
OCaml inside: a drop-in replacement for libtls

Enguerrand Decorne (speaker), Jeremy Yallop, David Kaloper-Meršinjak
University of Cambridge Computer Laboratory

Introduction: openssl to libtls to libnqsb-tls
The C programming language pervades systems software. An op-
erating system in the Unix tradition consists of a kernel, written
in C, and a collection of libraries and executables, also written in
C, which communicate in large part via APIs defined as C types
and functions. Systems built in C typically suffer from a number of
problems, ranging from buffer overflows and other violations that
follow inevitably from unrestricted access to memory, to awkward
APIs that result from an inexpressive type system and a lack of
automatic memory management.

The openssl library, which implements the cryptographic pro-
tocols TLS and SSL, suffers from both these problems. The lack
of bounds checking in C led to the notorious Heartbleed bug in
2014; a study two years earlier found that almost no clients of
openssl use the library correctly, apparently due to its unhelpful
interface (Georgiev et al. 2012).

In response to the Heartbleed bug, the OpenBSD team created
libressl, a fork of openssl with the aim of correcting the de-
ficiencies. One early fruit of the libressl project is libtls, a
much simpler, more disciplined interface to the TLS protocol im-
plementation in libressl.

However, libtls is still built in C, and so is still vulnerable
to potential buffer overflows, type errors, and similar defects. In
this talk we describe one approach to avoiding these problems,
namely replacing libtls with a fully compatible library written in
OCaml. Our library, libnqsb-tls1, matches the libtls function-
for-function, but the implementation contains no C; instead, it it
wraps the pure OCaml TLS implementation ocaml-tls (Kaloper-
Meršinjak et al. 2015).

Exposing OCaml to C (without writing any C)
The implementation of libnqsb-tls is based on two existing
OCaml libraries. As described above, the ocaml-tls library forms
the core of libnqsb-tls. The interface between OCaml and C
is defined by another library, ocaml-ctypes (Yallop et al. 2016)
(typically shortened to plain ctypes).

The ctypes library is widely used to expose C functions to
OCaml. However, it also supports the inverse arrangement, i.e.
wrapping a set of OCaml functions as a library that can be
called from C, which is precisely what is needed to implement
libnqsb-tls. Ctypes supports both regular and inverted bind-
ings in a similar fashion: in both cases the user constructs a set of
OCaml values which describe the types and functions of the cross-
language interface, and then ctypes uses the description to generate
code. (See Listing 1 for an example, which is expounded in more
detail in the next section.) For inverted bindings, the generated
code consists of a C header file (Listing 2), an OCaml source file
(not shown), and a C source file (Listing 3). The header file con-
tains declarations for the OCaml functions exposed to C — in our

1 Available here: https://github.com/mirleft/libnqsb-tls/

case, these are declarations of the functions in the libtls inter-
face, which our library exports. The source files contain definitions
of those functions, which mediate between the libtls interface
and the ocaml-tls implementation, and which can be compiled
and linked together with ocaml-tls, the OCaml runtime, and the
OCaml code that implements libnqsb-tls to build a shared li-
brary.

let tls_server () =
let tls_server =
{ error = None; config = None; fd = None;

state = ‘NotConfigured; linger = None } in
Root.create tls_server |> from_voidp tls

let () = I.internal "tls_server"
(void @-> returning (ptr tls)) tls_server

Listing 1: Exposing an OCaml function to C

struct tls *tls_server(void);

Listing 2: Generated header file, matching libtls’s header

struct tls *tls_server(void) {
enum { nargs = 1 };
CAMLparam0();
CAMLlocalN(locals, nargs);
locals[0] = Val_unit;
value x239 = functions[fn_tls_server];
value x240 = caml_callbackN(x239, nargs, locals);
struct tls *x241 = CTYPES_ADDR_OF_FATPTR(x240);
caml_local_roots = caml__frame;
return x241;

}

Listing 3: Generated C code

Replicating libtls: challenges and techniques
Exposing a C interface to an OCaml library involves several chal-
lenges, including converting between OCaml and C views of data,
harmonising the different styles of memory management, and
bridging two programming styles.

Converting between OCaml and C values Values in OCaml are
represented as tagged blocks, described by a rich type system
with support for parameterised and abstract types. Values in C are
represented as flat blocks, described by a simple type system which
closely corresponds to the concrete representation of values.

The ctypes library exposes a set of typed combinators which can
be used to describe the type of a C function. The type description
determines a corresponding OCaml type for the C function, and
generates code which converts between the OCaml and C data
representations. This approach works in both directions: the same
type description can be used to expose a C function to OCaml, or
(as in our libtls replacement) to expose an OCaml function to C.

1 2016/8/3

https://github.com/mirleft/libnqsb-tls/


Listing 1 shows a ctypes type description for a function tls_server ,
which wraps an OCaml function of the same name. The ctypes
function I . internal takes three arguments: the name of the gener-
ated C function, a description of the type of the function, and an
OCaml function which is wrapped by the generated code.

Harmonising memory management Memory management is a
second fundamental difference between C and OCaml.

In OCaml, memory is managed by the garbage collector (GC).
Allocated values are collected (freed) after the GC has determined
that they are no longer reachable, and the GC may move values
from one part of memory to another in a compaction phase. Since
OCaml programs do not manipulate addresses, collection and com-
paction are not generally visible to a program.

In C, memory is managed by the programmer. Allocated values
must be freed by the programmer when he has determined that
they are no longer reachable. Since almost all C programs involve
significant address manipulation, the C runtime has no freedom to
collect or move allocated values.

While both these views of memory management are inter-
nally consistent, care is needed in a program or library (such as
libnqsb-tls) that attempts to combine them. Exposing the ad-
dress of an OCaml value to C could have disastrous consequences,
since the OCaml runtime assumes that the addressed value can be
safely moved, while the C program assumes that it will remain
where it is.

Ctypes encourages a programming style that avoids many of
these difficulties, by making it easy to pass C values to OCaml
(which is generally safe) and difficult to pass OCaml values to
C (which is often dangerous). However, when reimplementing an
existing C interface there is less control over memory management.
For example, the tls_server function (Listing 2) involves returning
a representation of the internal state of the tls library; in our case
this is an OCaml value.

The solution, as often, is an extra level of indirection. Rather
than returning the address of the OCaml value from tls_server ,
our implementation returns a pointer to a small block which holds
the address of the OCaml value. Allocating the block in C-managed
memory ensures that its address remains stable. Registering the
block as a root with the OCaml runtime ensures that it is updated if
the value is moved during compaction.

Bridging programming styles Replicating the exact behaviour of
a C library in OCaml can involve additional challenges. For exam-
ple, ocaml-tls takes great care to avoid misconfiguration, and uses
OCaml’s rich type system to ensure that parameters are correct. Li-
breSSL’s libtls, on the other hand, uses an incremental approach,
where the user sets parameters one by one; the parameters may be
inconsistent until the point where the TLS context is finally gener-
ated. In order to bridge the gap between these two styles, we stage
each parameter in a large record which stores parameters as options
until the generation point, where we check the whole configuration
set and convert it to ocaml-tls’s more structured representation.
Integration with system services
A number of services in OpenBSD, including httpd, spamd, ntpd
and ftp, rely on libtls for communications security. For exam-
ple, the httpd web server uses libtls to implement the HTTPS
protocol.

In order to check that our library closely matches the behaviour
of libtls, we linked httpd against libnqsb-tls in place of
libtls (Figure 1).

Integrating libnqsb-tls with httpd exposed a number of
disparities in behaviour with libtls. For example httpd uses
the pledge system call, part of OpenBSD’s capabilities system, to
relinquish the privileges needed to read a certificate once reading
is no longer necessary. Our initial implementation was written with

Figure 1. httpd running libnqsb-tls.

the assumption that certificates could be read at any point, which
led to a runtime failure.

Performance
Performance is a common consideration when deciding whether
to replace a low-level component with a high-level alternative.
There are two possible causes for concern. First, moving to a high
level language typically means giving up some control over data
layout and other low-level details, which can make code difficult
to optimize by hand. Second, the FFI layer that integrates the high
level component with other parts of the system introduces a layer
of indirection with potentially significant overheads.

The results from preliminary performance tests with libnqsb-tls
are promising. Our tests involved transferring a large file (over
1GB) over HTTPS using httpd, and measuring the transfer speed
when either libtls or libnqsb-tls was used to encrypt the pay-
load. In this setting the performance of libnqsb-tls was within
a factor of two of the performance of libtls. Since we have not
yet made any attempts at optimization, we hope to see significant
improvements to this figure in the future.

Conclusion
This submission describes some reusable lessons from our ex-
perience in building a replacement for a core OpenBSD compo-
nent (libtls) based on an existing OCaml library (ocaml-tls).
Our replacement library, libnqsb-tls, displays promising perfor-
mance, integrates with various OpenBSD components, and is im-
plemented without any C code (except for a tiny reusable stub that
initializes the OCaml runtime). If our proposal is accepted, we plan
to include a live demonstration of libnqsb-tls during the talk.

References
Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan

Boneh, and Vitaly Shmatikov. The most dangerous code in the world:
validating ssl certificates in non-browser software. In ACM Conference
on Computer and Communications Security, pages 38–49, 2012.

David Kaloper-Meršinjak, Hannes Mehnert, Anil Madhavapeddy, and Peter
Sewell. Not-quite-so-broken TLS: lessons in re-engineering a security
protocol specification and implementation. In 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August 12-
14, 2015., pages 223–238, 2015.

Jeremy Yallop, David Sheets, and Anil Madhavapeddy. Declarative foreign
function binding through generic programming. In Functional and Logic
Programming - 13th International Symposium, FLOPS 2016, Kochi,
Japan, March 4-6, 2016, Proceedings, pages 198–214, 2016.

2 2016/8/3


