
Safe Pattern Generation for Multi-Stage Programming

Ethan Range
University of Cambridge
ethan@ethanrange.com

Jeremy Yallop
University of Cambridge

jeremy.yallop@cl.cam.ac.uk

Abstract
Multi-stage programming (MSP) is a useful way of generating opti-
mised programs, but existing MSP systems have limited expressive-
ness, with no support for type-safe generation of patterns whose
shape is statically unknown (i.e. determined only when code gen-
erators are run, not when they are written). This work introduces a
design for typed generation of arbitrary patterns, and shows how to
use the design to generate statically unknown patterns.

1. Introduction
Multi-stage programming (MSP) is a metaprogramming paradigm
that enables generation of programs guaranteed to be well-typed
and well-scoped. MSP typically uses two constructs: a quotation
.<e>. of type 'a code denotes a code fragment of an expression
e of type 'a, while a splice .~c of type 'a inserts a fragment c of
type 'a code into a larger fragment. These constructs support the
definition of generators that can specialize an algorithm to a given
input, such as specialisation of xn to a given n (Ershov 1977).

One specialisation candidate is the recursive list map function:

let rec map (f : 'a -> 'b) (l : 'a list) : 'b list =
match l with

| [] -> []
| x :: xs -> let y = f x in y :: map f xs

which may be unrolled an arbitrary number of recursive steps to
improve performance (Appel 1992). For example, unrolling 2 steps
(with a final case for lists shorter than the unrolling depth) gives:

let rec map (f : 'a -> 'b) (l : 'a list) : 'b list =
match l with

| [] -> []
| x1 :: x2 :: xs ->

let y1 = f x1 in
let y2 = f x2 in
y1 :: y2 :: map f xs

| x :: xs -> let y = f x in y :: map f xs

The optimal unrolling depth depends on how the function is used,
making unrolling an ideal candidate for specialisation by staging.

Unfortunately, existing MSP systems do not support safe generation
of statically unknown patterns like n-ary cons. Some, e.g. Tem-
plate Haskell (Sheard and Peyton Jones 2002), support unsafe gen-
eration of arbitrary patterns, while others, e.g. MetaOCaml (Kise-
lyov 2014), support safe generation only of statically known pat-
terns.

2. Type-safe pattern generation
This work introduces a typed embedded domain-specific language
(DSL) for generation of statically unknown patterns, implemented
as a MetaOCaml library. The DSL represents patterns using a type
constructor pat, analogous to the code type constructor that rep-
resents quoted expressions. However, while the expression typing
judgment Γ ⊢ e : τ associates a type τ with each expression (un-
der some context Γ), the pattern typing judgment Γ ⊢ p : ⟨Γ′, τ⟩
associates both a type and a bound variable context Γ′ with each

OCaml DSL pat type

_ __ ('a, 'r, 'r) pat

int literal int n int -> (int, 'r, 'r) pat

Identifier var ('a, 'a code -> 'r, 'r) pat

[] empty ('a list, 'r, 'r) pat

If x : ('a, 'f, 'g) pat
and xs : ('a list, 'g, 'r) pat then
x :: xs x >:: xs ('a list, 'f, 'r) pat

Figure 1. Selected term constructors from the pattern DSL

pattern. For example, the judgement associates the type 'a list
and the context x :'a, xs :'a list with the pattern x :: xs.

The pat type in the DSL is therefore parametrised by both Γ′ and
τ . In contrast to languages based on CMTT (Nanevski et al. 2008)
whose type systems directly support contexts, representing context
types in MetaML-family languages like MetaOCaml requires care-
ful encoding to support operations like concatenation. Lindley’s
(2008) difference types meet this requirement1: a context type is
encoded as a function type 'f whose parameter types correspond
to the context variables and whose return type 'r can be instanti-
ated to the type of an expression in which those variables are bound.
Adding one more parameter 'a for the input type of a pattern gives
the following form for pat:

type ('a, 'f, 'r) pat

Figure 1 shows DSL term constructors for selected OCaml patterns
— wildcard, constants, variables, nil and cons — with their types.
An OCaml pattern can thus be represented in the DSL:

x :: (3 :: _) ⇝ var >:: (int 3 >:: __)

with 'a as int list, 'f as 'int code -> 'c code and 'r as
'c code. Invalid patterns are rejected as desired:

x :: 3 ⇝ var >::
:::
int

::
3

Error: Type int is not compatible with type 'b list

Constructing a pattern-matching case requires both a DSL descrip-
tion of a pattern and a right-hand side (RHS) expression. This RHS
can be defined with a function of the 'f type described above. The
(=>) operator combines a pattern and an RHS:

val (=>) : ('a, 'f, 'r code) pat -> 'f -> ('a, 'r) case

corresponding to the typing rule:

Γ ⊢ p : ⟨Γ′, τ⟩ Γ ∪ Γ′ ⊢ e : τ ′

Γ ⊢ p ⇒ e : case(τ, τ ′)

1 Fridlender and Indrika (2000) and others apply similar techniques



The RHS takes the form fun r0 r1 . . . rn -> .<e>.. The argu-
ments r0 . . . rn are quotations of the identifiers representing vari-
ables bound in the pattern, and e is the expression for the case right-
hand side, which can contain the pattern variable identifiers spliced
in. With this approach, the pattern-matching case:

| x :: xs -> (x, xs)

may be constructed as:

var >:: var => fun x xs -> .< (.~x, .~xs) >.

Combining a pattern and an RHS produces a value of type ('a,'r)
case. The type parameters here are similar to those in pat, but 'f
is omitted, as it is no longer required for validation, just as Γ′ does
not appear in the conclusion of the rule.

This representation of a case RHS as a function is closely related
to Rhiger’s (2009) design for first-class patterns, approaching the
problem of pattern generation as a translation from the function
representation of a pattern to the built-in representation of a pattern
in some target language.

Finally, the match_ combinator generates an OCaml match ex-
pression from a list of cases that share an input and output type:

val match_ : 'a code -> ('a, 'b) case list -> 'b code

3. Statically unknown pattern generation
The constructors in Figure 1 give different types to patterns that
bind different numbers of variables: in the cons patterns previously
introduced, as the number of pattern variables bound varies with n,
the RHS function type, 'f, also varies. This variation in the types
does not prevent generation of statically unknown patterns, but to
prevent exposure of the varying 'f type, the pattern and the RHS
expression must be generated simultaneously.

An RHS expression for an n-ary cons pattern can be generated
by an inductive definition, with a base case, handling the final
'b list in a cons pattern, and an inductive case, that combines
an identifier of a value of type 'b and the existing RHS expression
definition. For example, shown below are base and inductive cases
for a summation RHS:

let base (xs : int list code) = .<0>.
let ind (v : int code) (acc : int code) = .<.~v + .~acc>.
(* .<x1 + (x2 + (... + (xn + 0)))>. *)

When generating this pattern and RHS expression, the intermediate
results must be wrapped to prevent exposure of the 'f type. To
both allow the use of the (=>) operator to construct a case from
the unwrapped pattern and expression, and allow application of an
inductive definition, the wrapper uses a continuation style:

type ('a, 'r) pwrap = Pat : ('a list, 'f, 'r code) pat
* (('r code -> 'r code) -> 'f)
-> ('a, 'r) pwrap

Each application of the inductive step is represented as a modifica-
tion of the result, of type 'r code -> 'r code. This approach
avoids the need to manipulate the existential 'f type within the
wrapper directly while allowing the function of type 'f required to
be retrieved by applying the continuation to the identity function.
With this approach, a combinator to produce n-ary cons patterns
from an inductive definition can be defined:

let gen_n_cons (m : int)
(base : 'a list code -> 'r code)
(ind : 'a code -> 'r code -> 'r code)

: ('a list, 'r) case =
let rec loop n : ('a, 'r) pwrap =

if n = 0

then Pat (var, fun k xs -> k (base xs))
else let Pat (p, k) = loop (n - 1) in

Pat (var :: p, fun c x -> k (compose (ind x) c))
in let Pat (p, c) = loop m in p => (c Fun.id)

This combinator enables defining the desired generator for unrolled
map functions:

let gen_unrolled_map (n : int) =
.<let rec map f l = .~(match .<l>. [
empty => .<[]>.;
gen_n_cons n (fun xs -> .<map f .~xs>.)

(fun x acc ->
.<let y = f .~x in y :: .~acc>.);

var >:: var => .<fun x xs ->
let y = f x in y :: map f xs>.

]) in map>.

4. Ensuring well-scopedness
The type system of the DSL ensures that generated code is well-
typed. Ensuring that code is also well-scoped requires addressing
two additional issues in the implementation.

4.1 Pattern variable naming

Generating identifiers for pattern variables requires care to avoid
collisions with variables occurring free in the RHS expression, since
collisions may cause incorrect scope inclusion, type errors, or in-
correct semantics (Kiselyov 2014). Identifier generation is man-
aged with a global counter, ensuring unique pattern variable names.
As MetaOCaml uniquely renames variables in generated code,
and as the unique naming strategy used in this work differs from
MetaOCaml’s strategy, collisions cannot occur with non-pattern
variable identifiers. Integration of this library into MetaOCaml
would allow for unification of these two unique naming strategies.

4.2 Scope extrusion

Scope extrusion occurs when a variable in a code quotation escapes
the scope of its binding (Pickering et al. 2019). MetaOCaml pre-
vents scope extrusion by tracking free variables and virtual bind-
ings in code quotations, and raising run-time exceptions when ex-
trusion is detected. For pattern generation, preventing scope ex-
trusion requires two distinct tasks. First, any variable used in an
RHS expression must be checked for extrusion. This check is im-
plemented as part of the match_ code generator.

The second task is to update MetaOCaml’s record of free variables
with the identifiers generated for pattern variables. This ensures that
scope extrusion of variables bound in a generated pattern can be
detected. This is not currently implemented in this work, however.
While relatively simple to achieve, updating the free variable record
would require integration of this library into MetaOCaml, due to
reliance on internal, unexposed state within MetaOCaml.

5. Status and future work
This work provides a design for type-safe generation of arbitrary
patterns. To remedy the safety caveat discussed above, integration
of this library into MetaOCaml is a natural avenue of future work,
but the approach is sufficiently general to also be applicable to other
MSP systems such as Template Haskell (Sheard and Peyton Jones
2002) or MacoCaml (Xie et al. 2023). The implementation cur-
rently supports only a subset of OCaml pattern types, but the type
system provides an extensible platform for implementation of alter-
native pattern types, although challenges remain around GADT pat-
terns, polymorphic variant patterns, and disjunctive patterns with
variables bound in differing orders between disjuncts.



References
A. W. Appel. Unrolling recursions saves space. Technical Report CS-TR-

363-92, Princeton University, March 1992. URL https://www.cs.
princeton.edu/techreports/1992/363.ps.gz.

A. Ershov. On the partial computation principle. Informa-
tion Processing Letters, 6(2):38–41, 1977. ISSN 0020-0190.
. URL https://www.sciencedirect.com/science/article/
pii/0020019077900783.

D. Fridlender and M. Indrika. Do we need dependent types? J. Funct. Pro-
gram., 10(4):409–415, 2000. . URL https://doi.org/10.1017/
s0956796800003658.

O. Kiselyov. The design and implementation of BER MetaOCaml. In
M. Codish and E. Sumii, editors, Functional and Logic Program-
ming, pages 86–102, Cham, 2014. Springer International Publishing.
ISBN 978-3-319-07151-0. . URL https://doi.org/10.1007/
978-3-319-07151-0_6.

S. Lindley. Many holes in Hindley-Milner. In E. Sumii, editor, Proceedings
of the ACM Workshop on ML, 2008, Victoria, BC, Canada, September
21, 2008, pages 59–68. ACM, 2008. . URL https://doi.org/10.
1145/1411304.1411313.

A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory.
ACM Trans. Comput. Log., 9(3):23:1–23:49, 2008. . URL https:
//doi.org/10.1145/1352582.1352591.

M. Pickering, N. Wu, and C. Kiss. Multi-stage programs in context.
In Proceedings of the 12th ACM SIGPLAN International Symposium
on Haskell, Haskell 2019, page 71–84, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450368131. . URL
https://doi.org/10.1145/3331545.3342597.

M. Rhiger. Type-safe pattern combinators. Journal of Functional Program-
ming, 19(2):145–156, 2009. . URL https://doi.org/10.1017/
S0956796808007089.

T. Sheard and S. Peyton Jones. Template meta-programming for Haskell.
SIGPLAN Not., 37(12):60–75, Dec 2002. ISSN 0362-1340. . URL
https://doi.org/10.1145/636517.636528.

N. Xie, L. White, O. Nicole, and J. Yallop. MacoCaml: Staging Composable
and Compilable Macros. Proc. ACM Program. Lang., 7(ICFP), Aug
2023. . URL https://doi.org/10.1145/3607851.

https://www.cs.princeton.edu/techreports/1992/363.ps.gz
https://www.cs.princeton.edu/techreports/1992/363.ps.gz
https://www.sciencedirect.com/science/article/pii/0020019077900783
https://www.sciencedirect.com/science/article/pii/0020019077900783
https://doi.org/10.1017/s0956796800003658
https://doi.org/10.1017/s0956796800003658
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1145/1411304.1411313
https://doi.org/10.1145/1411304.1411313
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1017/S0956796808007089
https://doi.org/10.1017/S0956796808007089
https://doi.org/10.1145/636517.636528
https://doi.org/10.1145/3607851

	Introduction
	Type-safe pattern generation
	Statically unknown pattern generation
	Ensuring well-scopedness
	Pattern variable naming
	Scope extrusion

	Status and future work

