
Modular macros

Jeremy Yallop
University of Cambridge Computer Laboratory

jeremy.yallop@cl.cam.ac.uk

Leo White
Jane Street Capital
leo@lpw25.net

We propose an OCaml language extension for type-safe compile-
time code generation.

1. Macros
Programming often involves a choice between efficiency and ab-
straction. One the one hand, using high-level abstractions can lead
to an elegant program with suboptimal performance. On the other,
optimising for performance often means abandoning reusability
and manifest correctness.

As an example, consider the following definition of Printf-
style format strings:

type (_, _) fmt =
Int : (int → ’a, ’a) fmt

| Lit : string → (’a, ’a) fmt
| Cat : (’a, ’b) fmt * (’b, ’c) fmt → (’a, ’c) fmt

let (%) x y = Cat (x, y)

Here is a format string, analogous to "(%d,%d)", for printing out
pairs of integers:

let p = Lit "(" % Int % Lit "," % Int % Lit ")"

And here is sprintf, by means of a CPS auxiliary function:

let rec printk :
type a b. (string → b) → (a, b) fmt → a =
fun k → function
Int → fun s → k (string_of_int s)

| Lit s → k s
| Cat (l, r) →

printk (fun x → printk (fun y → k (x ˆ y)) r) l

let sprintf fmt = printk (fun x → x) fmt

sprintf p 3 4
- : string = "(3,4)"

The printk function acts as an interpreter for the language of
format strings. Using format strings rather than direct calls to the
functions string_of_int, ˆ, etc., has a number of advantages,
including readability and reusability, but is typically less efficient.

If we instead write printk using the system of macros de-
scribed in this abstract there is no longer a need to choose be-
tween abstraction and performance. Macros support programming
with the full OCaml language, including the module system, and
make it possible to build low-level code (like a sequence of calls
to string_of_int) from high-level descriptions (like a value
of the fmt type), retaining the benefits of abstraction, but elim-
inating all interpretative overhead. In contrast with existing solu-
tions to compile-time metaprogramming such as Camlp4 and “ppx”
AST transformers, macros are fully integrated into the OCaml lan-
guage, so that code generation itself is well-typed. Whereas exist-
ing tools rely on the OCaml compiler to check generated code for
well-typedness (and even well-scopedness), macros themselves are
guaranteed to never generate ill-typed code.

Here is a second of definition of printk, written as a code-
generating macro:

macro rec printk :
type a b. (string expr → b expr) → (a, b) fmt →

a expr =
fun k → function
Int → << fun s → $(k <<string_of_int s>>) >>

| Lit s → k (lift_string s)
| Cat (l, r) →

printk (fun x →
printk (fun y → k << $x ˆ $y >>) r) l

This definition of printk involves two new expression con-
structs, borrowed from MetaOCaml. Quoting an expression by
placing it between brackets << >> delays its evaluation, turning
it into a piece of code that can later be used as part of a larger pro-
gram. Splicing a quoted expression into a larger piece of code is
performed with the $ operator. The typing is straightforward: if e
has type t then <<e>> has type t expr; conversely, if e’ has
type t expr then $e’ has type e. As in MetaOCaml, quotations
allow type-safe programming with open code, but we direct the in-
terested reader to the MetaOCaml literature (e.g. [2]) for the details.

Inspired by Racket [1], we divide the evaluation of programs
written using macros into two phases (and sometimes more, but
we stick to two here). Expressions are evaluated either at run-
time (phase 0) or during compilation (phase 1). In this abstract
we use colour to highlight the phase distinction, colouring those
expressions in blue which are evaluated in phase 1, and leaving
those expressions black whose evaluation is delayed until phase
0. Evidently, in the definition of printk, only black expressions
will remain in the program after macro expansion. There is a family
of functions string_expr, int_expr, and so on, which turn
values into expressions suitable for use at a later phase.

Evaluation phases, macro bindings, quotation and splicing to-
gether form a coherent system. Macros (bound with macro) can
only be used directly in expressions at phase 1, whereas functions
(bound with let) can only be used directly in expressions at phase
0. Quoting allows references to phase 0 definitions in phase 1 ex-
pressions, whilst splicing allows construction of phase 0 expres-
sions using phase 1 definitions.

The same sprintf definition can now be used to create a
macro:

macro sprintf fmt = printk (fun x → x) fmt

but it now generates code rather than printing its arguments di-
rectly:

sprintf p
- : (int → int → string) expr =
<< fun s1 s2 → "(" ˆ string_of_int s1 ˆ

"," ˆ string_of_int s2 ˆ ")" >>

The generated code can be inserted into a larger program using the
splicing operator:

let print_pair (x, y) =
$(sprintf (Lit "(" % Int % Lit ","

% Int % Lit ")")) x y

This definition highlights a difference between macros and
MetaOCaml. In MetaOCaml, splices are only permitted within a
quotation. With macros, splices can occur at the top level of a pro-
gram, allowing insertion of generated code into a file which is to
be evaluated at phase 0.

2. Modular macros
Like other OCaml program elements — values, types, exceptions,
and so on — macros belong to modules, and play a full part in
the module system: a macro can be referred to by a path, included
within another module, hidden by signature ascription, and so on.
The combination of macros and modules raises two questions of
particular interest: first, what happens when a macro expands to
code which includes identifiers hidden by a signature? And second,
what is the meaning of a macro passed via a functor argument?

2.1 Macros out of modules: ascription and path closures
An expression inside a quotation can refer to any in-scope identifier
that will be available when the expression is evaluated. However, an
identifier that is in scope when a quotation is created need not be
visible at the point where the quotation is spliced into the program.

For example, here is an implementation of the classic staged
power function, which builds a recursion-free exponentiation
function for a particular exponent.

module Power : sig
macro power : int → (int → int) expr
end = struct
let square x = x * x

macro rec spower n x =
if n = 0 then

<< 1 >>
else if n mod 2 = 0 then

<< square $(spower (n/2) x) >>
else

<< $x * $(spower (n-1) x) >>

macro power n = << fun x → $(spower n << x >>) >>
end

With a naive implementation, calling power would generate
code containing references to the square function, which is not
in scope outside the Power module, having been hidden by the
signature:

Power.power 5
- : int expr =
<< fun x → x * square (square (x * 1)) >>

How can we ensure that identifiers available in the environment
where a quotation was created can be safely used in a different
context? There is a clear analogy to the question of how to treat
free variables used in local functions, and the issue can be solved
using an analogous technique: closures.

A closure in a language with lexical scope consists of the code
of a function together with the values of the free variables used by
the function. Analogously, a path closure for a macro consists of
the definition of the macro along with the set of free identifiers
used in the macro definition. A macro exported from a module
therefore itself behaves as a module which exports a binding for
each identifier used by the macro.

module Power : sig
module Closure1 :
val square : int → int

macro power : int → (int → int) expr
end
end = (* ... *)

Invoking the macro generates code which refers to elements of
the module:

Power.power 5 (* expands to Power.Closure1.power 5 *)
- : int expr =
<< fun x → x * (Closure1.square

(Closure1.square (x * 1))) >>

In order to preserve abstraction, the names in the closure cannot
be referred to directly by the program; they are only accessible
through the corresponding macro.

2.2 Macros into modules: functor staging
As we have seen, macros belong to modules. Here is a signature
MONOID of printable monoid values, which contains some macro
members:

module type MONOID = sig
type t
macro one : t expr
macro mul : t expr → t expr → t expr
val show : t → string

end

OCaml functors are modules which are parameterised by other
modules. Here is a functor F which is parameterised by a module
M with type MONOID:

module F(M : MONOID) = struct
let rec mtimes = function
[] → $(M.one)

| x :: xs → $(M.mul <<x>> << mtimes xs >>)

let show_mtimes l = M.show (mtimes l)
end

The functor F defines two functions, mtimes and show_mtimes,
which use macros and functions from M. However, there is an ap-
parent difficulty: in OCaml functor application takes place at run-
time (phase 0), which is too late to perform macro expansion.

Once again, there is a known technique which can be gener-
alized to solve the difficulty. A one-parameter functor in regular
OCaml can be decomposed into a curried two-parameter functor
which accepts static arguments (i.e. the type components) via the
first argument and the dynamic arguments (i.e. the value compo-
nents) via the second. The dynamic arguments may depend on the
static arguments, but there are no dependencies in the other direc-
tion. Extending this scheme to support macros involves adding the
macro components to the static parameter; for example, the functor
F may be decomposed as follows:

module F_staged(M_static : sig
type t
macro one : t expr
macro mul : t expr → t expr → t expr
end)
(M_dynamic : sig
val show : M_static.t → string
end) = (* etc. *)

Each functor argument is applied in a particular phase. For ex-
ample, an application F(Int) is decomposed into an application
F_staged(Int_static)(Int_dynamic), where the first
part of the application takes place during phase 1 and the second
part takes place during phase 0.

2.3 Module lifting
Macro definitions are one way to construct functions that can
be used during compilation (phase 1). A second source of

compile-time functions comes from importing compiled mod-
ules during compilation, making their values available for use
in macros. Racket supports cross-phase module lifting using the
require-for-syntax construct. Since OCaml does not use
explicit require statements we instead use a command-line argu-
ment; for example, the following makes the values from phase 0 of
the Power module available for use in phase 1 of math.ml:

ocamlc -k power.cmo math.ml

3. Acknowledgements
We thank Matthew Flatt, Oleg Kiselyov, Jay McCarthy and Carl
Eastlund for helpful discussions.

References
[1] Matthew Flatt. Composable and compilable macros: you want it when?

In Mitchell Wand and Simon L. Peyton Jones, editors, Proceedings of
the Seventh ACM SIGPLAN International Conference on Functional
Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-
6, 2002., pages 72–83. ACM, 2002.

[2] Oleg Kiselyov. The design and implementation of BER MetaOCaml
– system description. In Michael Codish and Eijiro Sumii, editors,
Functional and Logic Programming - 12th International Symposium,
FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings, volume
8475 of Lecture Notes in Computer Science, pages 86–102. Springer,
2014.

