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Abstract
Partially-static data structures are a well-known technique
for improving binding times. However, they are often de-
fined in an ad-hoc manner, without a unifying framework
that ensures full use of the equations associated with each
operation.

We present a foundational view of partially-static data
structures as free extensions of algebras for suitable equa-
tional theories, i.e. the coproduct of an algebra and a free al-
gebra in the category of algebras and their homomorphisms.
By precalculating these free extensions, we construct a high-
level library of partially static data representations for com-
mon algebraic structures. We demonstrate our library with
common use-cases from the literature: string and list manip-
ulation, linear algebra, and numerical simplification.

Keywords multi-stage compilation,metaprogramming, par-
tial evaluation, partially static data, universal algebra

1 Introduction
Partial evaluation,multi-stage programming, and related ap-
proaches, can improve the performance of programs by util-
ising the distinction between static inputs (available now)
and dynamic inputs (available later). The classification ex-
tends from inputs to expressions: static expressions, depend-
ing only on static inputs, can be evaluated in advance, com-
bining the resulting dynamic expresssions into a more spe-
cialized program with improved performance.

Unfortunately, a straightforward application of this ap-
proach often produces disappointing results. Naive binding-
time analyses can infect large parts of a program, since any
expression that has a dynamic variable as a sub-expression
is considered dynamic, resulting in a residual program in
which most expressions remain unreduced.

For example, suppose that in the expression (x + y) + z

the variables x and z are static, and y is dynamic. Then x + y

is also dynamic, because it has y as a sub-expression and, in
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turn, the entire expression is dynamic, with no non-trivial
sub-expressions:

((xsta + ydyn)dyn + zsta)dyn

The situation improves if we use the associative and com-
mutative properties of + to rewrite the expression, quaran-
tining the dynamic expression y, and exposing a static sub-
expression x + z:

((xsta + zsta)sta + ydyn)dyn

However, it is impractical to rewrite all programs in this
way. Variables may have different binding times on different
invocations of a function; in such circumstances it is not pos-
sible to rewrite expressions to group static sub-expressions
together. Furthermore, this kind of rewriting, using well-
defined algebraic laws, is better performed by a computer
than by a human programmer.
Partially-static data [Mogensen 1988] replaces the all-or-

nothing distinction between static and dynamic with hybrid
data structures, parts of which are in the present, and oth-
ers in the future. Partially-static operations [Thiemann 2013]
perform some computation statically, despite the presence
of unknown data. Further, the implementation of these op-
erations uses laws to reorder the dynamic portions, normal-
izing and optimizing the residual portions of the program.

While the spirit of this approach is uniform, the concrete
data structures in each case are very different. Our central
contribution is to conceptualise them with a universal prop-
erty, in terms of the operations and equations we utilise.
Universality translates into a functional specification which
we need to implement and validate, and replaces the uncer-
tainty of designing a new data structure with the precise
activity of implementing a specification.

Contributions. Following a survey ofmotivating examples
drawn from the literature (§2), we present the following con-
tributions:
§3 introduces our approach informally, using partially-

static monoids as an extended use-case.
§4 presents the universal properties for law-respecting

partially-static structures as free extensions of algebra for
the associated equational theories.
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We precalculate the free extensions of common algebraic
structures: monoids, commutative rings and semirings, and
abelian groups. For brevity, we present only monoids in de-
tail.

§5 describes a high-level library of partially-static struc-
tures based on §3 and §4. The parameterized modules in the
library can be instantiated with concrete implementations
of algebraic interfaces— amonoid for strings, a ring for com-
plex numbers, and so on — to provide drop-in modules that
perform optimizations using the associated laws.

2 Motivating examples
A principled approach to partially-static data that takes al-
gebraic laws into account can improve the output of a wide
variety of staged without altering the non-local structure of
the generating program. We present several illustrative ex-
amples as MetaOCaml programs [Kiselyov 2014].

Printf. Functionswhose arguments arrive at different times
lend themselves well to a multi-stage approach. The typed
sprintf function studied by Danvy [1998] and Asai [2009] is
one such example, since the format string is typically known
in advance of the values passed as subsequent arguments.
Yallop and White [2015] use staging to turn sprintf from a
function into a code generator; however, a naive approach
results in code that contains too many catenations. For ex-
ample, the following call to sprintf generates a function
that prints two integer arguments with "ab" interposed:
sprintf ((int ++ lit "a") ++ (lit "b" ++ int))

When sprintf is staged using a straightforward binding
time analysis the result contains four catenations:
.<fun x y →
(((""^ string_of_int x) ^"a") ^"b") ^string_of_int y>.

But strings form a monoid under catenation, and so this
code is equivalent to the followingmore efficient code, which
is generated by our library:
.<fun x y → string_of_int x ^ ("ab"^ string_of_int y)>.

(Our library can also generate themore efficient code that
makes a single call to an n-ary catenation function.)

Power. Consider the staged power function, fun x → xn , with
n statically known. Once again, a naive approach generates
suboptimal code. The staged power function of Taha [2003]
builds a computation with too many multiplications, includ-
ing an unnecessary multiplication by 1:
power 5 .<x>. { .< 1 * (x * (x * (x * (x * x)))) >.

Using the fact that integers with multiplication form a
commutativemonoid, our commutative semiring implemen-
tation reduces the 5 multiplications to 3:
power 5 .<x>. {
.< let y = x * x in let z = y * y in x * z >.

Linear algebra. Linear algebra offers many opportunities
for optimisation via multi-stage specialization and numeri-
cal simplification such as: the Fast Fourier Transform [Kise-
lyov et al. 2004], Gaussian elimination [Carette and Kise-
lyov 2011], andmatrix-vector multiplication [Aktemur et al.
2013]. The inner product illustrates the principle: given a
statically-known vector s = [1; 0; 2] and a dynamic vec-
tor d = [x; y; z], a naively-staged inner product function
might generate the following code:

.< (1 * x) + (0 * y) + (2 * z) >.

Using the fact that integers form a commutative semiring,
our library generates the following simpler code:

.< x + (2 * z) >.

all and any. The examples so far all involve constructing
and then residualizing partially-static values. It is also some-
times useful to compute with partially-static values before
residualization.

The all function takes a predicate p and a list l, and re-
turns true iff every element of t satisfies p. Our approach
supports defining a variant of all that operates on partially-
static lists, with interleaved static and dynamic portions, and
that produces partially-static booleans. Since a single ele-
ment that does not satisfy p is enough to determine the re-
sult of all, the result may be static even where the input is
partially unknown1:

all even ([2; 4] ++ .<x>. ++ [3])

{ even 2 ⊗ even 4 ⊗ .< any even x >. ⊗ even 3

With our library the expression above is further reduced to
the static value false, using the fact that booleans form a
commutative semiring. The dual function any can be defined
similarly.

In the examples above, partially static operations (+, ^,
etc.) are explicit. Our approach also covers partially-static
datatypes without operations or equations:

Possibly-static data. When instantiating the universal pro-
perty for the empty theory, i.e. data with no operations and
no laws, the free extension degenerates into ordinary sum-
types, yielding a partially-static structure known as possibly-
static, whose values are either entirely static or entirely dy-
namic. Possibly-static values can be used to write programs
that can accept a particular input as static or dynamic:

is_digit (Dyn c) { Dyn .< is_digit .~c >.

is_digit (Sta '3') { Sta true

1The full code involves injections from static and dynamic values into a
common type (§3).
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module type MONOID = sig

type t

val 1 : t

val (⊗) : t → t → t

end

1 ⊗ x ≡ x ≡ x ⊗ 1
x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z

Figure 1. Monoids and their laws

Partially-static algebraic datatypes. More generally, in-
ductive algebraic datatypes can be seen as initial algebras for
a multi-sorted signature, i.e. free algebras of operations with-
out laws. These datatypes are useful in programs that per-
form staged computation. Lists with possibly-dynamic tails
are a common example of a more general family of partially-
static datatypes [Inoue 2014; Kaloper-Meršinjak and Yallop
2016; Sheard and Diatchki 2002].
For example, a variant of map that takes functions for both

static and dynamic values can traverse the initial portion of
a partially-static list, leaving traversal of the dynamic tail
for later. Supposing lst = 0 :: 1 :: .<t>., we have:

mapps (succ, .<succ>.) lst { .<1 :: 2 :: map succ t>.

3 Monoids
At the heart of each example in §2 is a partially-static alge-
braic structure. This section introduces a concrete structure
for the partially-static monoids of strings, beginning from
design considerations and concluding with a concrete im-
plementation. The implementation generalizes straightfor-
wardly to arbitrary monoids (§5).

Partially-staticmonoid: interface. What dowe need from
a partially-static monoid PS⊗?

First, if PS⊗ is to stand in for other monoids in multi-stage
programs, it must implement the MONOID interface in a way
that satisfies the familiar laws (Figure 1). Ideally, PS⊗ should
be canonical: expressions that are statically equivalent un-
der the monoid laws should have the same representation
in PS⊗

Second, it should be possible to use partially-static values
in place of fully-static or fully-dynamic values, and so PS⊗
should support injections from static and dynamic data.

Third, it should be possible to residualize computations
in PS⊗ – i.e. to turn partially-static monoid values into code.
Generalizing a little, it should be possible to inspect partially-
static data — or at least, to inspect its static structure —
both in order to residualize and to perform transformations
such as all (§2). Residualization, and destruction in general,
should also preserve the monoid laws, so that programs that
are equivalent under the monoid laws should residualize to
programs that are also equivalent under the laws.

Finally, since the aim is to improve generated code, per-
forming as much computation as possible in advance, PS⊗

should never unnecessarily convert static values to dynamic
values.

These requirements suggest the following interface, which
includes the MONOID interface (line 2), and supports injec-
tions from static and dynamic values (lines 4 and 5) along
with a mapping into another monoid C based on mappings
for static and dynamic values (lines 6–8):

1 module type PS⊗ = sig

2 include MONOID

3 type sta

4 val sta : sta → t

5 val dyn : sta var → t

6 module Eva(C: MONOID) : sig

7 val eva : (sta → C.t) →
8 (sta var → C.t) → t → C.t

9 end

10 end

The var type, discussed further in §5, is a retract of code
that represents only dynamic variables.

Partially-staticmonoid: implementation. Howdowe im-
plement PS⊗ while satisfying themonoid laws, use pre-comp-
uted static values, and generate optimal code?
Starting from the four PS⊗ operations: 1; ⊗; sta; and dyn,

we naively define the following tree type, with one construc-
tor for each:
type t = Unit | Mul of t * t

| Sta of string | Dyn of string var

However, this implementation ignores the monoid laws,
allowing many different representations for values (such as
Mul (Unit,Unit) and Unit) that ought to be considered equal.
Applying the laws eliminates the redundancy, flattening the
nesting so that the association is all in one direction:
type t = Nil | Cons of atom * t

and atom = Sta of string | Dyn of string var

Now ⊗ can be defined by the familiar append function
which, of course, respects the monoid laws.

We might take things one step further. It is clearly desir-
able for sta to be a homomorphism with respect to ⊗, i.e.
sta x ⊗ sta y ≡ sta (x ⊗ y)

This suggests that adjacent static values in the list should
be coalesced (Figure 5). With a little care it is possible to en-
force the constraint in the type, using a GADT index [Gar-
rigue and Normand 2011] instantiated by s or d to track
whether a list starts with a static or dynamic element:
type _ alt = Empty : _ alt

| ConsS : string * d alt → s alt

| ConsD : string var * _ alt → d alt

type alt_ex = T : _ alt → alt_ex

The existential type alt_ex hides the index to build a pa-
rameterless type that can be used to implement t in PS⊗ .
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This representation is still not quite canonical, since ConsS
can store empty strings, a shortcoming that can be over-
comewith further type trickery [Kiselyov and Shan 2007]. It
is (comparatively) straightforward to define an append_alt

function that catenates two alt values, combining adjacent
static strings using the standard ^ operator.
Finally, eva interprets a value of type t in some other

monoid C, mapping constituent static and dynamic values
individually, and mapping monoid operations to the opera-
tions of C. In other words, the following expression

eva f g (s ⊗ (d ⊗ (s ⊗ ... ⊗ 1)))

becomes

f s ⊗C (g d ⊗C (f s ⊗C ... ⊗C 1C))

As an optimization, the unit may be omitted where the
value is non-empty, so that eva f g (s ⊗ 1) becomes f s

rather than f s ⊗C 1C.
A common use of eva is residualization, which turns a

partially-static value into a fully-dynamic value. Residual-
ization is implemented by instantiating C to the monoid that
maps x ⊗ y to .<.~x ^ .~y>. and 1 to .<"">., and supply-
ing the function that residualizes a single string value and
the identity function as the two arguments of eva. Then

eva lift_string id (s1 ⊗(d ⊗ (s2 ⊗1))) {
.< .~(lift_string s1) ^ .~d ^ .~(lift_string s2) >.

Here is the implementation of Ps⊗_string. (App. A gives
implementations for append_alt and Eva_alt.)

module type Ps⊗_string = struct

type t = alt_ex and sta = string

let sta s = T (ConsS (s, Empty))

let dyn d = T (ConsD (d, Empty))

let 1 = empty

let (⊗) = append_alt

module Eva = Eva_alt

end

Improving printf. §2 showed the effects of the partially-
static monoid on the code generated by a staged sprintf

function. We now show how to transform the implementa-
tion of sprintf to achieve those effects.

Figures 2 and 3 give minimal interfaces for unstaged and
staged formatted printing. The type t represents format spec-
ifications; its two parameters respectively represent the re-
sult and the input type of a sprintf instantiation. The fol-
lowing three operations construct format strings: lit s is a
format string that accepts no arguments and prints s; x ++ y

catenates x and y; int is a format string that accepts and
prints an integer argument. Finally, sprintf combines a for-
mat string with corresponding arguments to construct for-
matted output. Asai [2009] gives further details.

Here is an implementation of Figure 2 in continuation-
passing style (CPS), using an accumulator:

type (_,_) t

val lit : string → (α, α) t

val (++) : (β, α) t → (γ, β) t → (γ, α) t

val int : (α, int → α) t

val sprintf : (string, α) t → α

Figure 2. printf signature

type (_,_) t

val lit : string → (α, α) t

val (++) : (β, α) t → (γ, β) t → (γ, α) t

val int : (α, int code → α) t

val sprintf : (string code, α) t → α

Figure 3. Staged printf signature

type (α,ρ) t = (string → α) → string → ρ

let lit x k s = k (s ^ x)

let (++) f g k = f (g k)

let int k s x = k (s ^ string_of_int x)

let sprintf p = p id ""

With this implementation, a format string is a function
accepting a continuation argument k and an accumulator s.
Both lit and int call k directly, passing an extended string;
++ is simply function composition. The function sprintf pa-
sses the identity function as a top-level continuation along
with an empty accumulator.

Staging sprintf is straightforward. We treat format st-
rings statically; arguments and, consequently, the accumu-
lator, are dynamic. The ++ function is left unchanged, and
the remainder of the implementation acquires brackets and
escapes to match the assignment of static and dynamic clas-
sifications:

type (α,ρ) t = (string code → α) → string code → ρ

let lit x k s = k .<.~s ^ x>.

let int k s x = k .<.~s ^ string_of_int .~x >.

let sprintf p = p id .<"">.

The generated code (§2) is suboptimal precisely because
the staging is straightforward: every catenation is delayed,
even where both operands are available in advance.

Staging using our partially-static monoid is also straight-
forward. The steps are as follows, starting from the unstaged
implementation: replace stringwith Ps⊗_string.t, replace ^
and "" with ⊗ and 1, insert sta and dyn to inject static and
dynamic expressions, and replace the top-level continuation
with the residualization function described above:

type (α,ρ) t = (Ps⊗_string.t →α) → Ps⊗_string.t →ρ

let lit x k s = k (s ⊗ sta x)

let int k s x = k (s ⊗ dyn .<string_of_int .~x>.)

let sprintf p = p cd 1
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s1 d1 ⊗ [] { s1 d1

Figure 4. Partially-static monoid: dropping 1

s1 d1 s2 ⊗ s3 d2 s4 { s1 d1 s2@s3 d2 s4

Figure 5. Coalescing adjacent static values

This implementation statically constructs a canonical rep-
resentation before residualizing, eliminating nesting and re-
dundant catenations with 1.
App. B gives a second residualization function for partial-

ly-static string monoids that generates a single call to n-ary
concat rather than a sequence of binary catenations.

4 Universality: free extension of algebras
To describe the universal property for partially static data,
we first recall some basic universal algebra, which allows us
to discuss classes of algebraic structures uniformly.

4.1 Rudimentary universal algebra
Like datatypes, descriptions of algebraic structures consist
of an interface and a functional specification for this inter-
face. The interface is given by an algebraic signature Σ: a
pair (OΣ, arityΣ) consisting of a set OΣ whose elements we
call operation symbols, and a function arityΣ : OΣ → N as-
signing to each operation symbol a natural number called
its arity. For example, monoids use the signature given by

Omon B {1, ⊗} , aritymon(1) B 0, aritymon(⊗) B 2

We later use themore compact set-like notation {1 : 0, ⊗ : 2}.
Given a signature Σ, the functional specification is given by
a set of equations between terms built from the operation
symbols in Σ and according to their corresponding arities.
These equations are called axioms (over the signature Σ). For
example, the three monoid axioms Axmon are:

1 ⊗ x ≡ x x ⊗ 1 ≡ x (x ⊗ y) ⊗ z ≡ x ⊗ (y ⊗ z)
Put together, the description of an algebraic structure is called
a presentation P, given by a pair (ΣP ,AxP) consisting of a
signature ΣP and a set AxP of axioms over this signature.
The example signature and axioms above form mon — the
presentation of monoids (cf. Fig. 1).

An algebra for a presentation is a mathematical imple-
mentation of such specifications. Formally, given a presen-
tation P, a P-algebraA is a pair (|A| ,−A) consisting of a set
|A|, called the carrier of the algebra, and, for each operation
symbol f : n in ΣP , an n-ary function fA : |A|n →|A|, such
that all the axioms in AxP hold. For example, noting that a
nullary function is a constant, a mon-algebra is a monoid.

Finally, given two P-algebras A, B, a P-homomorphism
h : A → B is a function between the carriers h : |A| → |B |
that respects the operations: for each operation symbol f : n

in ΣP , and for everyn-tuple ®a = (a1, . . . ,an) of |A|-elements,
we have h(fA(a1, . . . ,an)) = fB (h(a1), . . . ,h(an)). For exam-
ple, a mon-homomorphism h : A → B is a function that
satisfies h(1A) = 1B and h(x ⊗A y) = h(x) ⊗B h(y), i.e. the
familiar notion of a monoid homomorphism.
For each presentation P, the collection of P-algebras and

P-homormophisms between them forms a category P-Alg,
with the identities and composition given by the identity
functions and the usual composition of functions. We have
an evident functor |−| : P-Alg → Set that forgets the al-
gebra structure on objects and the homomorphism require-
ment on morphisms.
The forgetful functor |−| always has a left adjoint FP :

Set → P-Alg. Concretely, its object map on a set X yields
the term algebra over X : the set of ΣP-terms with variables
in X , quotiented by the deductive closure of AxΣ under the
derivations of equational logic. For example, the freemonoid
over X is the set of finite sequences with X -elements, as ev-
ery pair of Σmon-terms are equivalent to the sequence formed
by their tree-fringe, with the unit elements omitted, repre-
sented by a spine. The unit of the adjunction, ηP : X →
|FPX | maps an element x ∈ X to its equivalence class as a
term. Formon,ηmon(x) is the one-element sequence [x]. The
adjunction itself assigns to every function f : X → |A| its
homomorphic extension >>=P f : FPX → A, which evalu-
ates (the equivalence class of) a term in the algebra A, with
X -variables substituted according to f . For example, taking
A to be the natural numbers with multiplication:

[x ;y; z] >>=mon {x 7→ 2,y 7→ 3, z 7→ 4} = 2 · 3 · 4 = 24

The categories P-Alg have coproducts A ⊕ B, and their
concrete structure is given as follows. The carrier |A ⊕ B |
is the ΣP-term algebra over the disjoint union |A| + |B | quo-
tiented by the deductive closure of the axioms inP, together
with the equations of the form:

f (ι1a1, . . . , ιnan) ≡ ι1 fA(a1, . . . ,an)

for every f : n in ΣP , a1, . . . ,an in |A|, and analogous equa-
tions for B. The coproduct injection ι⊕1 : A → A ⊕ B maps a
to the equivalence class of ι1a, and similarly for B. For every
pair of homomorphismsh1 : A → C ,h2 : B → C , the unique
cotupling homomorphism [h1,h2] : A ⊕ B → C interprets
a term over |A| + |B | as the corresponding |C |-element, once
each variable ιix is substituted by hi (x). A free extension of
an algebra A by a set X is the coproduct of the algebra A
with the free algebra over X , namely ps(A,X ) B A ⊕ FPX .
Combining the universal properties of coproducts and ad-
junctions, it is characterised by an algebra ps(A,X ) together
with a homormophism ιA : A → ps(A,X ), and a function
ιX : X → ps(A,X ), such that for every other pair of a ho-
momorphism h : A → C and a function e : X → |C |, there
exists a unique homomorphism eva(h, e) : ps(A,X ) → C
satisfying eva(h, e) ◦ ιA = h and

��eva(h, e)�� ◦ ιX = e .
5
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4.2 Conceptual justification
We have two different arguments for using free extensions
of algebras as the appropriate functional specification for
partially static data. In both, the algebra A stands for the
static datatype, and the set X stands for a collection of dy-
namically-known values. The free extension ps(A,X ) then
supports the first two operations for partially-static data:

sta B ιA : A → ps(A,X ) dyn B ιX : X → ps(A,X )

In the first argument, the universal property requires a
conceptual leap: we have no direct justification to the exis-
tence of the map eva(h, e) for every other algebra C . How-
ever, if we strengthen the requirements of partially static
data to allow any homomorphic post-processing, and not
just late-binding, we indeed obtain the existence of the de-
sired homomorphism eva(h, e) and the associated two equa-
tions. The uniqueness requirement represents minimality of
the datatype.

For the second argument, we observe the following fact:

Proposition 4.1. Let P be a presentation, and X a set. As-
sume a choice of a set ps(A,X ) for every algebra A, a homo-
morphism ιA : A → ps(A,X ), and a function ιX : X →
ps(A,X ) such that:

• For every function e : X →|A| there is a unique homo-
morphism eva(id, e) : ps(A,X ) → A satisfying:

eva(id, e) ◦ ιA = id
��eva(h, e)�� ◦ ιX = e

• For every homomorphism h : A → B, there is a unique
homomorphism ps(h,X ) : ps(A,X ) → ps(B,X ) satis-
fying:

ps(h,X ) ◦ ιA = ιB ◦ h ps(h,X ) ◦ ιX = ιX

Then ps(A,X ), together with ιA, ιX and eva(h, e) B eva(id, e)◦
ps(h,X ) form the free extension of A with X .

While more technical, this justification adds a uniformity
requirement. First, partially static datatypes should exist for
every algebra. Second, as the datatype stores representations
of hybrid terms consisting only of A elements and X ele-
ments, the functor ps(−,X ) represents a uniformity assump-
tion about the way A elements are stored. The uniqueness
requirements require this representation to be minimal.

4.3 Algebraic structure
As an example, the free extension of a monoid A with a set
X has as carrier the set:��ps(A,X )

�� B A ×
∑
n∈N

(X ×A)n

As a more complicated example, recall that a commutative
ring (A,0, ⊕, ⊖,1, ⊗) where (A,0, ⊕, ⊖) forms an abelian
group, (A,1, ⊗) forms a commutativemonoid, togetherwith
a distributivity law x ⊗ (y ⊕ z) ≡ (x ⊗ y) ⊕ (x ⊗ z). The free

extension of a commutative ring A with a set X is the com-
mutative ring A[X ] of multinomials with coefficients in A
and variables in X .

5 A library for partially-static data
We designed a general-purpose library for generating sim-
plified algebraic code using the principles of §3 and §4.

Interface. The PS⊗_stringmodule of §3 generalizes to sup-
port arbitrary monoids by parameterizing by the MONOID in-
stance (Figure 6). Practical reasons lead us to doubly-para-
meterize our PS⊗ with static and dynamic variants of the
same monoid. In principle, the dynamic monoid can be built
automatically from the static variant:

module Delay⊗(M:MONOID):MONOID with type t = M.t code

= struct type t = M.t code

let 1 = .< M.1 >.

let (⊗) x y = .< M.(.~x ⊗ .~y) >. end

but in practice it is better to avoid cross-stage persistence
that captures locally-bound values (M.1 and M.(⊗)), and so
we instead define each dynamic monoid separately.

Instantiating PS⊗ with the string monoid and its dynamic
variant as parameters recovers the PS⊗_string of §3.

Figure 7 shows the type of a second module in our library,
Ps⊗⊕ , which defines partially-static commutative rings, and
is parameterized by concrete static and dynamic implemen-
tations of the CRING interface. The Ps⊗ and Ps⊗⊕ interfaces
are identical except for the algebraic signatures MONOID and
CRING. Unfortunately, we do not know how to define both
interfaces as instances of a more general signature, since
OCaml’s abstraction over module types supports only fully-
known or entirely abstract module types. The generaliza-
tion here seems to need an intermediate form of abstraction
that specifies some components of a signature (such as the
type t used in the definition of Eva) while leaving others
(such as the particular operations in the algebraic signature)
unspecified.

var and code. The standard type of dynamic values in Meta-
OCaml is code: a value of type t code represents a dynamic
expression of type t. Instead, our library uses a type var,
which represents only a subset of code values, namely those
dynamic expressions representing variables.
Using var in place of code serves two purposes. First, it al-

lows us to freely duplicate or discard dynamic values, which
is unsafe for general quoted expressions, since theymay per-
form effects. Second, it allows us to add ordering informa-
tion, making var values suitable for use as keys in associa-
tive data structures. A var value is a pair of a code value and
an unique integer identifier that is used to support ordering:

type α var = α code * int

6
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module Ps⊗(A:MONOID)(B:MONOID with type t = A.t code):

sig

include MONOID

type sta = A.t

val sta : sta → t

val dyn : sta var → t

module Eva(C: MONOID) : sig

val eva : (sta → C.t) →(sta var → C.t) →t → C.t

end

end

Figure 6. Interface to partially-static monoids

module Ps⊗⊕(A:CRING)(B:CRING with type t = A.t code):

sig

include CRING

type sta = A.t

val sta : sta → t

val dyn : sta var → t

module Eva(C: CRING) : sig

val eva : (sta → C.t) →(sta var → C.t) →t → C.t

end

end

Figure 7. Interface to partially-static commutative rings

Conversion from var to code simply projects the first el-
ement of the pair. Conversion from a general dynamic ex-
pression of type code to var inserts a let binding for the
expression using the freshly-bound variable as the first var
component and a freshly-generated integer as the second.

This use of let-insertion is a standard technique in multi-
stage programming and partial evaluation, particularlywhen
specializing in direct style [Bondorf 1992]. Typical imple-
mentations of let-insertion involve delimited control [Kise-
lyov 2014] or algebraic effects [Yallop 2017]; the most recent
release of BER MetaOCaml supports let-insertion natively.

6 Conclusion and further work
We have used free extensions of algebras as a functional
specification of partially-static data, and described a high-
level library for using them to produce efficient staged code.

In the future, we would like to explore this approach to
Kaloper-Meršinjak and Yallop’s [2016] generic treatment of
partially-static algebraic datatypes [Jones et al. 1993; Sheard
and Diatchki 2002] (cf. §2). We would also like to use free
extensions of free theories to partially evaluate code using
effect handlers [Bauer and Pretnar 2015].
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A Partially-static monoids
The var type
type α var = α code * int

let var_counter = ref 0

let var : α. α code → α var =

fun x → incr var_counter; (x, !var_counter)

let cd_of_var : α. α var → α code = fst

type d = D and s = S

type (α, 'start) alt =

Empty : (α, _) alt

| ConsS : α * (α, d) alt → (α, s) alt

| ConsD : α code * (α, _) alt → (α, d) alt

type α alt_ex = T : (α, _) alt → α alt_ex

module Eva_alt (C : MONOID) =

struct

let eva f g (T c) =

let rec eva' : type start.

(A.t, start) alt → C.t = function

| Empty → C.1

| ConsS (a, Empty) → f a

| ConsD (b, Empty) → g b

| ConsS (a, m) → C.(f a ⊗ eva' m)

| ConsD (b, m) → C.(g b ⊗ eva' m)

in eva' c

end

Partially-static monoids
module Ps⊕

(A: MONOID)

(B: MONOID with type t = A.t code) :

sig

include MONOID with type t = A.t alt_ex

val sta : A.t → t

val dyn : A.t var → t

module Eva(C : MONOID) :

sig val eva : (A.t → C.t) → (B.t → C.t) →
t → C.t end

end =

struct

type t = A.t alt_ex

let consS : type start.

A.t → (A.t, start) alt → (A.t, s) alt =

fun a → function

| Empty → ConsS (a, Empty)

| ConsS (a', m) → ConsS (A.(a ⊗ a'), m)

| ConsD _ as r → ConsS (a, r)

let consD : type start.

B.t → (A.t, start) alt → (A.t, d) alt =

fun b → function

| Empty → ConsD (b, Empty)

| ConsS _ as r → ConsD (b, r)

| ConsD (b', m) → ConsD (B.(b ⊗ b'), m)

let rec append_alt : type start start'.

(A.t, start) alt → (A.t, start') alt → t =

fun l r → match l, r with

| l, Empty → T l

| Empty, r → T r

| ConsS (a, m), r →
let T m' = append_alt m r in T (consS a m')

| ConsD (b, m), r →
let T m' = append_alt m r in T (consD b m')

let (⊗) (T l) (T r) = append_alt l r

let 1 = T Empty

let sta a = T (ConsS (a, Empty))

let dyn b = T (ConsD (cd_of_var b, Empty))

module Eva = Eva_alt

end

module String_monoid =

struct

type t = string

let (⊗) = (^)

let 1 = ""

end

module String_code_monoid =

struct

type t = string code

let (⊗) x y = .< .~x ^ .~y >.

let 1 = .< "" >.

end

module Ps⊕_string =

Ps⊕(String_monoid)(String_code_monoid)

B Efficient residualization for
partially-static strings

A residualizing function that builds a single n-ary catena-
tion from a partially-static string monoid value may be de-
fined as follows:
module String_code_list = struct

type t = string code list

let 1 = []

let (⊗) = (@)
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end

let residualize_string_list

: string code list → string list code =

fun l →
List.fold_right (fun h t → .<.~h :: .~t>.) l .<[]>.

let nary_cd : Ps⊕_string.t →string code =

fun s →
let module E = Ps⊕_string.Eva(String_code_list) in

.< String.concat ""

.~(residualize_string_list

(E.eva

(fun x → [.<x>.])

(fun x → [x])

s)) >.

Here is an example of nary_cd in action:
nary_cd (sta "a" ⊗ dyn (var .< x >.) ⊗ sta "c")

{ .<String.concat "" ["a"; x; "c"]>.

9
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