 1. Examples comparison. Well-staged? indicates well-stagedness after dictionary-passing elaboration.
✓✗ means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLift trim cancel qnpower/npower5

C1 C2 S1 TS1 A1 A2 ğ1 S2

Well-staged? ✗ ✓ ✓ ✗ ✓ ✓ ✗/ ✗ ✓/ ✓

𝜆J⇒K ✗ ✓ ✓ ✗ ✓ ✓ ✗/ ✗ ✓/ ✓

GHC 9.0.1 ✓✗ ✓ O ✗ ✓✗ ✗ ✓✗/ ✗ O

raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
definition site and the splicing site have different instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLift (and npower5) but wrongly rejects cancel. We argue that topLift should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC

The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
briefly here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modification is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule s-solve-incr or by rule s-solve-decr. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
given CodeC C at level 0, the context can record the spliced evidence for C at level 1) so that
constraint solving only needs to consider rule s-solve-decr.

Local constraints. Local constraints can be introduced by (for example) pattern matching on
GADTs [Peyton Jones et al. 2006], and we anticipate that they can be treated similarly to type class
constraints: the constraint solver needs to keep track of the level at which a constraint is introduced
and ensure that the constraint is only used at that level.

Quantified constraints. The full Haskell language supports more elaborate forms of type classes

than the essence modeled in 𝜆J⇒K. For example, GHC supports quantified constraints [Bottu et al.
2017], which include forms such as ∀x .Show x ⇒ Show (f x), a constraint that converts Show
instances for x into Show instances for f x. Future work is required to study more formally the
interaction between staged constraints and implication constraints; we envisage that constraint
entailment should deduce that CodeC (C1 ⇒ C2) entails CodeC C1 ⇒ CodeC C2.

Representation of quotations. In today’s GHC implementation, untyped code representations are
built compositionally using combinators, and type-checked at splice sites. With our development,
code representations contain type information, especially dictionaries, and must therefore corre-
spond to one of GHC’s post-typechecking term representations. One option is GHC Core terms,
which is the simplest representation that retains type information and has existing serialization
support (for inlining definitions across modules).
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Our development also requires changing the implementation of splicing to support performing
substitution at splices inside quotations. In today’s GHC, substitution is performed implicitly
during translation from expressions to combinators. With the new representation of quotations,
the substitution needs to be represented explicitly and performed explicitly during deserialization
of the quotation body. Substituting splices takes two steps. First, a quotation body is traversed and
each splice is replaced by a splice variable where the evaluated splice term needs to be inserted.
The splice variable is maintained in the splice environment. Second, the splicing operation itself
involves checking the splice environment for each splice variable and performing the substitution.

9 RELATED WORK

Since its introduction [Taha and Sheard 1997, 2000] multi-stage programming with quotation has
attracted both theoretical and practical interest. Several languages, including MetaOCaml [Kiselyov
2014], Haskell and Scala [Stucki et al. 2018], include implementations of typed quotations.
Considering that implementations of multi-stage languages have supported polymorphism

from the very beginning, there is surprisingly little work that formally combines multi-stage
programming with polymorphism: most multi-staged calculi are simply-typed. An exception, by
Kokaji and Kameyama [2011], involves a language with polymorphism and control effects; their
primary concern is the interaction of the value restriction and staging. Another, by Kiselyov [2017],
considers the tripartite interaction of polymorphism, cross-stage persistence and mutable cells.

Several works examine the interaction of quotation with individual language features, particularly
with various forms of effects, such as control operators [Oishi and Kameyama 2017] and mutable
cells [Kiselyov et al. 2016]. Work by Yallop and White [2015] is more closely related to the present
work, since there is a well-known correspondence between ML modules and type classes [Wehr and
Chakravarty 2008]; it examines the interaction between typed compile-time staging and modules.
However, since modules are written explicitly rather than introduced by elaboration, the dictionary
level problem does not arise. In a similar vein, Radanne [2017] studies the interaction of ML modules
with a different modality, client-server programming, where the distinction between client and
server functors corresponds to our distinction between unstaged and staged type class constraints.

Several researchers have combined multi-stage programming and dependent types. Kawata and
Igarashi [2019] impose a stage discipline on type variables as on term variables, reflecting the
fact that checking types involves evaluating expressions. Pašalic [2004] defines a dependently-
typed multi-stage language Meta-D but doesn’t consider constraints or parametric polymorphism.
Concoqtion [Fogarty et al. 2007] extends MetaOCaml to support Coq terms within types; it is
based on the dependently-typed 𝜆𝐻⃝ [Pašalic et al. 2002], which is motivated by removing tags
in generated programs. Brady and Hammond [2006] combine dependent types and multi-stage
programming to turn a well-typed interpreter into a verified compiler, but do not consider either
parametric polymorphism or constraints.
We are not aware of any work that considers the implications of relevant implicit arguments

formally, but there is an informal characterization by Pickering et al. [2019], who also advocated
persisting dictionaries between stages, using the fact that dictionary values have top-level names.
Unfortunately, that scheme, based on extending the constraint solver to select dictionary representa-
tions using both type and level, does not readily extend to local constraints. An alternative approach
that the authors later considered, passing constraint derivation trees to allow local construction of
future-stage dictionaries, was judged to carry too much run-time overhead to be practical.

Formalising Template Haskell. Sheard and Jones [2002] give a brief description of Untyped
Template Haskell. The language is simply-typed and does not account for multiple levels. The
language has since diverged: untyped quotations are no longer typechecked before conversion
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into their representation. Some aspects of their formalism, notably the Q monad which supports
reification of types and declarations, are more suited to the untyped metaprogramming than the
typed multi-stage programming we consider here. [Berger et al. 2017] give a more formal study
of a core calculus that models some aspects of Untyped Template Haskell, focusing on levels and
evaluation rather than these additional features.

Code generators often make use of effects such as let insertion or error reporting so it is useful
for to consider the interaction of quotation with effects. In GHC releases since 8.12, the type of
quotations is generalised [Pickering 2019] from Q (TExp a) to a minimal interface ∀m.Quote m ⇒

m (TExp a) giving users more control over which effects are allowed in code generators. We leave
formalising this extension to future work.

Modal Type Systems. Several type systemsmotivated bymodal logics havemodeled the interaction
of modal operators and polymorphism. Attention has turned recently to investigating dependent
modal type theories and the complex interaction of modal operators in such theories [Gratzer et al.
2020]. It seems likely that ideas from this research can give a formal account of the interaction of
the code modality [Davies and Pfenning 2001] and the parametric quantification from System F
which can also be regarded as a modality [Nuyts and Devriese 2018; Pfenning 2001].

10 CONCLUSION

We have proposed a resolution to a longstanding problem in Typed Template Haskell arising from
the interaction beteen two key features, code quotation and type classes. In our view, the mysterious
failures that can arise when writing large-scale multi-stage programs are one reason for the limited
adoption of Typed Template Haskell. Although it is used in a few developments (e.g. Pickering
et al. [2020]; Willis et al. [2020]; Yallop et al. [2018]), take-up is low, despite the many use cases for
type-safe optimizing code generators. We hope that the resolution of the shortcomings we have
described and the reasoning principles we have established will encourage broader adoption.

Although our work is inspired by Haskell, there is reason to believe that it has wider applications.
The recent release of Scala 3 added support for typed code quotations to the language [Stucki et al.
2018]. Preliminary experiments suggest that these quotations suffer from surprising interactions
with implicit arguments: implicit resolution within quotations sometimes fails mysteriously. Simi-
larly, it is anticipated that OCaml will soon acquire support both for typed code quotations [Yallop
and White 2015] and for implicit arguments [White et al. 2014]. We hope that our work will help
to guide the integration of these features and avoid problems with unsoundness from the outset.
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