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1 INTRODUCTION

Program generation is a powerful and expressive approach to eliminating abstraction overhead and
improving program performance, which has been studied and implemented in a variety of languages
with different forms, such as C++ templates [Abrahams and Gurtovoy 2004], macros [Burmako 2013;
Clinger and Rees 1991; Flatt 2002; Kohlbecker et al. 1986], or multi-stage programming for compile
time [Kovács 2022; Sheard and Jones 2002; Xie et al. 2022] and runtime code generation [Calcagno
et al. 2003b; Kiselyov 2014; Rompf and Odersky 2010; Taha et al. 1998].

This paper presents the design and implementation of MacoCaml1, an extension of OCaml with
support for compile-time code generation. We offer the following contributions:

• A unifying framework for phases and staging: In the design space of compile-time code
generation, there has been work supporting macros with phase separation [Flatt 2002] and
work supporting quotation-based staging [Sheard and Jones 2002], but the two notions are often
considered separate. We present a novel, simple, yet effective combination of the two techniques,
where macros are considered as compile-time bindings, expressions cross evaluation phases

1We like the name Maco as it is close to mac(r)o and is also the reverse of OCam(l).
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using staging annotations, and macro invocation is part of compile-time evaluation implied by
top-level splices (§2.1 and 2.2). This way, we unify macros and staging in a single framework,
enabling users to apply the unified abstraction to build reusable, composable, and maintainable
programs. Moreover, we show that staged macros integrate smoothly with features found in
real-world languages, including module imports (§2.3) and computations with side effects (§2.4).
• A comprehensive formalism of a feature-rich macro calculus: We provide a theoretical
foundation for MacoCaml by formalizing a typed source calculus<02> (§3). Staging calculi in
the literature often focus on a minimal set of features, but building MacoCaml on the OCaml
language forces us to confront several practical issues: interleaving of typing and compile-time
code generation, references with explicit compile-time heaps, and modules. We believe that<02>

is the first typed formalism to address such a rich staging feature set. The calculus describes
the essence of the macro system in OCaml, laying the foundation for a language feature to be
integrated into a full-scale language, allowing for further extensions that use or build on top of
the OCaml macro system.
• Soundness and phase distinction for staged macros: To model compile-time evaluation,
we formalize a core calculus<02>2>A4 as the compilation target for<02> , and present a type-
directed elaboration from<02> to<02>2>A4 (§4). Separating the source and the core calculi allows
us to distinguish modules from their compiled forms, making the phase separation explicit.
We establish key properties of our design, including 1) type soundness of <02>2>A4 (§4.4), 2)
elaboration soundness from <02> to <02>2>A4 (§4.5), and 3) phase distinction (§4.5). Thus we
formally establish properties essential for safe and modular programming: well-typed source
programs generate well-typed core programs. Moreover, the theorems, to our best knowledge,
are the first to formally reason about macros with compile-time heaps and prove that compile-
time computations do not interfere with runtime computations. Specifically, we show that
compile-time heaps can be discarded after compilation, and compile-time computations can be
erased before runtime evaluation.
• A working implementation for OCaml: We provide an implementation of MacoCaml in the
OCaml compiler, following the key ideas in our calculus (§5). The implementation is detailed,
and the modified compiler is available as an artifact [Xie et al. 2023]. All examples presented in
the paper work in the compiler. To validate our implementation, we have ported two substantial
existing libraries: Strymonas for stream fusion [Kiselyov et al. 2017], and the OCaml library for
typed formatting [Vaugon 2013]. The results show that MacoCaml works in practice and can be
applied to large-scale implementations.

We discuss related work in the rich design space of staging and macros in §6, and conclude and
discuss future work in §7. Our formalism is detailed, and some rules are elided for space reasons.
The complete set of rules and all proofs of stated theorems are provided in the appendix. While this
work focuses on OCaml, we believe this study can help with the design and formalism of staging
or macros in other programming languages.

2 OVERVIEW OF MACOCAML

This section gives an overview and summarizes the key aspects of MacoCaml. All examples are
written in OCaml syntax, and all code compiles and runs as expected in our implementation.

2.1 Programming with Staging and Macros

Consider defining a power function that calculates G= :

let rec power n x = if n = 0 then 1 else x * (power (n - 1) x) (* int -> int -> int *)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 209. Publication date: August 2023.
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Fig. 1. The call relation between let definitions : and macros<; we use ⟨⟩ for quotation and $ for splicing.

For example, power 5 2 returns 32, as expected. However, while this function can take an arbitrary
integer n, the abstraction comes with low-level performance overhead for each recursive call.

Macros provide an expressive way to balance abstraction and efficiency. Below we define power
as a macro in MacoCaml, assuming that n is statically known:

macro rec mpower' n x = (* int -> int expr -> int expr *)

if n = 0 then << 1 >> else << $x * $(mpower' (n - 1) x)>>

macro mpower n = << fun x → $(mpower' n <<x>>) >> (* int -> (int -> int) expr *)

In MacoCaml, macros are always functions, which are the most common case in practice. The
macro definition makes use of staging annotations: <<e>> are quotations that delay an expression’s
computation by turning it into its code representation, while $e are splices that trigger evaluation
of a code representation. From a typing perspective, if e : t, then <<e>> : t expr; conversely, if
e : t expr, then $e : t. Splicing a call to the macro generates at compile-time a specialized power
function with n equal to 5:

let power5 = $(mpower 5) (* fun x -> x * (x * (x * (x * (x * 1)))) *)

Calling power5 2 produces 32, the same result as before, but now with less runtime overhead as
all function calls to mpower have been unrolled and inlined.

2.2 Evaluation Phases

The power example illustrates the first key design of our system: we divide program evaluation
into two phases, where let definitions are runtime bindings and macros are compile-time bindings.
Staging annotations are used to cross phases. The design provides a novel view of macros, unifying
macros and staging in a single framework.2

Call relation. Fig. 1 depicts the call relation between let definitions (represented as :) and macros
(represented as<), where ⟨⟩ is quoting and $ is splicing. As we have seen, we can splice a macro
application in a let definition, as in the definition of power5. Conversely, we can quote the application
of a let-defined function (and splice it elsewhere in the program), delaying its computation to
runtime, e.g. macro delayed32 () = <<power5 2>>.
The figure features direct relations; in practice we can have splices inside quotations and vice

versa, such as let n = $(<<1 + $(mpower 5) 2>>).

Leveled bindings and well-stagedness. Formally, we manage definitions using the notion of a level.
The level of an expression is defined as the integer given by the number of quotes surrounding it
minus the number of splices: quotation increases the level of an expression, while splicing decreases

2We usemacros to mean compile-time bindings, which differ frommacros in systems like Racket; see §6 for more discussion.
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it. Intuitively speaking, levels indicate the evaluation phase of expressions: expressions of negative
levels are compile-time expressions, and expressions of level 0 are runtime expressions.3

MacoCaml further features leveled bindings: let definitions are bindings at level 0, while macros
are bindings at level −1.Well-stagedness specifies that a definition can only be used at the level it
is defined. Specifically, the right-hand side of a let definition is type-checked under level 0, and
the definition itself can be used at level 0. Similarly, the right-hand side of a macro definition is
type-checked under level −1, and the macro itself can be called at level −1. This explains why we
can splice macros inside let definitions, or quote let definitions inside macros. This way, we unify
macros and staging in a single framework, and all bindings simply follow the same requirement
specified by well-stagedness.

Macros and compile-time evaluation. Now the question is: where exactly does a compile-time
computation happen? In MacoCaml, compile-time computation happens inside top-level splices,
namely, splices without surrounding quotations. In the example for power, the top-level splice
$(mpower 5) generates the definition for power5 during compilation. In other words, macro applica-
tions (such as mpower 5) alone do not force any compile-time evaluation; rather, macro invocation
is part of compile-time evaluation. We explain the key idea with the following definitions:

let power5 = $(mpower 5) (* well-typed and mpower expanded *)

let err = mpower 5 (* error: mpower is defined at level -1 but called at 0 *)

macro mpower5 () = mpower 5 (* well-typed and mpower not expanded *)

macro merr () = $(mpower 5) (* error: mpower is defined at level -1 but called at -2 *)

Recall that macros are defined at level −1, allowing macros to be spliced inside top-level splices in
let definitions or called inside macro definitions. Here, only power5 expands mpower 5 as it is inside
a top-level splice; mpower5 is well-typed but does not expand mpower; err and merr are ill-staged.

The examples demonstrate that MacoCaml provides a systematic approach to combining macros
with staging. This distinguishes MacoCaml from macro systems where macro invocation is itself a
compile-time computation, in which case err and mpower5 might expand mpower.

Interleaving typing and compile-time computations. In MacoCaml, compile-time evaluation hap-
pens during typing. Aswewill see, interleaving typing and compile-time evaluation poses challenges
to the system’s type safety. A similar design is used in Template Haskell [Sheard and Jones 2002], but
unlike Template Haskell where the result of splicing a code value may not type-check, MacoCaml
offers a static guarantee: we prove that well-typed programs always generate well-typed programs.

Lastly, we note that since all top-level splices are evaluated during typing, compiled modules no
longer contain top-level splices — though they may still contain splices inside quotations, as in
the definition of mpower. Moreover, as macros are functions, after compilation, macros are always
values. We will revisit this observation when we discuss module imports (§2.3 and 2.4).

2.3 Modules and Imports

In the power example, all definitions were defined in a single module. In practice, programmers
organize programs into separate modules for maintainability, and import modules to use their
definitions. However, this separation means that the levels of definitions are determined by the
imported modules that they inhabit. For example, importing a let definitionmeans that the definition
can only be used at level 0 but not -1. Changing the level involves changing the let definition to a

3In the literature, work on macros (e.g. Flatt [2002]) refers to phase 1 as compile-time and phase 0 as runtime, while work

on staged programming (e.g. Xie et al. [2022]) refers to level 0 as runtime and positive levels as future stages. In this work,

we use numbers for levels, and write compile-time and runtime for evaluation phases. We consider levels a syntactic notion

used during typechecking, and phases an operational notion as to where programs are run. For example, type-checking

(1+2,<<3>>) involves two levels (1 + 2 at level 0 and 3 at level 1), while evaluating it at runtime results in (3 ,<<3>>).
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Fig. 2. Le�: The call relation between definitions across modules. The module in the middle is the one currently

being defined, and the one to the le� is imported at level -1, and the one to the right is imported at level

0. Definitions in the gray box are compile-time computations. Right: The call relation between definitions

across levels.

macro, which requires the source of the imported module to be under our control, which may not
be the case. Further, we may wish to import and use a definition at both compile-time and runtime,
and it would be tedious and error-prone to give essentially the same definition at both phases.
As an example, consider a module Term:

(* term.ml *)

type var = int

type term = Var of var | Lam of var * term | App of term * term

let id = ref 0

let fresh () = id := !id + 1; !id

The type term defines a datatype for lambda terms. The definition id defines an integer reference,
initialized to 0, and every call to fresh generates a fresh variable. Suppose we want to import this
module to define a macro that builds a representation of function _G . _~. G ~, calling fresh twice:

macro apply () = let x = fresh () in

let y = fresh () in

Lam (x, Lam (y, App (Var x, Var y)))

As written, this program is ill-staged, since the imported function fresh is a let definition defined
at level 0, but used in the definition of the macro apply at level -1.

The module import system. To solve this issue, we allow importing modules at different levels,
following Flatt [2002]. Specifically, when a module is imported at runtime (or level 0), all definitions
are at the same level as if they were defined in the current module. Namely, let definitions are
imported at level 0 and macros are imported at level -1. More interestingly, when a module is
imported at compile-time (or level -1), all definitions will have their levels shifted by -1. That is, its
let definitions are imported at level -1, while its macros are imported at level -2.
Therefore, importing Term at level -1 allows apply to call fresh. In MacoCaml, we write4:

module DT = Term (* Term is imported at level 0 as DT *)

module ~ST = Term (* Term is imported at level -1 as ~ST *)

Now we can define the apply macro as follows5:

(* apply.ml *)

module ~ST = Term

macro apply () = let x = ~ST.fresh () in

4MacoCaml also supports open Term and open~ Term (§5.1), in which case definitions need not be qualified.
5Types and datatypes are accessible from any level in MacoCaml, similar to, e.g., Xie et al. [2022]. In the future we would

like to investigate giving levels to types and datatypes.
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let y = ~ST.fresh () in

~ST.Lam (x, ~ST.Lam (y, ~ST.App (~ST.Var x, ~ST.Var y)))

Combining macros, staging, and modules. The module import system of Flatt [2002] fits extremely
well into our framework. In particular, since let definitions and macros are simply bindings at
different levels, importing modules at a specific level simply shifts the levels of the bindings. Well-
stagedness, as before, is managed through levels, with staging annotations that can adjust levels
in an expression. In this work, we focus on module imports at two levels, 0 and -1, which are the
most practical and are sufficient to encode many interesting applications, but the essential idea can
be generalized to support importing modules at more levels.
The updated call relation between definitions across modules is given on the left of Fig. 2.

Definitions in the gray box are compile-time computations. That is, they can be spliced at top-level;
notice how they are all targets of some splice arrow. Importing modules makes more definitions
available for compile-time computations: let definitions can splice let definitions imported at level
-1, and macros can splice macros imported at level -2. Note that the relation is not defined in an
ad-hoc way; rather, it is derived following the rule of levels, as shown on the right of Fig. 2. In
principle, these relations can extend to an arbitrary number of levels.

Finally, we note that only compiled modules can be imported. As all top-level splices are evaluated
during compilation, imported modules never contain top-level splices. We have seen in Fig. 2 the
call relation between definitions across modules. The call relation inside a compiled module can be
simplified as the original call relation with splice edges removed to indicate the absence of top-level
splices. An example is given as the module (a) at the top of Fig. 3; details about the figure can be
ignored for now and will be introduced in the next section. Recall that the call relation features
direct relations, and there can still be non-top-level splices in a compiled module.

2.4 Compile-Time Side Effects

The Term and Apply example demonstrates another key aspect of our design: compile-time evaluation
may perform side effects such as allocation and updates of references.

At the point when apply is spliced, we expect the reference in id from Term to have been initialized.
Consequently, id ought to have been evaluated at that point. Indeed, as specified in Flatt [2002], a
module imported at level -1 needs to be evaluated during compilation. The alternative semantics of
evaluating imported definitions whenever they are spliced would produce quite unexpected results.
In our example, every time ~ST.fresh was called, the alternative semantics would allocate a new
fresh reference for id, causing ~ST.fresh to return 1 twice and making the final result _G. _G . G G ,
instead of _G. _~. G ~, which is not the programmer’s intention. By evaluating modules imported
at level -1, the reference in id from Term will be properly initialized in the heap.
Compile-time evaluation with references means that compilation needs a compile-time heap.

Moreover, we observe that the two calls to fresh in apply use the same reference id, and the state of
the reference should be updated between the two calls — the first time fresh () is called, it returns
1, and the second time it returns 2. This suggests that the compile-time heap needs to be threaded
through compilation, and after every step of compile-time computation, the possibly updated heap
will be used for the rest of the computation.

A potential problem with compile-time heaps. Compile-time heaps require some care to avoid
problems. Consider:

module ~ST = Term

macro fresh_err () = ST.id := !ST.id + 1; <<!ST.id>> (* error: id is bound at level -1

but used at level 0 *)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 209. Publication date: August 2023.
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In this definition, fresh_err returns the result of id inside a quotation. Consider what would happen
if this definition was accepted: the reference id evaluates to some location loc in the compile-time
heap, and splicing fresh_err expands to code that refers to the location:

let err () = $(fresh_err ()) (* expands to (!loc) at compile-time*)

Now evaluating err () will raise an error at runtime — we cannot find the location loc as the
compile-time heap is no longer available! In this case, fortunately, the definition for fresh_err is
rejected as ill-staged: id is imported at level −1, but used at level 0 inside the quotation. But in
general, how can we ensure that a runtime computation will not depend on compile-time values?

Our solution: phase distinction of heaps. To answer this question, we formalize (integer) references
and compile-time heaps in our calculi, and prove that well-staged expressions never need compile-
time heaps after compilation (§4.5). As such, the compile-time heap can be safely discarded after
compilation, which implies separate compilation of separate modules. This is the first time, to our
best knowledge, such a result is formally established for compile-time computations.
The id and fresh_err example demonstrates the intuition behind this result: if a reference

is created at compile-time, it can be called at compile-time, but its well-staged form can never
be captured using quotations. Note that references may still appear inside quotations, such as
$<<!ST.id>>, but as the top-level splice gets evaluated at compile time, this is equivalent to !ST.id.

Tower of modules. Side effects can happen across multiple modules. Suppose that we have another
module, Program, that imports and uses apply:

(* program.ml *)

module A = Apply

let program = $(... A.apply ()...) (* builds a large program *)

Before evaluating the call to apply in the splice, we must ensure that Term has been evaluated and
thus id has been initialized. This kind of dependency can be arbitrarily deep: for example, importing
Program in another module would also make it necessary to find and evaluate Term. For this reason,
Flatt [2002] considers a tower of modules.
Fig. 3 presents a tower of modules, focusing on three modules: module (b) in the middle is the

module currently being compiled, and it imports module (a) at level -1 and module (c) at level 0. As
both (a) and (c) have been compiled, their call relations have no splice edges to indicate absence of
top-level splices. And as they can themselves import modules, the tower can be arbitrarily high.
Returning to our example, the definition program corresponds to a : in module (b), and apply is<2

from module (a), and fresh and id are :5 imported in module (a).
Now the goal is to find what definitions need to be evaluated during compilation. As all macros

are values after compilation, macros themselves do not need to be evaluated, but they may require
other definitions to be evaluated. All definitions colored in gray are let definitions of negative levels
that need to be evaluated during compilation of module (b). The intuition behind evaluating those
let definitions is as follows. Let definitions of negative levels can be spliced and thus evaluated at
compile-time. We thus need to ensure that they have been evaluated before they can be spliced, so
that all references have been initialized properly in the compile-time heap, just like id from Term.
As the tower of modules can be arbitrarily high, finding and evaluating those let definitions of

negative levels are defined using two definitions, called visiting and invoking [Flatt 2002].

Visiting and invoking in MacoCaml. Fig. 4 shows the two processes. Visiting a module evaluates
its compile-time computations, and invoking a module evaluates its runtime computations. We
represent visiting by dotting macro definitions, and invoking by coloring let definitions gray.
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(a) Visiting a module will visit modules imported at

level -1 and 0, and invoke the module imported at level -1.
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Fig. 4. Visiting and invoking: if the macro< is colored, it means the module needs to be visited; if the let

definition : is colored, it means the module needs to be invoked.

Since macros are values, visiting a module (Fig. 3a) involves invoking modules imported at level
-1 and recursively visiting modules imported at level -1 and 0. Invoking a module (Fig. 3b) evaluates
let definitions and recursively invokes modules imported at level 0.

When compiling a module (module (b) in Fig. 3), we start by visiting as well as invoking modules
imported at -1 (corresponding to the coloring in module (c)), and also visiting modules imported at
0 (corresponding to the coloring in module (a)). For our example, the Program module visits Apply
(<2), which then in turn invokes Term and evaluates id (:5).
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Incorporating visiting and invoking into our framework introduces several differences to Flatt’s
design. The fact that macros in our system are always values after compilation makes visiting
simpler in our system, since there is no need to evaluate macros during visiting. Moreover, as
top-level splices have been evaluated for compiled modules, the value of< in the purple background
of Fig. 3a will not be needed after compilation. As such, it is a design choice whether the< needs
to be visited. In our system, we choose to visit< for its effects. Furthermore, we prove that phase
distinction of heaps continues to hold in the presence of module towers, where a compile-time
heap is threaded through visiting and invoking.

Compile-time and runtime phase distinction. We further prove that compile-time only computa-
tions do not interfere with runtime evaluation: when evaluating a compiled module, we can erase
all macros and modules imported at compile-time. With such a result, we establish a full phase
distinction between compile time and runtime.

Summary. We briefly summarize the MacoCaml notions introduced so far. Bindings are separated
into let definitions at level 0 and macro definitions at level -1. Quotations and splices respectively
increase and decrease the level of expressions, and can thus be used to cross phases in definitions.
Modules can be imported at runtime or compile-time; in the latter case levels of imported definitions
are shifted by -1. As imported modules can themselves import other modules, visiting and invoking
traverse the tower of modules, evaluating definitions during module imports. Side-effects require
care with compile-time heaps; we prove that compile-time heaps can be discarded after compilation.
As we can see, phases, staging, and modules work together in MacoCaml. We have implemented
MacoCaml in the OCaml compiler (§5) and compare our design to other systems in §6.

2.5 Larger Example: Print Forma�ed Data

Having introduced the key features of MacoCaml, in this section we present a more substantial
example program. §5 describes larger-scale examples.

Consider defining a C-like printf-style function that takes a format and a sequence of arguments,
and returns the formatted output. We start by encoding the format using a datatype:

(* fmt.ml *)

type (_, _) fmt = Int : (int → 'a, 'a) fmt

| Lit : string → ('a, 'a) fmt

| Cat : ('a, 'b) fmt * ('b, 'c) fmt → ('a, 'c) fmt

let (%) x y = Cat (x, y)

fmt is defined as a generalized algebraic datatype (GADT) taking two type parameters. Intuitively,
in a format ('a, 'b) fmt, 'a prepends a number of int → to b, reflecting the number of integer
arguments required by the format. There are three cases. The format either asks for an extra integer
argument (Int), or is given a string (Lit), or concatenates two formats (Cat). The datatype can be
easily extended to take more sorts of inputs. The function % is simply an infix alias for Cat.
For example, the following format corresponds to the C-style printf format string "(%d, %d)"

that consumes a pair of integers.

let pair = Lit "(" % Int % Lit ", " % Int % Lit ")" (* (int -> int -> 'b, 'b) fmt *)

One way to implement printf is through a continuation-passing-style (CPS) auxiliary function

(* printf.ml *)

open Fmt

let rec printk : type a b. (string → b) → (a, b) fmt → a

= fun k fmt → match fmt with

Int → fun s → k (string_of_int s)
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<02>

(§3)

<02>2>A4
(§4)

f1 Ω Γ ⊢ M : Δ { M f2

(Fig. 7)

f1 Ω Γ ⊢ S : q { S f2

(Fig. 7)

f1 Ω Γ ⊢=
★
4 : g { 4 f2

(Fig. 8)

f Γ ⊢ M : Δ

f Γ ⊢ S : q

f Γ ⊢= 4 : g

(Fig. 11)

f1 M1
E8B8C
⇝ M2 f2

f1 S1
E8B8C
⇝ S2 f2

f1 M1
8=E>:4
⇝ M2 f2

(Fig. 9)

f1 Ω M1 −→ M2 f2

f1 Ω S1 −→ S2 f2

f1 Ω 41
=
−→ 42 f2

(Fig. 12)

(st-importC)
(st-importR) (codeGen)

Fig. 5. Key judgments of modules, structures, and expressions with their dependencies in the paper

| Lit s → k s

| Cat (l, r) → printk (fun x → printk (fun y → k (x ^ y)) r) l

let printf : type a. (a, string) fmt → a = fun fmt → printk (fun x → x) fmt

The printk function takes a continuation k of type string → b and a format (a, b) fmt, and
constructs a function that takes as many integer arguments as the format specifies. If the format is
Int, printk returns a function that takes an integer s and passes its string representation to k. If the
format is Lit s, s is passed directly to k. For Cat (l, r), printk processes l, binding its result to x,
processes r binding its result to y, and finally catenates (^) the two strings, passing the result to k.
The definition gives us the desired behavior:

let three_and_four = printf pair 3 4 (* "(3, 4)" *)

Defining printk as an interpreter of formats is inefficient, so it is useful to eliminate the interpre-
tation overhead with macros. Here are macro definitions corresponding to printk and printf:

(* mprintf.ml *)

open ~Fmt

macro rec mprintk : type a b. (string expr → b expr) → (a, b) fmt → a expr

= fun k fmt → match fmt with

Int → << fun s → $(k <<string_of_int s>>) >>

| Lit s → k (Expr.of_string s)

| Cat (l, r) → mprintk (fun x → mprintk (fun y → k << $x ^ $y >>) r) l

macro mprintf : type a. (a, string) fmt → a expr

Passing a format to mprintf generates code that takes exactly the right number of arguments
and does not create or inspect the constructors of fmt:

(* BEGIN_EG2 *)

let mpair = $(mprintf pair)

(* fun s1 -> fun s2 -> "(" ^ string_of_int s1 ^ ", " ^ string_of_int s2 ^ ")" *)

3 A MACRO CALCULUS WITH STAGING AND MODULES

In this section, we present our source calculus<02> , which forms the foundation for MacoCaml.
Since the source can import compiled modules and enforce compile-time evaluation, the source
judgments may depend on the core judgments to be defined in §4. Fig. 5 presents the key judgments
and their dependencies in the paper. The reader is advised to refer back to this figure while reading
the rest of the article, as what it depicts will gradually come to make sense.

Syntax. Fig. 6 presents the syntax of<02> . ModulesM include structures (structS end), module
variables ("), and qualified module variables (?."). Structures S are either empty (•), or contain
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module M F structS end | " | ?."

structure item S F • | module" : Δ =M;S | type C = g ;S

| def : = 4;S | def↓< = _x : g . 4;S

| import" : Δ =M;S | import↓ " : Δ =M;S

path ? F " | ?."

expression 4 F 8 | unit | x | _x : g . 4 | 41 42 | : | ?.: | < | ?.<

| ref 4 | !4 | 41 := 42 | ⟨4⟩ | $4

module type Δ F sigq end

structure type q F • | " : (Δ, =);q | C = g ;q | : : g ;q | < : g ;q

type g F Int | Unit | g1 → g2 | Ref g | Codeg | C | ?.C

context Γ F • | Γ, " : (Δ, =) | Γ, C = g | Γ, : : g | Γ,< : g | Γ, x : (g, =)

heap f F • | f, ; ↦→ E

evaluation context Ω F • | Ω;" =M | Ω;: = E | Ω;< = E

Fig. 6. Syntax in the source calculus <02> . For clarity, we use colors to distinguish source and core, and

syntax in blue and light blue denotes and refers to definitions in the core calculus.

a sequence of items: source modules (module" : Δ = M), types (type C = g), let definitions

(def : = 4), and macros (def↓< = _x : g . 4) that are always functions. We write def and def↓,
instead of let andmacro, to emphasize that macros are essentially definitions living at a shifted level
(-1). Structure items also include explicit constructs for importing modules at level 0 (import" :

Δ = M; ) or -1 (import↓ " : Δ = M; ). For clarity, imports in our system are qualified imports.
HereM denotes a module in the core calculus, since it is only possible to import modules that have
been compiled to the core. We will describe the core calculus in detail in §4. Here, we remark that
the core calculus is essentially the source calculus after compile-time evaluation. Consequently, the
core calculus does not have top-level splices, which will be evaluated during type-checking, but
additionally includes locations, which are values of evaluating references. A path ? is a sequence of
module variables that can be used to locate a definition inside (nested) modules.
Expressions 4 include literals 8 , unit unit, variables x, functions _x : g . 4 , applications 41 42,

definitions : and qualified definitions ?.: , and macros< and qualified macros ?.<. For simplicity,
the calculus has only integer references6, with reference creation ref 4 , access !4 , and assignment
41 := 42 , Lastly, ⟨4⟩ quotes an expression and $4 splices an expression.

Types. Module types Δ include structure types sigq end, and structure types q keep track of
module types " : (Δ, =), with a level = to indicate the level the module is available at, type

definitions (C = g ;q) to propagate type equivalence, and def and def↓ types (: : g and< : g ). Types
g include the integer type Int, the unit type Unit, functions g1 → g2, references Ref g , code fragment
Codeg , type variables C and type variables from a path ?.C .

Contexts. The context Γ maps definitions, as well as local variable x, to their types and levels7.
Throughout this paper, we assume all definitions have distinct names, so there is no shadowing.

Heaps f and evaluation contexts Ω refer to definitions in the core calculus. f maps a location ;
to a value E ; while Ω maps modules, definitions, and macros to their definitions and values. Both
contexts are needed in the source calculus for compile-time computations.

6References of code can cause scope extrusion; see §5.2 and §6 for more discussion.
7An alternative representation of the syntax is to use a uniform variable (e.g. x) for all definitions (e.g., macros are simply

x : (g, 0)). We make the syntactic distinction for clarity.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 209. Publication date: August 2023.



209:12 Ningning Xie, Leo White, Olivier Nicole, and Jeremy Yallop

f1 Ω Γ ⊢ M : Δ {M f2 (Typing module)
m-struct

f1 Ω Γ ⊢ S : q { S f2

f1 Ω Γ ⊢ structS end : sigq end { structS end f2

m-mvar

" : (Δ, 0) ∈ Γ

f Ω Γ ⊢ " : Δ { " f
m-pmvar

Γ ⊢0 ? : sigq end " : (Δ, 0) ∈ q

f Ω Γ ⊢ ?." : ⌈Δ⌉? { ?." f

Γ ⊢= ? : Δ (Typing path)p-mvar

" : (Δ, =) ∈ Γ

Γ ⊢= " : Δ

p-pmvar

Γ ⊢=1 ? : sigq end " : (Δ, =2) ∈ q

Γ ⊢=1+=2 ?." : ⌈Δ⌉?

f1 Ω Γ ⊢ S : q { S f2 (Typing structure item)

st-empty

f Ω Γ ⊢ • : • { • f

st-type

f1 Ω Γ, C = g ⊢ S : q { S f2

f1 Ω Γ ⊢ (type C = g ;S) : (C = g ;q) { (type C = g ;S) f2
st-def

f1 Ω Γ ⊢0c 4 : g { 4 f2 f2 Ω Γ, : : g ⊢ S : q { S f3

f1 Ω Γ ⊢ (def : = 4;S) : (: : g ;q) { (def : = 4;S) f3
st-macro

f1 Ω Γ ⊢−1c _x : g . 4 : g { E f2 f3 Ω;< = E Γ,< : g ⊢ S : q { S f4

f1 Ω Γ ⊢ (def↓< = _x : g . 4;S) : (< : g ;q) { (def↓< = E ;S) f4
st-module

f1 Ω Γ ⊢ M : Δ {M f2 f2 Ω;" =M Γ, " : (Δ, 0) ⊢ S : q { S f3

f1 Ω Γ ⊢ (module" : Δ =M;S) : (" : (Δ, 0);q) { (module" : Δ =M;S) f3

st-importR

• • ⊢ M : Δ f1 M
E8B8C
⇝ M1 f2 f2 Ω;" =M1 Γ, " : (Δ, 0) ⊢ S : q { S f3

f1 Ω Γ ⊢ (import" : Δ =M;S) : (" : (Δ, 0);q) { (import" : Δ =M;S) f3

st-importC

• • ⊢ M : Δ f1 M
E8B8C
⇝ M1 f2 f2 M1

8=E>:4
⇝ M2 f3

f3 Ω;" =M2 Γ, " : (Δ,−1) ⊢ S : q { S f4

f1 Ω Γ ⊢ (import↓ " : Δ =M;S) : (" : (Δ,−1);q) { (import↓ " : Δ =M;S) f4

Fig. 7. Typing modules and structures in<02>

3.1 Typing Modules and Structures

The rules for typing modules and structure items are given in Fig. 7. The reader is advised to ignore
f , Ω, and the elaboration part ({) until §3.3.

The elaboration judgment f1 Ω Γ ⊢ M : Δ {M f2 reads: under the heap f1, the evaluation
context Ω, and the type context Γ, the moduleM has type Δ, elaborates to a core moduleM,
updating the heap to f2. Rule m-struct simply uses the typing rule for structure items. In rule m-
mvar, we get a module variable from the type context. Rule m-pmvar type-checks a module variable
from a path. In both cases, the module variable has level 0, as in programs modules themselves are
always at level 0, in contrast to their names in paths, e.g.,".: where" can be of level −1.
The path typing judgment Γ ⊢= ? : Δ says that under the type context Γ, the path ? has type Δ

with level =. The types and levels of modules variables are obtained from the context (rule p-mvar).
For a nested path ?." (rule p-pmvar), we first get the type q and level =1 of ? , and get from q the
type (Δ, =2) for the module. The return type is ⌈Δ⌉? with level =1 + =2. The notation ⌈ ⌉

? prefixes
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f1 Ω Γ ⊢=
★
4 : g { 4 f2 compiler mode ★F c | s | q (Typing expression)

lit

f Ω Γ ⊢=
★
8 : Int { 8 f

unit

f Ω Γ ⊢=
★
unit : Unit { unit f

var

x : (g, =) ∈ Γ

f Ω Γ ⊢=
★
x : g { x f

kvar

: : g ∈ Γ

f Ω Γ ⊢0
★
: : g { : f

macro

< : g ∈ Γ

f Ω Γ ⊢−1
★

< : g { < f

pkvar

Γ ⊢= ? : sigq end : : g ∈ q

f Ω Γ ⊢=
★
?.: : ⌈g⌉? { ?.: f

pmacro

Γ ⊢= ? : sigq end < : g ∈ q

f Ω Γ ⊢=−1
★

?.< : ⌈g⌉? { ?.< f

abs

Γ ⊢ g1 f1 Ω Γ, x : (g1, =) ⊢
=
★
4 : g2 { 4 f2

f1 Ω Γ ⊢=
★
_x : g1. 4 : g1 → g2 { _x : g . 4 f2

app

f1 Ω Γ ⊢=
★
41 : g1 → g2 { 41 f2 f2 Ω Γ ⊢=

★
42 : g1 { 42 f3

f Ω Γ ⊢=
★
41 42 : g2 { 41 42 f3

ref

f1 Ω Γ ⊢=
★
4 : Int { 4 f2

f1 Ω Γ ⊢=
★
ref 4 : Ref Int { ref 4 f2

get

f1 Ω Γ ⊢=
★
4 : Ref Int { 4 f2

f1 Ω Γ ⊢=
★
!4 : Int {!4 f2

set

f1 Ω Γ ⊢=
★
41 : Ref Int { 41 f2

f2 Ω Γ ⊢=
★
42 : Int { 42 f3

f1 Ω Γ ⊢=
★
41 := 42 : Unit { 41 := 42 f3

eq

f1 Ω Γ ⊢=
★
4 : g1 { 4 f2

Γ ⊢ g1 ≈ g2

f1 Ω Γ ⊢=
★
4 : g2 { 4 f2

qote

f1 Ω Γ ⊢=+1q 4 : g { 4 f2

f1 Ω Γ ⊢=c∨s ⟨4⟩ : Codeg { ⟨4⟩ f2

splice

f1 Ω Γ ⊢=−1s 4 : Codeg { 4 f2

f1 Ω Γ ⊢=q $4 : g { $4 f2

codeGen

f1 Ω Γ ⊢=−1s 4 : Codeg { 4 f2 f2 Ω 4
0
−→∗ ⟨E1⟩ f3

f1 Ω Γ ⊢=c $4 : g { E1 f3

c

s

q⟨⟩

$ (cod
eGe

n)

$⟨⟩

Fig. 8. Typing expressions with compile-time code generation in<02>

? to all variables that are defined in ? . For example, if "1 defines C = Int and a nested module
"2 : (sig: : C end), then"1."2 has type ⌈sig: : C end⌉"1 = sig: : "1.C end.
The judgment f1 Ω Γ ⊢ S : q { S f2 type-checks a structure item. Rules st-empty and st-

type are straightforward. For definitions : = 4 (rule st-def), we type-check 4 at level 0 (expression
typing is explained in the next section) and put : : g in the context Γ for type-checking S.
Rule st-macro type-checks macros< = 4 . We type-check the macro definition at level −1 and

add its type< : g to the context Γ for checking S.
Rules st-module, st-importR, and st-importC type-check modules and imports. When we

define or import a module, the module is at level 0. In contrast, when we import↓ a module, the
module is at level -1. Importing a module also requires the module to be well-typed in the core
under an empty heap (• • ⊢ M : Δ), making compilation independence [Culpepper et al. 2007]
obvious that compilation of a module does not depend on side effects that occurred during the
compilation of imported modules.

3.2 Typing Expressions

Fig. 8 presents the typing rules for expressions. The judgment f1 Ω Γ ⊢=
★
4 : g { 4 f2 reads:

under the heap f1, the evaluation context Ω, and the type context Γ, the expression 4 has type g
under level = and mode ★, elaborates to 4 , and updates the heap to f2. The definition of compiler
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modes appears at the top of the figure. The mode is only significant for staging annotations, and is
explained with the staging rules.

The first three rules are straightforward. Rule kvar says that a definition variable : is well-typed
only at level 0. Similarly, rule macro says that a macro< is well-typed only at level −1. Definitions
from paths can have lower levels (rules pkvar and pmacro). Thus we first get the level = of the
path ? . Then ?.: is well-typed at level =, and ?.< is well-typed at level = − 1. In both cases, the
return type is ⌈g⌉? .
Rule abs introduces the binder x at level =, so later x can be used only at level =. The notation

Γ ⊢ g checks that all type variables in g are bound. Rule app is self-explanatory. Rules ref, get, and
set are standard typing rules for creating, getting and setting a reference. Rule eq says that if 4 has
type g1, and g1 is equivalent (≈) to g2, then 4 can also be typed at g2. The type equivalence judgment
is standard [Leroy 1994] and is put in the appendix. As an example, if one module" defines C = Int

and : : C , then 1 +".: is well-typed, as".: : ".C (pkvar),".C ≈ Int, and thus".: : Int (eq).

Typing staging annotations. The final three rules type-check staging annotations. Ruleqote

says that if ⟨4⟩ has type g at level = + 1, then ⟨4⟩ has type Codeg at level =. Dually, rules splice and
codeGen say that if 4 has type Codeg at level = − 1, then $4 has type g at level =; the two rules
apply under different compiler modes.

The compiler mode ★manages compile-time code generation, and is similar to the typing states in
Template Haskell [Sheard and Jones 2002]. The transition between the three modes is given at the
bottom of Fig. 8. They work as follows. As described in §2.2, compile-time evaluation happens inside
top-level splices, i.e. splices that are not inside quotations. When we first enter into the judgment
for typing expressions and macros, as in rules st-def and st-macro during structure typing, the
compiler is in mode c. If the compiler then encounters a splice, rule codeGen applies. The rule
switches to mode s to type-check the spliced body, and then forces evaluating the elaboration
result (§3.3). With compiler modes, we ensure that compile-time code generation happens only
inside top-level splices in rule codeGen. In contrast, if the compiler encounters a quotation, then it
goes to mode q (rule qote). Rules splice and qote switch back and forth between mode s and q,
but the compiler can never go back to c.8

Notably, our rule codeGen generalizes that of Sheard and Jones [2002]: our rule applies at any
level, reflecting the fact that top-level splices can occur in let definitions at level 0 (rule st-def) as
well as in macros at level -1 (rule st-macro), while Sheard and Jones [2002] required (and only
needed) the level to be at 0.

3.3 Elaboration and Compile-Time Evaluation

As we will see, the source syntax is a subset of the core syntax. The elaboration part ({) in Fig. 7
and 8 mostly does nothing except for two kinds of compile-time computation:

(1) Visiting and invoking imported modules in rules st-importR and st-importC;
(2) Compile-time code generation in rule codeGen.

Heaps and evaluation contexts. To support compile-time computations, typing judgments take
as input a heap f and an evaluation context Ω. Heaps keep track of references, whose values are
stored inside locations. The typing judgment takes in a heap f1 and updates it to f2.

8It is easy to extend the model transition system to allow nested quotations, but without nested splices they are not that

useful. The key challenge with nested splices is that ideally we would like expressions like ($($41 ) ) to be evaluated before

($42 ) , which is difficult to model during typing. Typed Template Haskell (TTH) [Xie et al. 2022] solves this issue by lifting

splices to the top-level following levels, so 41 will be put before 42. However, compile-time evaluation is not formalized in

TTH beyond lifting splices to the top-level. It would be interesting to integrate splice lifting in our system in the future.

Other languages including Template Haskell [Sheard and Jones 2002] and Scala [Stucki et al. 2018] disallow nested splices.
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f1 M1
E8B8C
⇝ M2 f2 (Visiting)

v-struct

f1 S
E8B8C
⇝ S′ f2

f1 structS end
E8B8C
⇝ structS′ end f2

f1 M1
8=E>:4
⇝ M2 f2 (Invoking)

i-struct

f1 • M −→
∗ ME f2

f1 M
8=E>:4
⇝ ME f2

f1 S1
E8B8C
⇝ S2 f2 (Visiting structure)

v-importC

f1 M
E8B8C
⇝ M′ f2 f2 M

′ 8=E>:4
⇝ M′′ f3

f3 S
E8B8C
⇝ S′ f4

f1 import↓ " : Δ =M;S
E8B8C
⇝ import↓ " : Δ =M′′;S′ f4

v-importR

f1 M
E8B8C
⇝ M′ f2

f2 S
E8B8C
⇝ S′ f3

f1 import" : Δ =M;S
E8B8C
⇝ import" : Δ =M′;S′ f3

Fig. 9. Key rules of visiting and invoking

The evaluation context Ω stores definitions needed for evaluation, and is extended in four rules:
rule st-macro when typing macros, and rules st-module, st-importR, and st-importC when
typing (imported) modules. Notably, in source typing the evaluation context stores only compile-
time definitions, hence we ignore definitions of : in rule st-def as the definitions will not be needed
during compile-time evaluation.

Visiting and invoking modules. As explained in §2.4, when we import a module at level 0, we
need to visit the module (rule st-importR), and when we import a module at level -1, we need
to visit as well as invoke the module (rule st-importC). Intuitively, visiting and invoking ensure
that compile-time computations from imported modules are evaluated for their side effects (e.g.,
all compile-time references are initialized). Note that in both cases, the elaborated module is the
original module, as visiting and invoking do not affect runtime computations.

We present the key rules for visiting and invoking in Fig. 9; for space reasons, the complete rules
are in the appendix. We have two judgments for visiting and invoking a module respectively:

- rule v-struct: Visiting a module will traverse its structure to find imported modules, and visit
and invoke import↓ed modules (rule v-importC) and visit imported modules (rule v-importR).

- rule i-struct: Invoking a module will simply evaluate it; rules for evaluating a module are
defined in the core calculus (§4).

Compile-time code generation. Rule codeGen is where compile-time code generation happens
inside top-level splices. After elaborating the spliced expression to 4 , the rule evaluates 4 into a
value ⟨E1⟩. Level-annotated values (E1) are introduced in §4.1; for now, it suffices to know that ⟨E1⟩ is
a quotation value that cannot be further reduced. The rule then removes the quotation and inserts
E1 as the elaboration result.

3.4 Example

Fig. 10 presents an example for typing and compile-time code generation. The expression

$(x ← ref 0; ⟨$(x := 1;< x)⟩)

is a top-level splice. Inside the splice, we first create a reference x. Then inside a quotation and
another (non-top-level) splice, we set x to 1, and call the macro< with x.

The example demonstrates several interesting aspects. First, it shows how the level and the mode
change during typing. Second, at 1 , we apply rule splice rather than rule codeGen, as the splice
is not a top-level splice. Applying rule codeGen here, in fact, would go wrong — if rule codeGen
is applied, we would have no way to evaluate x := 1 since x has not been initiated yet! Lastly, at
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Ω = < = _x : Ref Int. if (!x) = 0 then ⟨−1⟩ else ⟨1⟩

Γ = < : Ref Int→ Code Int

• Ω x ← ref 0; ⟨$(x := 1;< x)⟩
0
−→∗ ⟨1⟩ ; ↦→ 1

· · ·

· · ·

• Ω Γ, x : (Ref Int,−1) ⊢−1s x := 1;< x : Code Int { x := 1;< x •
app

• Ω Γ, x : (Ref Int,−1) ⊢0q $(x := 1;< x) : Int { $(x := 1;< x) • 1
splice

• Ω Γ, x : (Ref Int,−1) ⊢−1s ⟨$(x := 1;< x)⟩ : Code Int { ⟨$(x := 1;< x)⟩ •
qote

• Ω Γ ⊢−1s x ← ref 0; ⟨$(x := 1;< x)⟩ : Code Int { x ← ref 0; ⟨$(x := 1;< x)⟩ •
app

·······················

• Ω Γ ⊢0c $(x ← ref 0; ⟨$(x := 1;< x)⟩) : Int { 1 ; ↦→ 1 2
codeGen

Fig. 10. Example: typing with compile-time code generation in<02> . For clarity, we use the following syntactic

sugar: (1) x ← 41; 42 for (_x : _. 42) 41, and (2) 41; 42 for (__ : _. 42) 41. We assume if-expressions and the

equality operator = on integers. We omit some uninteresting details for space reasons.

2 , we evaluate the elaborated expression inside the splice. The evaluation result ⟨1⟩ suggests that
the expression x := 1;< x generated at 1 has also been evaluated, but this time with x properly
initialized. We will see how evaluation works in the core calculus in the next section.

4 COMPILATION TARGET WITH DYNAMIC SEMANTICS

In this section, we present<02>2>A4 , which is the compilation target for<02> .

4.1 Syntax and Typing

Fig. 11 presents the syntax, typing rules, and level-annotated expressions and values for<02>2>A4 .

Syntax. The syntax in the core is mostly the same as the source. In structure items S, the

definitions def and def↓ have an extra syntactic condition 40 and E0 (explained below), which
ensures that definitions have no top-level splices after compilation. Modules and imported modules
are now both of formM, but we still distinguish them as imported modules need to be type-checked
under an empty context for separate compilation. Expressions 4 include an additional construct,
locations ; , which are the values of references. We omit the definition for types (Δ, q , g ) and contexts
(Γ, f , Ω), which are exactly the same as in the source calculus (Fig. 6).

Typing. Typing rules in the core has no compile-time evaluation, and thus judgments have no
evaluation context, output heap, compile mode, or elaboration result. The input heap f is used to
type-check locations (rule c-loc), where a location ; is well-typed only if it is bound in the heap.
We omit the typing rules for modules, paths, and structure items, as they are otherwise the same as
the corresponding typing part in the source calculus (Fig. 7).

The judgment f Γ ⊢= 4 : g reads: under the heap f and the type context Γ, the expression 4 has
type g at level =. Most rules are self-explanatory. Rule c-loc, as mentioned above, type-checks
locations. As references are always of integers, locations have type Ref Int.

Level-annotated expressions and values. We disallow top-level splices in the core calculus, enforc-
ing that restriction by means of level-annotated expressions [Calcagno et al. 2003b; Taha et al. 1998]
The notion 4= means that 4 is an expression at level =, where = ≥ 0. Importantly, a splice $4 is an
expression at only positive levels = + 1. Thus, 40 in the structure syntax ensures that expressions do
not have top-level splices. In other words, there are no negative level-annotated expressions.

The level-annotated values E= , where E is a subset of expressions 4 , means that E is a value at level
=. Values E0 include literals 8 , units unit, locations ; , and lambdas _x : g . 4 and quotations ⟨4⟩ only
if 40, i.e., 4 is an expression at level 0 that has no top-level splices. This suggests that evaluation can
happen inside lambdas and quotations, as we will see. Values E=+1 are the same set as expressions
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module M F structS end | " | ?."

structure item S F • | module" : Δ =M;S | type C = g ;S

| def : = 40;S | def↓< = E0;S

| import" : Δ =M;S | import↓ " : Δ =M;S

path ? F " | ?."

expression 4 F 8 | unit | x | _x : g . 4 | 41 42 | : | ?.: | < | ?.<

| ref 4 | !4 | 41 := 42 | ⟨4⟩ | $4 | ;

f Γ ⊢ M : Δ Γ ⊢= ? : Δ f Γ ⊢ S : q f Γ ⊢= 4 : g (Typing expression)

c-lit

f Γ ⊢= 8 : Int

c-unit

f Γ ⊢= unit : Unit

c-var

x : (g, =) ∈ Γ

f Γ ⊢= x : g

c-abs

Γ ⊢ g1 f Γ, x : (g1, =) ⊢
= 4 : g2

f Γ ⊢= _x : g1. 4 : g1 → g2
c-app

f Γ ⊢= 41 : g1 → g2 f Γ ⊢= 42 : g1

f Γ ⊢= 41 42 : g2

c-kvar

: : g ∈ Γ

f Γ ⊢0 : : g

c-macro

< : g ∈ Γ

f Γ ⊢−1 < : g
c-pkvar

Γ ⊢= ? : sigq end : : g ∈ q

f Γ ⊢= ?.: : ⌈g⌉?

c-pmacro

Γ ⊢= ? : sigq end < : g ∈ q

f Γ ⊢=−1 ?.< : ⌈g⌉?

c-ref

f Γ ⊢= 4 : Int

f Γ ⊢= ref 4 : Ref Int
c-assign

f Γ ⊢= 41 : Ref Int f Γ ⊢= 42 : Int

f Γ ⊢= 41 := 42 : Unit

c-deref

f Γ ⊢= 4 : Ref Int

f Γ ⊢=!4 : Int

c-qote

f Γ ⊢=+1 4 : g

f Γ ⊢= ⟨4⟩ : Codeg
c-splice

f Γ ⊢=−1 4 : Codeg

f Γ ⊢= $4 : g

c-eq

f Γ ⊢= 4 : g1 Γ ⊢ g1 ≈ g2

f Γ ⊢= 4 : g2

c-loc

; ∈ f

f Γ ⊢= ; : Ref Int

4= (=≥0) (level-annotated expressions)

8= unit= ;= x= := ?.:= <= ?.<=

4=

(_x : g . 4)=

41
= 42

=

(41 42)
=

4=

(ref 4)=
41

= 42
=

(41 := 42)
=

4=

(!4)=

4=+1

(⟨4⟩)=

4=

($4)=+1

E0 E=+1 F 4= (=≥0) (level-annotated values)

80 unit0 ;0

40

(_x : g . 4)0

40

(⟨4⟩)0

Fig. 11. Syntax and typing in the core calculus<02>2>A4

4= . Intuitively, E=+1 is a value at level = + 1 if it does not evaluate at level = + 1, and thus it can only
have up to = nested splices, which is exactly expressions of 4= . For example, if $4 is an expression
at level 1, then it is a value at level 2.

Notations: we often write simply E for E0. We write partially annotated expression (and values),
such as 41

= 42 to mean that 41 is an expression at level = but there is no level restriction on 42.

4.2 Dynamic Semantics

Fig. 12 presents the dynamic semantics for the core calculus.
A module valueME contains a structure value SE . A structure is a value SE when its modules,

defs, def↓s, and imported modules are values. Note that import↓ed modules can be anyM, as they
are compile-time only computations that do not evaluate in the dynamic semantics.
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module value ME F • | structSE end

structure value SE F • | module" : Δ =ME ;SE | type C = g ;SE | def : = E ;SE
| def↓< = E ;SE | import" : Δ =ME ;SE | import↓ " : Δ =M;SE

f1 Ω M1 −→M2 f2 (Evaluating module)
ev-m-struct

f1 Ω S −→ S′ f2

f1 Ω structS end −→ structS′ end f2

ev-m-mvar

" =M ∈ Ω

f Ω " −→M f

ev-m-pmvar

?." =M ∈ Ω

f Ω ?." −→ ⌈M⌉? f

f1 Ω S1 −→ S2 f2 (Evaluating structure item (excerpt))

ev-st-def1

f1 Ω 4 0−→ 4′ f2

f1 Ω def : = 4;S −→ def : = 4′;S f2

ev-st-def2

f1 Ω;: = E S −→ S′ f2

f1 Ω def : = E ;S −→ def : = E ;S′ f2

ev-st-type

f1 Ω S −→ S′ f2

f1 Ω type C = g ;S −→ type C = g ;S′ f2

ev-st-macro

f1 Ω S −→ S′ f2

f1 Ω def↓< = E ;S −→ def↓< = E ;S′ f2

f1 Ω 41
=
−→ 42 f2 (=≥0) (Evaluating expression)

ev-app1

f1 Ω 41
=
−→ 4′1 f2

f1 Ω 41 42
=
−→ 4′1 42 f2

ev-app2

f1 Ω 4
=
−→ 4′ f2

f1 Ω E= 4
=
−→ E= 4′ f2

ev-abs

f Ω 4 =+1−→ 4′ f

f Ω _x : g . 4 =+1−→ _x : g . 4′ f

ev-beta

f Ω (_x : g . 4) E 0−→ 4 [x ↦→ E] f

ev-deref1

f1 Ω 4
=
−→ 4′ f2

f1 Ω !4
=
−→ !4′ f2

ev-deref

; ↦→ E ∈ f

f Ω !; 0−→ E f
ev-ref1

f1 Ω 4
=
−→ 4′ f2

f1 Ω ref 4
=
−→ ref 4′ f2

ev-ref

; ∉ f

f Ω ref E 0−→ ; f, ; ↦→ E

ev-assign1

f1 Ω 41
=
−→ 4′1 f2

f1 Ω 41 := 42
=
−→ 4′1 := 42 f2

ev-assign2

f1 Ω 4
=
−→ 4′ f2

f1 Ω E= := 4
=
−→ E= := 4′ f2

ev-assign

; ∈ f

f Ω ; := E 0−→ unit f [; ↦→ E]
ev-qote

f1 Ω 41
=+1−→ 42 f2

f1 Ω ⟨41⟩
=
−→ ⟨42⟩ f2

ev-splice

f1 Ω 41
=
−→ 42 f2

f1 Ω $41
=+1−→ $42 f2

ev-spliceCode

f Ω $⟨E1⟩ 1−→ E1 f
ev-kvar

: = E ∈ Ω

f Ω : 0−→ E f

ev-pkvar

?.: = E ∈ Ω

f Ω ?.: 0−→ ⌈E⌉? f

ev-macro

< = E ∈ Ω

f Ω < 0−→ E f

ev-pmacro

?.< = E ∈ Ω

f Ω ?.< 0−→ ⌈E⌉? f

Fig. 12. Dynamic semantics in the core calculus<02>2>A4

The judgment f1 Ω M1 −→ M2 f2 reads: under heap f1 and evaluation context Ω, the
moduleM1 evaluates toM2, updating the heap to f2. Rule ev-m-struct evaluates the structure.
Rules ev-m-mvar and ev-m-pmvar get the module definition from the context. We use the notation
?." =M ∈ Ω to mean that we can get the definition of " inside Ω following the path ? . Recall
that the notation ⌈ ⌉? prefixes ? to all variables that are defined in ? .
The judgment f1 Ω S1 −→ S2 f2 evaluates structures. For def : = 4 , we first evaluate 4 to a

value (rule ev-st-def1), and then adds : = E in the evaluation context to evaluate the rest of the
structure (rule ev-st-def2). Type definitions are ignored in the dynamic semantics (rule ev-st-type).
Macros are not added to the evaluation context (rule ev-st-macro), making it explicit that macros
are compile-time only computations. For space reasons, we omit the evaluation rules for modules.
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Ω = < = _x : Ref Int. if (!x) = 0 then ⟨−1⟩ else ⟨1⟩

• Ω x ← ref 0; ⟨$(x := 1;< x)⟩
0−→ x ← ; ; ⟨$(x := 1;< x)⟩ ; ↦→ 0
0−→ ⟨$(; := 1;<;)⟩ ; ↦→ 0 1

0−→ ⟨$(unit;<;)⟩ ; ↦→ 1 2

0−→ ⟨$(<;)⟩ ; ↦→ 1
0−→ ⟨$⟨1⟩⟩ ; ↦→ 1 3

0−→ ⟨1⟩ ; ↦→ 1 4 (ev-spliceCode)

; ↦→ 0 Ω ; := 1 0−→ unit ; ↦→ 1
ev-assign

; ↦→ 0 Ω ; := 1;<; 0−→ unit;<; ; ↦→ 1
ev-app2

; ↦→ 0 Ω $(; := 1;<;) 1−→ $(unit;<;) ; ↦→ 1
ev-splice

1 ; ↦→ 0 Ω ⟨$(; := 1;<;)⟩ 0−→ ⟨$(unit;<;)⟩ ; ↦→ 1 2
ev-qote

Fig. 13. Example: evaluation steps for • Ω x ← ref 0; ⟨$(x := 1;< x)⟩
0
−→∗ ⟨1⟩ ; ↦→ 1 in Fig. 10 (le�). For

concision, we write f1 Ω 4
=
−→ · · ·

=
−→ 4 f for a series of evaluation steps. Derivation from 1 to 2 (right).

At a high-level, just like def , we evaluate module and imported modules to values and add them
to the evaluation context; and just like macros, we ignore import↓ed modules.
The judgment f1 Ω 41

=
−→ 42 f2 reads: under heap f1 and evaluation context Ω, evaluating

41 at level = results to 42 and updates the heap to f2. The rules are used for both compile-time
evaluation (as in rule codeGen) and runtime. The judgment is level-indexed: intuitively, the rule
searches for expressions at level 0 to evaluate, adjusting the level when evaluating inside quotations
and splices. For an application 41 42 at level =, we first evaluate 41 (rule ev-app1) until it becomes a
value E= , and we evaluate 42 (rule ev-app2). We evaluate a lambda _x : g . 4 by evaluating its body,
so splices inside the body can get evaluated (rule ev-abs); the level is positive as there are no splices
at negative levels. Beta-reduction only happens at level 0 (rule ev-beta). Evaluation for references
is similar to applications, and we have rules for reference creation (rules ev-ref1 and ev-ref), gets
(rules ev-deref1 and ev-deref), and sets (rules ev-assign1, ev-assign2, and ev-assign).

Quotations (rule ev-qote) and splices (rule ev-splice) increment and decrement the evaluation
level respectively. Rule ev-spliceCode is where we cancel out a pair of quotation and splice: when
E1 is a value at level 1, splicing the quotation ⟨E1⟩ at level 1 removes the quotation and steps to E1.

The last four rules evaluate definitions at level 0 to their values in the evaluation context.
Rules ev-macro and ev-pmacro for macros should be used only for compile-time evaluation.

4.3 Example

Fig. 13 presents the evaluation steps for the compile-time evaluation happened in Fig. 10. The
derivation from 1 to 2 is given on the right of the figure, demonstrating how we search for
expressions to evaluate inside quotations and splices and how heaps are updated. The last step
from 3 to 4 cancels out a pair of quotation and splice with rule spliceCode.

4.4 Type Soundness

We discuss type soundness for the core calculus<02>2>A4 . First, we need notions of contexts being
well-formed. Γ ok means that all types in the type context are well-formed with all type variables
bound. f ok checks all values in the heap are integers. An evaluation context Ω is well-typed, with
respect to a context Γ and a heap f , if all definitions in it has the type specified by Γ. Interestingly, as
the reader may have noticed, our calculi distinguish between compile-time and runtime evaluation
contexts. Specifically, when typing the source calculus, we add macros (rule st-macro) but not
definitions (rule st-def) to the evaluation context, while we do the opposite when evaluating
modules: we add definitions (rule ev-st-def2) but not macros (rule ev-st-macro). Therefore,
evaluation contexts has two well-formedness judgments f Γ ⊢c Ω and f Γ ⊢r Ω, as given in Fig. 14,
used for compile-time and runtime computations, respectively.
Preservation holds for both compile-time and runtime evaluation. For space reasons, we show

theorems only for expressions, but theorems 4.1, 4.2, and 4.4 also hold for modules and structures.
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f Γ ⊢c Ω (compile-time)

f Γ ⊢c Ω

f Γ, : : g ⊢c Ω

f Γ ⊢c Ω f Γ ⊢−1 E : g

f Γ,< : g ⊢c Ω;< = E

f Γ ⊢r Ω (runtime)

f Γ ⊢r Ω f Γ ⊢0 E : g

f Γ, : : g ⊢r Ω;: = E

f Γ ⊢r Ω

f Γ,< : g ⊢r Ω
Fig. 14. Well-formedness of evaluation contexts (excerpt). Modules in the context are checked similarly.

Theorem 4.1 (Preservation). Given Γ ok, and f ok, and f Γ ⊢r Ω or f Γ ⊢c Ω,
if f Γ ⊢=

′
4 : g and f Ω 4

=
−→ 4′ f ′, then f ′ Γ ⊢=

′
4′ : g .

The theorem does not relate the typing level =′ to the evaluation level =, as it takes typing and the
evaluation step as given, and proves that every possible step of evaluation preserves typing.
The progress theorem is subtler. For example, evaluating modules (rule ev-st-macro) does not

add macros to the evaluation context, so we must ensure runtime evaluation never encounters
macros (rule ev-macro) to avoid evaluation getting stuck. Similarly, compile-time evaluation should
never encounter rule ev-kvar. But given an expression, how do we knowwhether we are evaluating
at compile-time or runtime? Rule codeGen gives us a hint: the elaborated expression 4 is typed at
level = − 1, which is either -1 or -2 for top-level splices in let definitions and macros, but evaluated
at level 0 — thus, we can determine the evaluation phase by comparing the typing level =′ with the
evaluation level =: a smaller typing level indicates compile-time evaluation; otherwise, the phase is

runtime. The following theorem establishes progress, where the notation Γ̂ checks that Γ does not
contain local variables (i.e. x).

Theorem 4.2 (Progress). Given Γ̂ ok, and f ok, and (=′ < = ∧ f Γ ⊢c Ω) or (=′ ≥ = ∧ f Γ ⊢r Ω),

if f Γ ⊢=
′
4 : g where 4= , then either 4 is a value E= , or there exist 4′ and f ′ such that f Ω 4

=
−→ 4′ f ′.

Combining preservation and progress yields type soundness. Below, we show soundness for
runtime where =′ = = = 0, and for compile time where =′ = −1 (or any negative level) and = = 0.

Theorem 4.3 (Soundness). Given Γ̂ ok, and f ok,

• Runtime: if (f Γ ⊢r Ω) and f Γ ⊢0 4 : g where 40, then either 4 is a value E0, or there exist 4′ and
f ′ such that f Ω 4 0−→ 4′ f ′ and f ′ Γ ⊢0 4′ : g ;
• Compile time: if (f Γ ⊢c Ω) and f Γ ⊢−1 4 : g where 40, then either 4 is a value E0, or there exist 4′

and f ′ such that f Ω 4 0−→ 4′ f ′ and f ′ Γ ⊢−1 4′ : g .

4.5 Elaboration Soundness and Phase Distinction

We discuss additional properties of our calculi.

Elaboration soundness and phase distinction of heaps. First, we want to show that elaboration
preserves typing. A natural question then is: if f Ω Γ ⊢=

★
4 : g { 4 f ′, under which heap, f or

f ′, should we type-check 4? The answer is: neither. In practice, we may compile a program in one
environment, and then run the compiled program in another environment, where compile-time
information is no longer available. It is therefore important that 4 does not refer to values from the
compile-time heap. Indeed, in the following theorem, we prove that 4 is well-typed under an empty
heap in the core calculus. Namely, heaps have a clear compile-time and runtime phase distinction,
suggesting that we can safely discard the compile-time heap after compilation.

Theorem 4.4 (Elaboration Soundness). Given Γ ok, f ok, and f Γ ⊢c Ω,
if f Ω Γ ⊢=

★
4 : g { 4 f ′, then • Γ ⊢= 4 : g . Moreover, if ★ = q, then 41, else 40.

The intuition behind the empty heap is as follows. In rule codeGen, suppose 4 is typed at level
−1 and then evaluated at level 0. Any locations created at evaluation level 0 are at typing level −1.
Because of preservation, the result ⟨E1⟩ is also of typing level −1, and thus E1 has typing level 0,
and so E1 will not be able to capture locations from typing level −1.
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The theorem also says that 4 is an expression at level 1 under mode q and at level 0 otherwise.
Thus in rule codeGen since 4 is typed under s, we have 40. Therefore compile-time type soundness
(Theorem 4.3) applies to the evaluation derivation in rule codeGen.

Phase distinction. The distinction between compile-time and runtime heaps have already made it
evident that compile-time only computations are not needed for runtime evaluation. The following
theorem makes the phase distinction further explicit: the notation J K erases all macros (including

those inside modules) and modules imported at compile-time (import↓). The theorem says that
if a moduleM evaluates toM′, then after erasure, JMK evaluates to JM′K. Consequently, when
evaluating a module we can safely erase all compile-time only computations.

Theorem 4.5 (Phase Distinction). Given Γ ok, f ok, and f Γ ⊢r Ω,
if f Γ ⊢ M : Δ, and f Ω M −→M′ f ′, then f JΩK JMK −→ JM′K f ′.

5 MACOCAML: IMPLEMENTATION

So far we have focused on the calculi that capture the essence of our design. We have incorporated
our design into OCaml, and provide the modified OCaml compiler as an artifact [Xie et al. 2023].

5.1 Compiler

The implementation is a substantial change that touches many parts of the compiler (top level, type
checker, runtime, dynamic loading, parser, code generator, primitive types, standard library, etc.).

Syntax. For harmony with other OCaml features our syntax differs from the formalism in several

ways. Rather than def : = 4 and def↓< = 4 we write let k = e and macro m = e. In place of
import " or import↓ " we project from modules using M.k at runtime or ~M.k at compile time
and make names available without qualification using open M and open ~M. For the code type we
write postfix expr rather than prefix Code.

Quotation. Following other multi-stage language implementations such as BERMetaOCaml [Kise-
lyov 2014], compilation translates typed quoted expressions into combinators that construct terms.
Since type checking guarantees that generated code is well-typed, the combinators do not need to
carry type information; they construct and compose untyped representations.

Splicing. The execution of the compile-time code that is inserted into top-level splices builds an
array of intermediate code values (type lambda array). Splicing these values constructs a single
large representation for each module that is compiled with OCaml’s standard backend.

Compile-time evaluation. As in the formalism, compilation involves evaluating top-level splices.
These are first translated to bytecode, then executed using the Meta.reify_bytecode function that
OCaml’s interactive top-level uses to execute phrases. Although the OCaml compiler supports
compilation to both bytecode and native code, for simplicity and portability in our implementation
compile-time code is currently always compiled and executed as bytecode. In the future we plan to
support native code execution in compile-time by integrating a method to generate and execute
native code dynamically as proposed by Fischbach and Meurer [2011].

Compilation. Since modules can only import compiled modules which type-check under an
empty heap, it is obvious that compilation of a module does not depend on side effects that occurred
during the compilation of imported modules (§3.1). When compiling a module, each imported
module is visited (similarly, invoked) at most once at each level. For example, module ~ST1 = Term

followed bymodule ~ST2 = Term will only visit Term once9. As another example, if both modules A

9This behavior is not modeled in the formalism, but it is easy to extend the formalism with an additional context that

records identifiers of visited modules, so that visiting does not revisit a visited module, but directly sets, e.g., ~ST2 = ~ST1.
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and B import Term at compile-time, and another module C imports A at runtime and B at compile-
time, then Term will be visited twice, once at level -1 (for A) and once at level -2 (for B). If module C
imports both A and B at runtime, then Term is visited only once at level -1, and A and B share its
heap state at level -1.

5.2 Language Extensions

The implementation of MacoCaml follows the key ideas of our design. Full integration in OCaml
requires additional steps, which we touch on briefly here.

References of code. Our calculus<02> restricts to integer references to study compile-time heaps.
If references can store code, then a variable can escape its scope if code quoting it can be stored
in references and spliced outside the corresponding binder; this issue is known as scope extrusion.
MacoCaml follows other systems (e.g. Kiselyov [2014]) in detecting scope extrusion at splice time.

Module subtyping. In the formalism of<02> , every module exports all the names that are defined
in its body. In contrast, the richer module systems of full-scale ML family languages such as OCaml
offer module subtyping [Mitchell and Harper 1988] that supports exporting only a subset of names.
There is an interesting interaction between subtyping and quotation. In the example below, the
signature of M exports a macro public that quotes an unexported function secret. When the result
of M.public is spliced outside the module, its expansion includes a name that is not in scope:

module M : sig macro public : int expr → int expr end = struct

let secret x = x * x

macro public x = <<secret ($x + 1) >>

end

$(M.public << 3 >>) (* M.secret (3 + 1); but secret is not exported by M! *)

To deal with this, the compiler incorporates path closures, which systematically transform macros
and signatures to ensure that names like secret that are hidden fromuser code bymodule boundaries
are nonetheless accessible in elaborated programs. Essentially, the compiler closure-converts each
macro that uses module-local definitions; the produced closure is a quoted module containing those
definitions, whose path is then injected into the macro definition. As a result, the above program
will generate M.Closure1.secret (3+1), instead of M.secret (3+1). As users cannot access closures,
data abstraction is preserved for user programs. As macros are always function values, the insertion
of an additional parameter to inject the path closure does not change their evaluation behaviour.
We leave a formal treatment of path closures to future work.

Cross stage persistence. Cross-stage persistence (CSP) in multi-stage languages comes in three
flavours: heap-based CSP, value-based CSP, and path-based CSP. In heap-based CSP, heap-allocated
values are stored in code as reference to the heap. In compile-time staging systems such asMacoCaml
and Template Haskell [Sheard and Jones 2002] this form of CSP is not permitted, since the compile-
time heap where code is constructed is discarded after compilation. For path-based CSP, top-level
identifiers can appear in code quotations and are stored as names. Our system naturally allows
something similar: a macro can quote a top-level let identifier and, more generally, quotations
at level = can quote identifiers at level = + 1. Path closures, discussed above, manage the tricky
interactions with the hiding of top-level names.

Finally, in value-based CSP, simple immutable values are automatically converted to their code
representations. For example, in MetaOCaml one might write let x = "foo" in .< x >. to produce
a code value equivalent to .<"foo">.. In our system this example is rejected as ill-typed; the
user must apply a type-specific function lift_string : string → string expr instead. In some
systems, such as Template Haskell, these lift functions are inserted automatically using type classes,
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and we hope that the eventual integration of modular implicits [White et al. 2014] will allow a
similar approach in MacoCaml.

5.3 Libraries

While we leave a systematic evaluation of MacoCaml to future work, we have ported two substantial
existing libraries to MacoCaml to validate our implementation.

Stream fusion. Kiselyov et al. [2017] present a MetaOCaml library, Strymonas, for stream fusion
with appealing performance improvements on OCaml microbenchmarks. The interface offers
high-level combinators such as map and fold, and generates efficient loop-based code.

We have ported the 904 lines of code of Strymonas to MacoCaml, which generates identical code
to the original library, thus inheriting the same performance improvements. Although Strymonas
was designed for run-time staging, the port was straightforward, since MacoCaml’s quotes and
splices are similar to MetaOCaml’s. The compilation time is also similar, at around 600ms for
both the MetaOCaml implementation and the MacoCaml port. Besides syntactic updates, porting
involved two changes. First, the original implementation has several uses of cross-stage persistence,
which MacoCaml does not support; we changed these to explicit applications of MacoCaml’s
lifting functions (e.g. Expr.of_int : int → int expr). Second, where the original implementation
executes quoted code either using MetaOCaml’s primitive run function or by printing to a file
followed by compilation, the MacoCaml port uses top-level splices. We expect porting other existing
MetaOCaml libraries to be similarly straightforward.

Format. OCaml has a sophisticated formatting library that represents typed format trees using
GADTs [Vaugon 2013] similarly to the example in §2.5. The library is distributed with OCaml, and
the compiler includes a translation from format strings such as "(%d, %d)" to typed format trees,
which are then interpreted at run-time by functions such as printf and scanf.

We have staged the core formatting library (2476 lines) using MacoCaml to interpret the format
trees during compilation, eliminating run-time overhead. The port to MacoCaml was largely a
matter of performing a manual binding-time analysis to ascertain which subexpressions in the
program are statically known, then adding the expr type, quotations, splices and import annotations
accordingly. The implementation uses most of the features described in the paper (147 quotes, 85
splices, 33 module annotations), but does not use compile-time effects, since the generation of
specialized code from format strings in the original library is purely functional.
We have measured the compilation overhead of using MacoCaml’s features, and found it to be

modest: the ported format library compiles in 543ms, compared to 477ms for the original library.

Other libraries. We expect that other OCaml libraries will present similar opportunities for
optimization using MacoCaml’s staging constructs . Regular expression libraries (e.g. re [2023]) will
benefit from compiling regexes during compilation, and from generating OCaml code without the
overhead of table-based automata. Numerical libraries (e.g. Owl [Wang and Zhao 2022]) will be able
to use macros to generate specialized code (e.g. applying the generative techniques in Carette and
Kiselyov [2005]). Libraries that generate code in an untyped way (e.g. the ctypes foreign function
library [Yallop et al. 2018]) will enjoy improved implementations using our typed code generation
facilities. Generic programming libraries based on type representations (e.g. lrt [2023]) will be
able to statically generate type-specialized functions using the techniques in Yallop [2017]. More
generally, a library will benefit from MacoCaml’s staging constructs whenever some aspect of the
library can be specialized using information (e.g. a regex, a parameter, or a type) that is unavailable
when the library is written, but available at the point where code using the library is compiled.
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6 RELATED WORK

Staging and macros have a rich literature. Here we discuss works that are most relevant.

Staged programming. Staging has been used for both compile-time [Sheard and Jones 2002; Xie
et al. 2022] and runtime code generation [Calcagno et al. 2003b; Kiselyov 2014; Taha et al. 1998],
each with its own merits. Compile-time code generation, as in our system, has a clear and proven
phase distinction between compile-time and runtime heaps, while dynamic code generation allows
code to be specialized with respect to information that only becomes available at runtime.

Template Haskell (TH) [Sheard and Jones 2002] supports compile time code generation and our
notion of compiler modes is inspired by TH. However, TH does not present formal operational
semantics. Xie et al. [2022] formalized Typed Template Haskell (TTH) with operational semantics,
but TTH is not yet implemented. Neither work supports side effects, compile-time heaps, or modules.
TTH also does not explicitly formalize compile-time evaluation; instead, negative-leveled splices
are lifted to top-level so that they are evaluated before the rest of the program, leaving evaluation
phases unclear. Kovács [2022] takes a radically different approach, employing two-level type theory
(2LTT) to model staged compilation in a dependently typed setting.

Staging for runtime code generation comes with a rather different methodology. Languages such
as MetaML [Taha et al. 1998], MetaOCaml [Calcagno et al. 2003b], and BER MetaOCaml [Kiselyov
2014] support an additional run construct that evaluates code at runtime. There are no compile-time
bindings, top-level splices, or compile-time evaluation. As code is generated at runtime, there is
no clear phase distinction. Like the present paper, the MetaML and MetaOCaml work also defines
calculi and establishes theorems, but their formalisms do not support features like side-effects,
heaps, or modules. Our future plans include extending MacoCaml with runtime code generation.

Another line of work uses modalities to model staged computation. Davies and Pfenning [1996]

introduce a language Mini-ML□ based on the modal logic S4, that supports manipulation of closed
terms. Davies [1996] shows that the application of the Curry-Howard correspondence to linear-
time temporal logic produces a language _⃝ supporting manipulation of open terms (similarly to
MetaML, which was introduced shortly afterwards). Nanevski et al. [2008] generalize the work
of Davies and Pfenning in a different direction, augmenting the □ type modality with the context
of free variables that may appear in a term of that type. This contextual modal type theory provides
an appealing basis for metaprogramming, but integrating it into a language like OCaml would be a
significantly more disruptive change than adding a simple MetaML-style type constructor for code.

Macros and modules. The design of the module system in MacoCaml is directly built on top of
Racket [Flatt 2002] (also see its extensions [Culpepper et al. 2007; Flatt et al. 2012]), which fits
extremely well with our notion of macros and staging (§2.3). Flatt [2013] further allows shifting a
module at a positive level. From the typing perspective, shifting a module at a positive level would
work in our system, though it remains to see what implications that would have to code generation
and runtime; for example, shifting a module at level +1 means macros from that module are now at
level 0 and can be used at runtime.

However, there are important differences between the notion of macros in MacoCaml and those
in Racket. First, Racket and MacoCaml manage macros differently. In particular, a macro in Racket
can be viewed as a binding whose body is defined at level -1 but which itself is bound at level
010. This approach allows a macro body to use definitions imported at compile-time, while the
macro itself can be called and expanded in a normal program. The discrepancy between levels can
cause surprising results. For example, consider the following example adapted from the Racket
document11:

10https://docs.racket-lang.org/reference/syntax-model.html#%28part._transformer-model%29
11https://docs.racket-lang.org/guide/phases.html#%28part._.Phases_and_.Modules%29
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(module a racket

(define button 0)

(define see-button #'button)

(provide button see-button))

(module b racket

(require (for-syntax 'a)) (* compile-time import *)

(define-syntax (m stx) see-button)

(m)) (* error: button: unbound identifier *)

Instead of returning 0, evaluating module b will raise an error about button being unbound. Let
us understand what happened. Module a defines button and see-button as normal bindings at
level 0, where see-button’s value is the syntax object (#') for button.12 The provide form exports
the definitions. Module b imports module a at compile-time, so both button and see-button are
at level -1. The macro m, as its body is defined at level -1, can see see-button at level -1 and will
return the #'button syntax object, which refers to button at level -1. The use of m is at level 0, as
the macro binding itself is at level 0. So both the macro definition and its use are well-leveled — but
the program raises an error after macro expansion! The reason is that since macro m is used at level
0, it expands to #'button at level 0, but there is no button at level 0!13

MacoCaml differs from Racket, giving a more consistent and refined view of compile-time
computations: macros are defined and bound both at level -1, and by leveraging staging annotations
we can distinguish between a macro such as mpower (§2.3), which is an expression at level -1, and
splices of macros such as $(mpower 5), which is a top-level splice at level 0 that triggers compile-
time evaluation. Moreover, MacoCaml is fully typed, built on top of<02> with proven soundness
results, so a well-typed program never generates an ill-typed program.

On the other hand, macros in Flatt’s system are more expressive as they may scrutinise abstract
syntax. In a typed setting, such analytic macros require a sophisticated type system (such as
contextual types used in Squid [Parreaux et al. 2018] or Moebius [Jang et al. 2022]) that exposes
contexts in types rather than a simple MetaML-style system that is sufficient for our purely
generative macros.

Macros and staging in MacroML. MacroML [Ganz et al. 2001] views macros as multi-stage
programs, by translating macros to multi-stage programs in MetaML. The key idea is to model
macro expansion as one step of elaboration under level 1 (⊢−1 4 { 4′), which translates ordinary
arguments into code and macro applications into splices, followed by one step of evaluating the

quotation of the resulted program (⟨4′⟩
0
−→∗ 4′

1
). Regular execution then calls the run construct

(run 4′
1

0
−→∗ 4′

2
) to get the final result. As an example, the power macro from §2.1 can be expressed

in MacroML as (using MacoCaml notations for quotations and splices throughout this section):

let mac mpower $n x = (* e *)

$(if n = 0 then <<1>> else <<x * (mpower (n-1) x)>>)

in mpower 5 2

wheremac specifies a macro definition, $nmeans an early parameter, and x is an ordinary parameter.
The program translates to:

$(letrec mpower n x = (* e' *)

(if n = 0 then <<1>> else <<$x * $(mpower (n-1) x)>>)

in mpower 5 <<2>>)

The macro expansion step evaluates the quotation of the above program, generating:

<<2 * (2 * (2 * 2 * (2 * 1)))>> (* e1' *)

Executing the program then calls run on the above program, resulting in:

12 (#') captures a binding at all levels. Such flexibility is not needed for this example.
13See the document for possible fixes. However, our point here is that expanding a well-leveled macro can raise an error.
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32 (* e2' *)

MacoCaml differs from MacroML in several aspects. At a high level, rather than considering macros
as staged programs, MacoCaml combines macros and staging in the same language, where macros
are compile-time bindings and staging and macros can interact. Moreover, MacoCaml models
compile-time evaluation using top-level splices and runtime evaluation via direct operational
semantics. In contrast, evaluation in MacroML is, in a sense, simulating the behavior of top-level
splices: as macro applications elaborate to splices, the elaboration result 4′ could contain top-level
splices, and thus macro expansion evaluates ⟨4′⟩ rather than 4′. This in turn forces regular execution
to call run on the evaluation result (i.e. run 4′

1
) as the result of macro expansion 4′

1
is unnecessarily

wrapped inside a quotation. Lastly, extending MacroML with references would require proving

phase distinction by showing that the runtime heap from ⟨4′⟩
0
−→∗ 4′

1
is not needed for regular

execution run 4′
1

0
−→∗ 4′

2
.

Combining macros and staging in Scala. Stucki et al. [2018] described a design in Scala to combine
macros and multi-stage programming. As they did not present formal semantics, we compare with
their system based on the design description and example programs from their paper.
In their setting, macros are inline functions defined using top-level splices, which are only

evaluated when the code is inlined. For example, the power macro from §2.1 is defined as follows:

def mpower'(n: Int, x:Expr[Int]) = if n = 0 then <<1>> else <<$(x) * $(mpower' (n-1) x)>>)

inline def mpower (inline n: Int, x:Int) = $(mpower' n <<x>> ) (* no evaluation *)

mpower (5, 2) (* inlined to $(mpower' 5 <<2>>) *)

(* then expanding to 2 * (2 * (2 * 2 * (2 * 1))) *)

where mpower' is a normal definition, and the macro mpower is defined as an inline function with a
top-level splice. There are a few notable things. First, mpower' is defined at level 0, but used at level
-1 in the definition of mpower. To make the call to mpower' well-staged, macros such as mpower are
type-checked “as if they were in a quoted context” [Stucki et al. 2018, §3.3]. This can be implemented
by type-checking mpower under level 1, similar to MacroML. Moreover, this means that programs
using macros such as mpower (5, 2) also need to be “thought of as a quoted program” to make sure
that after mpower expands, the call to mpower' is still well-staged. This is conceptually similar to
MacroML where the elaboration result is evaluated inside a quotation. Furthermore, because mpower
has a top-level splice, the parameter n seems ill-staged, as it is introduced at the definition level of
mpower, but used in a lower level inside the splice. To make it work, the program marks n as inline,
reflecting the fact that its value will be known during macro expansion. Furthermore, the top-level
splice in the definition of mpower does not trigger evaluation until it is inlined when mpower is called.

MacoCaml differs from Scala in several aspects. First, by modeling macros as compile-time bind-
ings, MacoCaml maintains well-stagedness without needing the inlining mechanism or considering
programs in a quoted context. Moreover, while both MacoCaml and Scala consider top-level splices
as compile-time evaluation, MacoCaml uses top-level splice at the macro expansion site instead of
the macro definition site, thus treating top-level splices more consistently. However, we note that
some of those differences arise from Scala’s aim of supporting both compile-time and runtime code
generation. For runtime code generation, it is important that mpower' is not a macro:

val power5 = << (x:Int) ⇒ $(mpower'(5, <<x>>)) >>.run

power5(2) (* generating at runtime: 2 * (2 * (2 * 2 * (2 * 1))) *)

It is thus interesting as future work to extend MacoCaml with runtime code generation and compare
the resulting system again with Scala.

Combining staging and references. Calcagno et al. [2003a] studied references in MetaML and
handled scope extrusion, where a variable can escape its scope if code quoting it can be stored in a
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reference then spliced outside its binder. More recently, Kiselyov et al. [2016] introduced a type
system that models context nesting using subtyping, allowing references to store open code values
while preventing scope extrusion.<02> restricts references to integers as they serve a different
purpose: they make compile-time heaps explicit, thus making the language interesting for studying
phase distinction. We remark that scope extrusion is orthogonal to our phase distinction result. That
is, even in a system with scope extrusion, one may still prove phase distinction (Theorem 4.5), as
the extruded part is still well-leveled (though not well-scoped) and any compile-time only (extruded
or not) computations are not needed for runtime evaluation.
We believe that the type systems of Calcagno et al. and Kiselyov et al. can be integrated into

our system to support records of code. Currently, our implementation (§5.2) follows MetaOCaml
[Kiselyov 2014] in detecting scope extrusion at splice time.

Staging modules. While MacoCaml focuses on term-level code generation, there is a line of
work [Inoue et al. 2016; Sato and Kameyama 2021; Sato et al. 2020] on generating modules for
eliminating performance penalty from functor applications. In the future we would be interested to
see how module generation could be incorporated in our system. In particular, we would like to
study how the approach in [Sato and Kameyama 2021; Sato et al. 2020], which converts code of a
module into a module of code, relates to path closures (§5.2) used in our system, which essentially
require quoting and splicing of module paths.

Existing approaches to compile-time computation in OCaml. OCaml currently offers two ap-
proaches to compile-time computation. Historically, Camlp5 [de Rauglaudre 2007] (and the similar
tool, Camlp4), have supported pre-processing of OCaml programs by transformation of concrete
syntax trees. More recently, ppx [White 2013] supports transformation of OCaml programs by
abstract syntax tree transformation. Although these tools have notable drawbacks — e.g. they do
not guarantee hygiene or type-preservation — they have found many uses in practice: for example,
ppx_monad provides Haskell-style “do” notation, ppx_expect provides facilities for embedding
expect tests in programs, and ppx_bitstring provides bitstring pattern matching. We expect that
these and other such libraries can be restructured to keep their current ppx-based interfaces and
use MacoCaml’s typed code representations internally, improving confidence in their correctness.

7 CONCLUSION

We have presented the design and implementation of MacoCaml. The MacoCaml system supports
compile-time code optimization of a variety of OCaml programs, and its formalization<02> can be
used to support a novel combination of staging and macros for other languages.
In the future, we plan to extend MacoCaml with a number of features. First, we would like to

allow nested quotations and splices. Nested splices will raise an interesting question: how to ensure
that a nested splice is evaluated before a single splice, while evaluation is interleaved with typing?
Second, we plan to enrich our module language with module subtyping as described in §5.2, as well
as functors, where macros, like types, will be considered as compile-time components of modules,
by following and extending the phase splitting transformation by Harper et al. [1989].
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A COMPLETE RULES

A.1 Source Typing

f1 Ω Γ ⊢ M : Δ {M f2 (Typing module)
m-struct

f1 Ω Γ ⊢ S : q { S f2

f1 Ω Γ ⊢ structS end : sigq end { structS end f2

m-mvar

" : (Δ, 0) ∈ Γ

f Ω Γ ⊢ " : Δ { " f
m-pmvar

Γ ⊢0 ? : sigq end " : (Δ, 0) ∈ q

f Ω Γ ⊢ ?." : ⌈Δ⌉? { ?." f

Γ ⊢= ? : Δ (Typing path)

p-mvar

" : (Δ, =) ∈ Γ

Γ ⊢= " : Δ

p-pmvar

Γ ⊢=1 ? : sigq end " : (Δ, =2) ∈ q

Γ ⊢=1+=2 ?." : ⌈Δ⌉?

f1 Ω Γ ⊢ S : q { S f2 (Typing structure)

st-empty

f Ω Γ ⊢ • : • { • f

st-type

f1 Ω Γ, C = g ⊢ S : q { S f2

f1 Ω Γ ⊢ (type C = g ;S) : (C = g ;q) { (type C = g ;S) f2
st-def

f1 Ω Γ ⊢0c 4 : g { 4 f2 f2 Ω Γ, : : g ⊢ S : q { S f3

f1 Ω Γ ⊢ (def : = 4;S) : (: : g ;q) { (def : = 4;S) f3
st-macro

f1 Ω Γ ⊢−1c _x : g . 4 : g { E f2 f3 Ω;< = E Γ,< : g ⊢ S : q { S f4

f1 Ω Γ ⊢ (def↓< = _x : g . 4;S) : (< : g ;q) { (def↓< = E ;S) f4
st-module

f1 Ω Γ ⊢ M : Δ {M f2 f2 Ω;" =M Γ, " : (Δ, 0) ⊢ S : q { S f3

f1 Ω Γ ⊢ (module" : Δ =M;S) : (" : (Δ, 0);q) { (module" : Δ =M;S) f3

st-importR

• • ⊢ M : Δ f1 M
E8B8C
⇝ M1 f2 f2 Ω;" =M1 Γ, " : (Δ, 0) ⊢ S : q { S f3

f1 Ω Γ ⊢ (import" : Δ =M;S) : (" : (Δ, 0);q) { (import" : Δ =M;S) f3

st-importC

• • ⊢ M : Δ f1 M
E8B8C
⇝ M1 f2

f2 M1
8=E>:4
⇝ M2 f3 f3 Ω;" =M2 Γ, " : (Δ,−1) ⊢ S : q { S f4

f1 Ω Γ ⊢ (import↓ " : Δ =M;S) : (" : (Δ,−1);q) { (import↓ " : Δ =M;S) f4

f1 Ω Γ ⊢=
★
4 : g { 4 f2 compiler mode ★F c | s | q (Typing expression)

lit

f Ω Γ ⊢=
★
8 : Int { 8 f

unit

f Ω Γ ⊢=
★
unit : Unit { unit f

var

x : (g, =) ∈ Γ

f Ω Γ ⊢=
★
x : g { x f

kvar

: : g ∈ Γ

f Ω Γ ⊢0
★
: : g { : f

macro

< : g ∈ Γ

f Ω Γ ⊢−1
★

< : g { < f

pkvar

Γ ⊢= ? : sigq end : : g ∈ q

f Ω Γ ⊢=
★
?.: : ⌈g⌉? { ?.: f

pmacro

Γ ⊢= ? : sigq end < : g ∈ q

f Ω Γ ⊢=−1
★

?.< : ⌈g⌉? { ?.< f

abs

Γ ⊢ g1 f1 Ω Γ, x : (g1, =) ⊢
=
★
4 : g2 { 4 f2

f1 Ω Γ ⊢=
★
_x : g1. 4 : g1 → g2 { _x : g . 4 f2
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app

f1 Ω Γ ⊢=
★
41 : g1 → g2 { 41 f2 f2 Ω Γ ⊢=

★
42 : g1 { 42 f3

f Ω Γ ⊢=
★
41 42 : g2 { 41 42 f3

ref

f1 Ω Γ ⊢=
★
4 : Int { 4 f2

f1 Ω Γ ⊢=
★
ref 4 : Ref Int { ref 4 f2

get

f1 Ω Γ ⊢=
★
4 : Ref Int { 4 f2

f1 Ω Γ ⊢=
★
!4 : Int {!4 f2

set

f1 Ω Γ ⊢=
★
41 : Ref Int { 41 f2 f2 Ω Γ ⊢=

★
42 : Int { 42 f3

f1 Ω Γ ⊢=
★
41 := 42 : Unit { 41 := 42 f3

qote

f1 Ω Γ ⊢=+1q 4 : g { 4 f2

f1 Ω Γ ⊢=c∨s ⟨4⟩ : Codeg { ⟨4⟩ f2

splice

f1 Ω Γ ⊢=−1s 4 : Codeg { 4 f2

f1 Ω Γ ⊢=q $4 : g { $4 f2

codeGen

f1 Ω Γ ⊢=−1s 4 : Codeg { 4 f2 f2 Ω 4
0
−→∗ ⟨E1⟩ f3

f1 Ω Γ ⊢=c $4 : g { E1 f3

A.2 Type Equivalence

Γ ⊢ g1 ≈ g2 (Typing equivalence)
eq-tvar

C = g ∈ Γ

Γ ⊢ C ≈ g

eq-ptvar

Γ ⊢= ? : sigq end C = g ∈ q

Γ ⊢ ?.C ≈ ⌈g⌉?

eq-refl

Γ ⊢ g ≈ g

eq-trans

Γ ⊢ g1 ≈ g2 Γ ⊢ g2 ≈ g3

Γ ⊢ g1 ≈ g3
eq-arrow

Γ ⊢ g1 ≈ g3 Γ ⊢ g2 ≈ g4

Γ ⊢ g1 → g2 ≈ g3 → g4

eq-ref

Γ ⊢ g1 ≈ g2

Γ ⊢ Ref g1 ≈ Ref g2

eq-code

Γ ⊢ g1 ≈ g2

Γ ⊢ Codeg1 ≈ Codeg2

A.3 Core Syntax

module M F structS end | " | ?."

structure S F • | module" : Δ =M;S | type C = g ;S

| def : = 40;S | def↓< = _x : g . 40;S

| import" : Δ =M;S | import↓ " : Δ =M;S

path ? F " | ?."

expression 4 F 8 | unit | x | _x : g . 4 | 41 42 | : | ?.: | < | ?.<

| ref 4 | 41 := 42 | !4 | ⟨4⟩ | $4 | ;

module type Δ F sigq end

structure type q F • | " : (Δ, =);q | : : g ;q | C = g ;q | < : g ;q

monotype g F Int | Unit | g1 → g2 | Ref g | Codeg | C | ?.C

context Γ F • | Γ, : : g | Γ, C = g | Γ,< : g | Γ, x : (g, =) | Γ, " : (Δ, =)

module value ME F • | structSE end

structure value SE F • | module" : Δ =ME ;SE | type C = g ;SE | def : = E ;SE
| def↓< = E ;SE | import" : Δ =ME ;SE
| import↓ " : Δ =M;SE
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4= (=≥0) (level-annotated expressions)

8= unit= ;= x= := ?.:= <= ?.<=

4=

(_x : g . 4)=

41
= 42

=

(41 42)
=

4=

(ref 4)=
41

= 42
=

(41 := 42)
=

4=

(!4)=

4=+1

(⟨4⟩)=

4=

($4)=+1

E0 E=+1 F 4= (=≥0) (level-annotated values)

80 unit0 ;0

40

(_x : g . 4)0

40

(⟨4⟩)0

A.4 Core Typing

f Γ ⊢ M : Δ (Typing modules)
c-m-struct

f Γ ⊢ S : q

f Γ ⊢ structS end : sigq end

c-m-mvar

" : (Δ, 0) ∈ Γ

f Γ ⊢ " : Δ

c-m-pmvar

Γ ⊢0 ? : sigq end " : (Δ, 0) ∈ q

f Γ ⊢ ?." : ⌈Δ⌉?

Γ ⊢= ? : Δ (Typing path)

c-p-mvar

" : (Δ, =) ∈ Γ

Γ ⊢= " : Δ

c-p-pmvar

Γ ⊢=1 ? : sigq end " : (Δ, =2) ∈ q

Γ ⊢=1+=2 ?." : ⌈Δ⌉?

f Γ ⊢ S : q (Typing structure)

c-st-empty

f Γ ⊢ • : •

c-st-module

f Γ ⊢ M : Δ f Γ, " : (Δ, 0) ⊢ S : q

f Γ ⊢ (module" : Δ =M;S) : (" : (Δ, 0);q)
c-st-def

f Γ ⊢0 4 : g f Γ, : : g ⊢ S : q

f Γ ⊢ (def : = 4;S) : (: : g ;q)

c-st-type

Γ ⊢ g f Γ, C = g ⊢ S : q

f Γ ⊢ (type C = g ;S) : (C = g ;q)
c-st-macro

f Γ ⊢−1 E : g f Γ,< : g ⊢ S : q

f Γ ⊢ (def↓< = E ;S) : (< : g ;q)

c-st-importR

• • ⊢ M : Δ f Γ, " : (Δ, 0) ⊢ S : q

f Γ ⊢ (import" : Δ =M;S) : (" : (Δ, 0);q)
c-st-importC

• • ⊢ M : Δ f Γ, " : (Δ,−1) ⊢ S : q

f Γ ⊢ (import↓ " : Δ =M;S) : (" : (Δ,−1);q)

f Γ ⊢= 4 : g (Typing expressions)

c-lit

f Γ ⊢= 8 : Int

c-unit

f Γ ⊢= unit : Unit

c-var

x : (g, =) ∈ Γ

f Γ ⊢= x : g

c-kvar

: : g ∈ Γ

f Γ ⊢0 : : g

c-macro

< : g ∈ Γ

f Γ ⊢−1 < : g
c-pkvar

Γ ⊢= ? : sigq end : : g ∈ q

f Γ ⊢= ?.: : ⌈g⌉?

c-pmacro

Γ ⊢= ? : sigq end < : g ∈ q

f Γ ⊢=−1 ?.< : ⌈g⌉?

c-abs

Γ ⊢ g1 f Γ, x : (g1, =) ⊢
= 4 : g2

f Γ ⊢= _x : g1. 4 : g1 → g2

c-app

f Γ ⊢= 41 : g1 → g2 f Γ ⊢= 42 : g1

f Γ ⊢= 41 42 : g2
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c-loc

; ∈ f

f Γ ⊢= ; : Ref Int

c-ref

f Γ ⊢= 4 : Int

f Γ ⊢= ref 4 : Ref Int

c-assign

f Γ ⊢= 41 : Ref Int f Γ ⊢= 42 : Int

f Γ ⊢= 41 := 42 : Unit
c-deref

f Γ ⊢= 4 : Ref Int

f Γ ⊢=!4 : Int

c-qote

f Γ ⊢=+1 4 : g

f Γ ⊢= ⟨4⟩ : Codeg

c-splice

f Γ ⊢=−1 4 : Codeg

f Γ ⊢= $4 : g
c-eq

f Γ ⊢= 4 : g1 Γ ⊢ g1 ≈ g2

f Γ ⊢= 4 : g2

A.5 Visiting and Invoking

f1 M1
E8B8C
⇝ M2 f2 (Visiting module)

v-struct

f1 S
E8B8C
⇝ S′ f2

f1 structS end
E8B8C
⇝ structS′ end f2

v-mvar

f "
E8B8C
⇝ " f

v-pmvar

f ?."
E8B8C
⇝ ?." f

f1 S1
E8B8C
⇝ S2 f2 (Visiting structure)

v-empty

f •
E8B8C
⇝ • f

v-type

f1 S
E8B8C
⇝ S′ f2

f1 type C = g ;S
E8B8C
⇝ type C = g ;S′ f2

v-def

f1 S
E8B8C
⇝ S′ f2

f1 def : = 4;S
E8B8C
⇝ def : = 4;S′ f2

v-macro

f1 S
E8B8C
⇝ S′ f2

f1 def↓< = _x : g . 4;S
E8B8C
⇝ def↓< = _x : g . 4;S′ f2

v-importC

f1 M
E8B8C
⇝ M′ f2 f2 M

′ 8=E>:4
⇝ M′′ f3 f3 S

E8B8C
⇝ S′ f4

f1 import↓ " : Δ =M;S
E8B8C
⇝ import↓ " : Δ =M′′;S′ f4

v-importR

f1 M
E8B8C
⇝ M′ f2 f2 S

E8B8C
⇝ S′ f3

f1 import" : Δ =M;S
E8B8C
⇝ import" : Δ =M′;S′ f3

v-module

f1 M
E8B8C
⇝ M′ f2 f2 S

E8B8C
⇝ S′ f3

f1 module" : Δ =M;S
E8B8C
⇝ module" : Δ =M′;S′ f3

f1 M1
8=E>:4
⇝ M2 f2 (Invoking module)

i-struct

f1 • M −→
∗ ME f2

f1 M
8=E>:4
⇝ ME f2
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A.6 Core Dynamic Semantics

f1 Ω M1 −→M2 f2 (Evaluating modules)
ev-m-struct

f1 Ω S −→ S′ f2

f1 Ω structS end −→ structS′ end f2

ev-m-mvar

" =M ∈ Ω

f Ω " −→M f

ev-m-pmvar

?." =M ∈ Ω

f Ω ?." −→ ⌈M⌉? f

f1 Ω S1 −→ S2 f2 (Evaluating structure)

ev-st-module1

f1 Ω M −→M′ f2

f1 Ω module" : Δ =M;S −→ module" : Δ =M′;S f2

ev-st-module2

f1 Ω;" =ME S −→ S
′ f2

f1 Ω module" : Δ =ME ;S −→ module" : Δ =ME ;S
′ f2

ev-st-def1

f1 Ω 4 0−→ 4′ f2

f1 Ω def : = 4;S −→ def : = 4′;S f2

ev-st-def2

f1 Ω;: = E S −→ S′ f2

f1 Ω def : = E ;S −→ def : = E ;S′ f2

ev-st-type

f1 Ω S −→ S′ f2

f1 Ω type C = g ;S −→ type C = g ;S′ f2

ev-st-macro

f1 Ω S −→ S′ f2

f1 Ω def↓< = E ;S −→ def↓< = E ;S′ f2

ev-st-importC

f1 Ω S −→ S′ f2

f1 Ω import↓ " : Δ =M;S −→ import↓ " : Δ =M;S′ f2

ev-st-importR1

f1 Ω M −→M′ f2

f1 Ω import" : Δ =M;S −→ import" : Δ =M′;S f2

ev-st-importR2

f1 Ω;" =ME S −→ S
′ f2

f1 Ω import" : Δ =ME ;S −→ import" : Δ =ME ;S
′ f2

f1 Ω 41
=
−→ 42 f2 (Evaluating expressions)

ev-app1

f1 Ω 41
=
−→ 4′1 f2

f1 Ω 41 42
=
−→ 4′1 42 f2

ev-app2

f1 Ω 4
=
−→ 4′ f2

f1 Ω E= 4
=
−→ E= 4′ f2

ev-abs

f Ω 4 =+1−→ 4′ f

f Ω _x : g . 4 =+1−→ _x : g . 4′ f

ev-beta

f Ω (_x : g . 4) E 0−→ 4 [x ↦→ E] f

ev-ref1

f1 Ω 4
=
−→ 4′ f2

f1 Ω ref 4
=
−→ ref 4′ f2

ev-ref

; ∉ f

f Ω ref E 0−→ ; f, ; ↦→ E

ev-assign1

f1 Ω 41
=
−→ 4′1 f2

f1 Ω 41 := 42
=
−→ 4′1 := 42 f2

ev-assign2

f1 Ω 4
=
−→ 4′ f2

f1 Ω E= := 4
=
−→ E= := 4′ f2

ev-assign

; ∈ f

f Ω ; := E 0−→ unit f [; ↦→ E]

ev-deref1

f1 Ω 4
=
−→ 4′ f2

f1 Ω !4
=
−→ !4′ f2

ev-deref

; ↦→ E ∈ f

f Ω !; 0−→ E f

ev-qote

f1 Ω 41
=+1−→ 42 f2

f1 Ω ⟨41⟩
=
−→ ⟨42⟩ f2

ev-splice

f1 Ω 41
=
−→ 42 f2

f1 Ω $41
=+1−→ $42 f2
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ev-spliceCode

f Ω $⟨E1⟩ 1−→ E1 f

ev-kvar

: = E ∈ Ω

f Ω : 0−→ E f

ev-pkvar

?.: = E ∈ Ω

f Ω ?.: 0−→ ⌈E⌉? f

ev-macro

< = E ∈ Ω

f Ω < 0−→ E f
ev-pmacro

?.< = E ∈ Ω

f Ω ?.< 0−→ ⌈E⌉? f

A.7 Well-Formedness

Γ ok (Well-formed contexts)

• ok

Γ ok Γ ⊢ g : ∉ Γ

Γ, : : g ok

Γ ok Γ ⊢ g C ∉ Γ

Γ, C = g ok

Γ ok Γ ⊢ g < ∉ Γ

Γ,< : g ok

Γ ok Γ ⊢ g x ∉ Γ

Γ, x : (g, =) ok

Γ ok Γ ⊢ Δ " ∉ Γ = = 0 ∨ = = 1

Γ, " : (Δ, =) ok

Γ ⊢ g (Well-formed types)

Γ ⊢ Int Γ ⊢ Unit

Γ ⊢ g1 Γ ⊢ g2

Γ ⊢ g1 → g2

Γ ⊢ g

Γ ⊢ Ref g

Γ ⊢ g

Γ ⊢ Codeg

C ∈ Γ

Γ ⊢ C

Γ ⊢= ? : Δ C ∈ Δ

Γ ⊢ ?.C

Γ ⊢ Δ (Well-formed modules)

Γ ⊢ q

Γ ⊢ sigq end

Γ ⊢ q (Well-formed structs)

Γ ⊢ •

Γ ⊢ Δ Γ ⊢ q = = 0 ∨ = = −1

Γ ⊢ " : (Δ, =);q

Γ ⊢ g Γ ⊢ q

Γ ⊢ : : g ;q

Γ ⊢ g Γ, C = g ⊢ q

Γ ⊢ C = g ;q

Γ ⊢ g Γ ⊢ q

Γ ⊢< : g ;q

f ok (Well-formed stores)

• ok

f ok • • ⊢0 E : Int

f, ; ↦→ E ok

f Γ ⊢r Ω (Well-formed runtime evaluation stores)

f • ⊢r •

f Γ ⊢r Ω

f Γ, C = g ⊢r Ω

f Γ ⊢r Ω

f Γ, x : (g, =) ⊢r Ω

f Γ ⊢r Ω f Γ ⊢0 E : g

f Γ, : : g ⊢r Ω;: = E

f Γ ⊢r Ω

f Γ,< : g ⊢r Ω

f Γ ⊢r Ω f Γ ⊢ ME : Δ

f Γ, " : (Δ, 0) ⊢r Ω;" =ME

f Γ ⊢r Ω

f Γ, " : (Δ,−1) ⊢r Ω
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f Γ ⊢c Ω (Well-formed compile-time evaluation stores)

f • ⊢c •

f Γ ⊢c Ω

f Γ, C = g ⊢c Ω

f Γ ⊢c Ω

f Γ, x : (g, =) ⊢c Ω

f Γ ⊢c Ω

f Γ, : : g ⊢c Ω

f Γ ⊢c Ω f Γ ⊢−1 E : g

f Γ,< : g ⊢c Ω;< = E

f Γ ⊢c Ω f Γ ⊢ M : Δ M visited

f Γ, " : (Δ, 0) ⊢c Ω;" =M

f Γ ⊢c Ω f Γ ⊢ ME : Δ

f Γ, " : (Δ,−1) ⊢c Ω;" =ME

M visited (Visited module)

S visited

structS end visited " visited ?." visited

S visited (Visited structure)

• visited

S visited M visited

module" : Δ =M;S visited

S visited

def : = 4;S visited

S visited

type C = g ;S visited

S visited

def↓< = E ;S visited

M visited S visited

import↓ " : Δ =ME ;S visited

S visited M visited

import" : Δ =M;S visited

B LEMMA AND PROOFS

The following table gives the mapping from lemmas in the paper to the lemma in the appendix.

Paper Appendix
Theorem 4.1 Preservation Theorem B.1 and B.2
Theorem 4.2 Progress Theorem B.5
Theorem 4.4 Elaboration Soundness Theorem B.12
Theorem 4.5 Phase Distinction Theorem B.13

B.1 Preservation for Core

Theorem B.1 (Preservation (runtime)). Given Γ ok, f ok, and f Γ ⊢r Ω,

• if f Γ ⊢ M : Δ, and f Ω M −→M′ f ′, then f ′ Γ ⊢ M′ : Δ ∧ f ′ ok.
• if f Γ ⊢ S : q , and f Ω S −→ S′ f ′, then f ′ Γ ⊢ S′ : q ∧ f ′ ok.

• if f Γ ⊢=
′
4 : g and f Ω 4

=
−→ 4′ f ′, then f ′ Γ ⊢=

′
4′ : g ∧ f ′ ok.

Proof. By induction on the evaluation derivation.

Part 1 • Case rule ev-m-struct follows from Part 2 and rule c-m-struct.
• Cases for rules ev-m-mvar and ev-m-pmvar follow from f Γ ⊢r Ω.

Part 2 • Case rule ev-st-module1 follows from Part 1 and rule c-st-module.
• Case rule ev-st-module2 follows from I.H. and rule c-st-module.
• Case rule ev-st-def1 follows from Part 3 and rule c-st-def.
• Case rule ev-st-def2 follows from I.H. and rule c-st-def.
• Case rule ev-st-type follows from I.H. and rule c-st-type.
• Case rule ev-st-macro follows from I.H. and rule c-st-macro.
• Case rule ev-st-importC follows from I.H. and rule c-st-import.
• Case rule ev-st-importR1 follows from Part 1 and rule c-st-import.
• Case rule ev-st-importR2 follows from I.H. and rule c-st-import.

Part 3 Most cases follow from I.H.. Below we discuss a few interesting cases.
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• Case rule ev-beta follows from substitution.
• Case rule ev-ref. We have f, ; ↦→ E Γ ⊢=

′
; : Ref Int by rule c-loc.

Given f Γ ⊢=
′
E : Int, since E is a value of type Int, it must be an integer 8 . We have

• • ⊢0 E : Int. Therefore, f, ; ↦→ E ok.
• Case rule ev-assign. We have f [; ↦→ E] Γ ⊢=

′
unit : Unit by rule c-unit.

Given f Γ ⊢=
′
E : Int, since E is a value of type Int, it must be an integer 8 . We have

• • ⊢0 E : Int. Therefore, f [; ↦→ E] ok.
• Case rule ev-deref. We have • • ⊢0 E : Int from f ok.
Since E is a value of type Int, it must be an integer 8 . Therefore, f Γ ⊢=

′
E : Int.

• Case rule ev-qote follows from I.H..
• Case rule ev-splice follows from I.H..
• Case rule ev-spliceCode.We are givenf Γ ⊢=

′
$⟨E1⟩ : g . By inversion, we havef Γ ⊢=

′
E1 : g .

• Cases for rules ev-kvar and ev-pkvar follow from f Γ ⊢r Ω.
• Cases for rules ev-macro and ev-pmacro are impossible as there are no macros in Ω

given f Γ ⊢r Ω.

□

For compile-time preservation, we only need it for expressions (as in rule codeGen).

Theorem B.2 (Preservation (compile-time)). Given Γ ok, f ok, and f Γ ⊢c Ω,

• if f Γ ⊢=
′
4 : g and f Ω 4

=
−→ 4′ f ′, then f ′ Γ ⊢=

′
4′ : g ∧ f ′ ok.

Proof. By induction on the evaluation derivation. Most cases follow from I.H.. Below we discuss
a few interesting cases.

• Case rule ev-beta follows from substitution.
• Case rule ev-ref. We have f, ; ↦→ E Γ ⊢=

′
; : Ref Int by rule c-loc.

We are given f Γ ⊢=
′
E : Int. Since E is a value of type Int, it must be an integer 8 . We have

• • ⊢0 E : Int. Therefore, f, ; ↦→ E ok.
• Case rule ev-assign. We have f [; ↦→ E] Γ ⊢=

′
unit : Unit by rule c-unit.

We are given f Γ ⊢=
′
E : Int. Since E is a value of type Int, it must be an integer 8 . We have

f Γ ⊢0 E : Int. Thus, • • ⊢0 E : Int. Therefore, f [; ↦→ E] ok.
• Case rule ev-deref. We have • • ⊢0 E : Int from f ok.
Since E is a value of type Int, it must be an integer 8 .
We have f Γ ⊢=

′
E : Int.

• Case rule ev-qote follows from I.H..
• Case rule ev-splice follows from I.H..
• Case rule ev-spliceCode. We are given f Γ ⊢=

′
$⟨E1⟩ : g . By inversion, we have f Γ ⊢=

′
E1 : g .

• Case rule ev-kvar is impossible as there is no : in Ω given f Γ ⊢c Ω.
• Case rule ev-pkvar follows from f Γ ⊢c Ω.
• Cases for rules ev-macro and ev-pmacro follow from f Γ ⊢c Ω.

□

B.2 Progress for Core

Theorem B.3 (Progress (runtime)). Given Γ ok and Γ ¤≠ =′ − =, f ok, =′ ≥ = and f Γ ⊢r Ω,

• if f Γ ⊢ M : Δ, then eitherM is a value, or there existM′ and f ′ such that f Ω M −→M′ f ′.
• if f Γ ⊢ S : q , then either S is a value, or there exist S′ and f ′ such that f Ω S −→ S′ f ′.

• if f Γ ⊢=
′
4 : g where 4= , then either 4 is a value E= , or there exist 4′ and f ′ such that f Ω 4

=
−→

4′ f ′.

Proof. By induction on the typing derivation.
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Part 1 • Case rule c-m-struct follows from Part 2.
• Cases for rules c-m-mvar and c-m-pmvar will evaluate according to rules ev-m-mvar and
ev-m-pmvar respectively following f Γ ⊢r Ω.

Part 2 • Case rule c-st-empty. • is a value.
• Case rule c-st-module. By Part 1, we have eitherM is a value, or f Ω M −→M′ f ′.

– If f Ω M −→M′ f ′, then we have
f Ω module" : Δ =M;S −→ module" : Δ =M′;S f ′ by rule ev-st-module1.

– M is a value. By I.H., either S is a value, or f Ω;" =M S −→ S′ f ′. In the former
case, module" : Δ =M;S is a value.
In the latter case, f Ω module" : Δ =M;S −→ module" : Δ =M;S′ f ′ by
rule ev-st-module2.

• Case rule c-st-def. We have 40. By Part 3, we have either 4 is a value E , or there exists 4′

such that f Ω 4
=
−→ 4′ f ′. The case is similar to the previous case, using rule ev-st-def1

and rule ev-st-def2.
• Case rule c-st-type. By I.H., either S is a value, or f Ω S −→ S′ f ′. In the former case,
type C = g ;S is a value.
In the latter case, f Ω type C = g ;S −→ type C = g ;S′ f ′ by rule ev-st-type.
• Case rule c-st-macro is similar to the case for rule c-st-type.
• Case rule c-st-import, with the module imported at level 0. This case is similar to the
case for rule c-st-module, using rules ev-st-importR1 and ev-st-importR2.
• Case rule c-st-import, with the module imported at level -1. The case is similar to the
case for rule c-st-type.

Part 3 • Case rule c-lit. We have 8= .
• Case rule c-unit. We have unit= .
• Case rule c-var. For = = 0, the case is impossible given Γ ¤≠ =′ − =, namely Γ ¤≠ 0.
For = > 0, x is a value at level =.
• Case rule c-kvar. If = = 0, then we have f Ω : 0−→ E f by rule ev-kvar following
f Γ ⊢r Ω. Else, : is a value at level = > 0.
• Case rule c-pkvar is similar as above.
• Cases for rules c-macro and c-pmacro are impossible given =′ ≥ = ≥ 0.
• Case rule c-abs where 4 = _x : g . 41.
If = = 0, then _x : g . 41

0 is a value at level 0.
If = > 0, then by I.H. (note Γ, x : (g, =′) ¤≠ =′ − =), 41 is either a value at level = or
f Ω 41

=
−→ 4′

1
f ′.

(1) 41 is a value at level =. Then _x : g . 41 is a value at level =.
(2) f Ω 41

=
−→ 4′

1
f ′. Then f Ω _x : g . 41

=
−→ _x : g . 4′

1
f ′ by rule ev-abs.

• Case rule c-app where 4 = 41 42.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.

(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω 41 42

=
−→ 4′

1
42 f ′ by rule ev-app1.

(2) 41 is a value. By I.H., 42 is either a value at level =, or f Ω 42
=
−→ 4′

2
f ′.

– f Ω 42
=
−→ 4′

2
f ′. Then f Ω 41 4

′
2

=
−→ 41 4

′
2
f ′ by rule ev-app2.

– 42 is a value.
If = = 0, then since 41 is well-typed and it has level 0, it must be a function _x : g . 4′

1
.

Then we have f Ω (_x : g . 4′
1
) 42

0−→ 4′
1
[x ↦→ 42] f ′ by rule ev-beta.

If = > 0, then 41 42 is a value at level =.
• Case rule c-loc. We have ;= .
• Case rule c-ref where 4 = ref 41.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.
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(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω ref 41

=
−→ ref 4′

1
f ′ by rule ev-ref1.

(2) 41 is a value at level =.
If = = 0, then f Ω ref 41

0−→ ; f, ; ↦→ 41 by rule ev-ref.
If = > 0, then ref 41 is a value at level =.

• Case rule c-assign where 4 = 41 := 42.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.

(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω 41 := 42

=
−→ 4′

1
:= 42 f ′ by rule ev-assign1.

(2) 41 is a value at level =.
By I.H., 42 is either a value at level =, or f Ω 42

=
−→ 4′

2
f ′.

– f Ω 42
=
−→ 4′

2
f ′. Then we have f Ω 41 := 4′

2

=
−→ 41 := 4′

2
f ′ by rule ev-

assign2.
– 42 is a value.
If = = 0, since 41 well-typed and it has level =, it must be a location ; .
Then we have f Ω ; := 42

0−→ unit f [; ↦→ 42] by rule ev-assign.
If = > 0, then 41 := 42 is a value at level =.

• Case rule c-deref where 4 = !41.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.

(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω !41

=
−→ !4′

1
f ′ by rule ev-deref1.

(2) 41 is a value.
If = = 0, since 41 well-typed, and it has level 0, it must be a location ; .
We have ; ↦→ E ∈ f following well-typedness.
Then we have f Ω !; 0−→ E f by rule ev-deref.
If = > 0, then !4 is a value at level =.

• Case rule c-qote where 4 = ⟨41⟩.
By I.H. (note Γ ¤≠ (=′ + 1) − (= + 1) = =′ − = ≥ 0), 41 is either a value at level = + 1, or
f Ω 41

=+1−→ 4′
1
f ′.

(1) f Ω 41
=+1−→ 4′

1
f ′. Then we have f Ω ⟨41⟩

=
−→ ⟨4′

1
⟩ f ′ by rule ev-qote.

(2) 41 is a value at level = + 1, and thus by definition, an expression at level =.
If = = 0, then ⟨41⟩ is a value at level 0.
If = > 0, then ⟨41⟩ is an expression at level = − 1, and therefore by definition a value at
level =.

• Case rule c-splice where 4 = $41.
The = = 0 case is impossible as ($41)

0 is impossible. Therefore, = > 0.
By I.H. (note Γ ¤≠ (=′ + 1) − (= + 1) = =′ − = ≥ 0), 41 is either a value at level = − 1, or
f Ω 41

=−1−→ 4′
1
f ′.

(1) f Ω 41
=−1−→ 4′

1
f ′. Then we have f Ω $41

=
−→ $4′

1
f ′ by rule ev-splice.

(2) 41 is a value at level = − 1.
If = = 1, then since 41 is a value at level 0 and is well-typed, it must be a quotation
⟨E1⟩. Then we have f Ω $⟨E1⟩ 1−→ E1 f ′ by rule ev-spliceCode.
If = > 1, then since 41 is a value at level = − 1, by definition it is an expression at level
= − 2. There ⟨41⟩ is an expression at level = − 1, and thus by definition a value at level
=.

• Case rule c-eq follows directly from I.H..

□

Theorem B.4 (Progress (compile-time)). Given Γ ok, Γ ¤≠ =′ − =, f ok, =′ < = and f Γ ⊢c Ω,

• if f Γ ⊢=
′
4 : g where 4= , then either 4 is a value E= , or there exist 4′ and f ′ such that f Ω 4

=
−→

4′ f ′.
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Proof. By induction on the typing derivation.

• Case rule c-lit. We have 8= .
• Case rule c-unit. We have unit= .
• Case rule c-var. For = = 0, the case is impossible given Γ ¤≠ =′ − 0, namely Γ ¤≠ =′.
For = > 0, x is a value at level =.
• Case rule c-kvar. Then =′ = 0.
For = = 0, the case is impossible given =′ − = < 0, namely =′ < 0.
Else, : is a value at level = > 0.
• Case rule c-pkvar. For = = 0, we have =′ − = < 0, namely =′ < 0.
Therefore, the path ? must have gone through a" : (Δ,−1).
We have f Ω ?.: 0−→ E f by rule ev-pkvar following f Γ ⊢c Ω.
Else, ?.: is a value at level = > 0.
• Case rule c-macro. Then =′ = −1.
If = = 0, then we have f Ω < 0−→ E f by rule ev-kvar following f Γ ⊢c Ω.
Else,< is a value at level = > 0.
• Case rule c-abs where 4 = _x : g . 41.
If = = 0, then _x : g . 41

0 is a value at level 0.
If = > 0, then by I.H. (note Γ, x : (g, =′) ¤≠ =′ − =), 41 is either a value at level = or f Ω 41

=
−→

4′
1
f ′.

(1) 41 is a value at level =. Then _x : g . 41 is a value at level =.
(2) f Ω 41

=
−→ 4′

1
f ′. Then f Ω _x : g . 41

=
−→ _x : g . 4′

1
f ′ by rule ev-abs.

• Case rule c-app where 4 = 41 42.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.

(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω 41 42

=
−→ 4′

1
42 f ′ by rule ev-app1.

(2) 41 is a value. By I.H., 42 is either a value at level =, or f Ω 42
=
−→ 4′

2
f ′.

– f Ω 42
=
−→ 4′

2
f ′. Then f Ω 41 4

′
2

=
−→ 41 4

′
2
f ′ by rule ev-app2.

– 42 is a value.
If = = 0, then since 41 is well-typed and it has level 0, it must be a function _x : g . 4′

1
.

Then we have f Ω (_x : g . 4′
1
) 42

0−→ 4′
1
[x ↦→ 42] f ′ by rule ev-beta.

If = > 0, then 41 42 is a value at level =.
• Case rule c-loc. We have ;= .
• Case rule c-ref where 4 = ref 41.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.

(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω ref 41

=
−→ ref 4′

1
f ′ by rule ev-ref1.

(2) 41 is a value at level =.
If = = 0, then f Ω ref 41

0−→ ; f, ; ↦→ 41 by rule ev-ref.
If = > 0, then ref 41 is a value at level =.

• Case rule c-assign where 4 = 41 := 42.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.

(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω 41 := 42

=
−→ 4′

1
:= 42 f ′ by rule ev-assign1.

(2) 41 is a value at level =.
By I.H., 42 is either a value at level =, or f Ω 42

=
−→ 4′

2
f ′.

– f Ω 42
=
−→ 4′

2
f ′. Then we have f Ω 41 := 4′

2

=
−→ 41 := 4′

2
f ′ by rule ev-assign2.

– 42 is a value.
If = = 0, since 41 well-typed and it has level =, it must be a location ; .
Then we have f Ω ; := 42

0−→ unit f [; ↦→ 42] by rule ev-assign.
If = > 0, then 41 := 42 is a value at level =.
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• Case rule c-deref where 4 = !41.
By I.H., 41 is either a value at level =, or f Ω 41

=
−→ 4′

1
f ′.

(1) f Ω 41
=
−→ 4′

1
f ′. Then we have f Ω !41

=
−→ !4′

1
f ′ by rule ev-deref1.

(2) 41 is a value.
If = = 0, since 41 well-typed, and it has level 0, it must be a location ; .
We have ; ↦→ E ∈ f following well-typedness.
Then we have f Ω !; 0−→ E f by rule ev-deref.
If = > 0, then !4 is a value at level =.

• Case rule c-qote where 4 = ⟨41⟩.
By I.H. (note Γ ¤≠ (=′ + 1) − (= + 1) = =′ − = < 0), 41 is either a value at level = + 1, or
f Ω 41

=+1−→ 4′
1
f ′.

(1) f Ω 41
=+1−→ 4′

1
f ′. Then we have f Ω ⟨41⟩

=
−→ ⟨4′

1
⟩ f ′ by rule ev-qote.

(2) 41 is a value at level = + 1, and thus by definition, an expression at level =.
If = = 0, then ⟨41⟩ is a value at level 0.
If = > 0, then ⟨41⟩ is an expression at level = − 1, and therefore by definition a value at level
=.

• Case rule c-splice where 4 = $41.
The = = 0 case is impossible as ($41)

0 is impossible. Therefore, = > 0.
By I.H. (note Γ ¤≠ (=′ + 1) − (= + 1) = =′ − = < 0), 41 is either a value at level = − 1, or
f Ω 41

=−1−→ 4′
1
f ′.

(1) f Ω 41
=−1−→ 4′

1
f ′. Then we have f Ω $41

=
−→ $4′

1
f ′ by rule ev-splice.

(2) 41 is a value at level = − 1.
If = = 1, then since 41 is a value at level 0 and is well-typed, it must be a quotation ⟨E1⟩. Then
we have f Ω $⟨E1⟩ 1−→ E1 f ′ by rule ev-spliceCode.
If = > 1, then since 41 is a value at level = − 1, by definition it is an expression at level = − 2.
There ⟨41⟩ is an expression at level = − 1, and thus by definition a value at level =.

• Case rule c-eq follows directly from I.H..

□

Theorem B.5 (Progress). Given Γ̂ ok, and f ok, and (=′ < = ∧ f Γ ⊢c Ω) or (=′ ≥ = ∧ f Γ ⊢r Ω),

if f Γ ⊢=
′
4 : g where 4= , then either 4 is a value E= , or there exist 4′ and f ′ such that f Ω 4

=
−→ 4′ f ′.

Proof. By Theorem B.3 and B.4. Note that with Γ̂ ok, we have Γ ¤≠ =′ − = naturally.
□

B.3 Compile-Time Heap

We consider a family of constrained core calculi, where given a number, often written as =′ − =,
rule c-loc becomes:

c-loc-alt

; ∈ f

f Γ ⊢=
′−= ; : Ref Int

Namely, locations can only be typed at level =′ − =. Obviously, any expression well-typed in any
constrained core calculus is well-typed in the original core calculus.
Essentially, the constrained rule c-loc models leveled locations. We always make it clear from

the context which =′ and = are used when we refer to a constrained core calculus.
We state the compile-time preservation and progress lemma for the constrained core calculi:

Lemma B.6 (Preservation (constrained core)). Given Γ ok, f ok, and f Γ ⊢c Ω,
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• if f Γ ⊢=
′
4 : g and f Ω 4

=
−→ 4′ f ′, then f ′ Γ ⊢=

′
4′ : g ∧ f ′ ok.

Proof. The proof is the same as Theorem B.2, except for the case for references. Note during
proof we can apply I.H., because the difference between the typing level and the evaluation level
stays constant. For example, in case rule ev-qote, we have 4 = ⟨41⟩, and f Γ ⊢=

′+1 41 : g and
f Ω 41

=+1−→ 4′
1
f ′. The constrained core calculus with =′ + 1 and = + 1 is the same as with =′ and

=, as (=′ + 1) − (= + 1) = =′ − =.

• Case rule ev-ref. We have = = 0. So =′ − = is =′.
Therefore, f, ; ↦→ E Γ ⊢=

′
; : Ref Int by rule c-loc.

We are given f Γ ⊢=
′
E : Int. Since E is a value of type Int, it must be an integer 8 . We have

• • ⊢0 E : Int. Therefore, f, ; ↦→ E ok.

□

Lemma B.7 (Progress (constrained core)). Given Γ ok, Γ ¤≠ =′ − =, f ok, =′ < = and f Γ ⊢c Ω,

• if f Γ ⊢=
′
4 : g where 4= , then either 4 is a value E= , or there exist 4′ and f ′ such that f Ω 4

=
−→

4′ f ′.

Proof. Follows directly from Theorem B.4 as a well-typed expression in the constrained core
calculus is well-typed in the original core calculus. □

Lemma B.8 (Elaboration produces no locations). If f1 Ω Γ ⊢=
★
4 : g { 4 f2, then 4 does not

contain any ; .

Proof. By a straightforward induction on the typing derivation, the goal follows as the source
expression cannot explicitly mention a location. □

Lemma B.9 (Core calculus to constrained core calculus). If f Γ ⊢=
′
4 : g in the original core calculus,

and 4 does not contain any ; , then f Γ ⊢=
′
4 : g in the constrained core calculus, for any =.

Proof. By a straightforward induction on the typing derivation. Since 4 contains no ; , the rule
rule c-loc is not needed. □

Lemma B.10 (Shifted typing contains no locations). If 4= and f Γ ⊢=
′+1 4 : g in the constrained core

calculus with =′ − =, then 4 does not contain any ; .

Proof. By induction on the typing derivation. Most cases follow from I.H.. Below we discuss
interesting cases.

• Case rule c-loc. Since =′ + 1 > =′ ≥ =′ − =, this case is impossible.
• Case rule c-qote. We have 4 = ⟨41⟩, and 41

=+1, and f Γ ⊢(=
′+1)+1 41 : g in the constrained core

calculus with (=′ + 1) − (= + 1) = =′ − =. Therefore by I.H., 41 contains no ; . Thus, ⟨41⟩ contains
no ; .
• Case rule c-splice. We have 4 = $41, and = ≥ 1.
We are given 41

=−1, andf Γ ⊢(=
′−1)+1 41 : g in the constrained core calculuswith (=

′−1)−(=−1) =

=′ − =. Therefore by I.H., 41 contains no ; . Thus, $41 contains no ; .

□

B.4 Elaboration Soundness

Lemma B.11 (Visiting and invoking soundness). Given Γ ok, f ok,

• If f Γ ⊢ M : Δ, and f M
E8B8C
⇝ M′ f ′, then f ′ Γ ⊢ M′ : Δ ∧ f ′ ok.

• If f Γ ⊢ M : Δ, and f M
8=E>:4
⇝ M′ f ′, then f ′ Γ ⊢ M′ : Δ ∧ f ′ ok.
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Proof. The first part follows from I.H. and the second part, and the second part follow from
Theorem B.1 with Ω = •. □

Theorem B.12 (Elaboration soundness). Given Γ ok, f ok, and f Γ ⊢c Ω,

• If f Ω Γ ⊢ M : Δ {M f ′, then • Γ ⊢ M : Δ ∧ f ′ ok.
• If f Ω Γ ⊢ S : q { S f ′, then • Γ ⊢ S : q ∧ f ′ ok.
• If Γ ⊢= ? : Δ, then Γ ⊢= ? : Δ.
• If f Ω Γ ⊢=

★
4 : g { 4 f ′, then • Γ ⊢= 4 : g ∧ f ′ ok. Moreover, if ★ = q, then 41, else 40.

Proof. By induction on the elaboration derivation. Part 1 and part 2 are mutually dependent,
but the size of the derivation always decreases.

Part 1 • Case rule m-struct follows from Part 2 and rule c-m-struct.
• Case rule m-mvar. Given f Ω Γ ⊢ " : Δ { " f , we have" : (Δ, 0) ∈ Γ.
Thus" : (Δ, 0) ∈ Γ and • Γ ⊢ " : Δ by rule c-m-mvar.
• Case rule m-pmvar is the same as above, using Part 3.

Part 2 • Case rule st-empty follows directly by rule c-st-empty.
• Case rule st-module follows from Part 1, I.H., and rule c-st-module.
• Case rule st-def. From Part 4, we know that • Γ ⊢= 4 : g and 40.
From I.H., we know that • Γ ⊢ S : q .
Therefore • Γ ⊢ def : = 4;S : q by rule c-st-def.
• Case rule st-type follows from I.H. and rule c-st-type.
• Case rule st-macro follows from Part 4, I.H., and rule c-st-macro.
• Case rule st-importC.
We are given • • ⊢ M : Δ.
By weakening, we have f1 • ⊢ M : Δ.

We are given f1 M
E8B8C
⇝ M′ f2. By Lemma B.11, f2 • ⊢ M

′ : Δ.

We are given f2 M
′ 8=E>:4
⇝ ME f3. Again by Lemma B.11, f3 • ⊢ ME : Δ.

Therefore f3 Γ, " : (Δ,−1) ⊢c Ω;" =ME .
By I.H.., we have • Γ, " : (Δ,−1) ⊢ S : q

So • Γ ⊢ import↓ " : Δ =M;S : " : (Δ,−1);q by rule c-st-importC.
• Case rule st-importR is similar as above.

Part 3 The case for rule p-mvar is the same as the case for rule m-mvar. The case for rule p-pmvar
follows directly by I.H..

Part 4 • Case rule lit. • Γ ⊢= 8 : Int by rule c-lit. And 80.
• Case rule unit. • Γ ⊢= unit : Unit by rule c-unit. And unit0.
• Case rule var. Given f Ω Γ ⊢=

★
x : g { x f , we have x : (g, =) ∈ Γ.

Thus x : (g, =) ∈ Γ and • Γ ⊢= x : g by rule c-var.
And x0.
• Cases for rules kvar and macro are the same as above.
• Cases for rules pkvar and pmacro are the same as above, making use of Part 3.
• Cases for rules abs, app, ref, set, and get follow from I.H..
• Case rule qote where 4 = ⟨41⟩.
Given f1 Ω Γ ⊢=+1q 41 : g { 41 f2, by I.H., we have • Γ ⊢=+1 41 : g , and 41

1.

Therefore, • Γ ⊢= ⟨41⟩ : Codeg by rule c-qote, and ⟨41⟩
0.

• Case rule splice where 4 = $41.
Given f1 Ω Γ ⊢=−1s 41 : Codeg { 41 f2, by I.H., we have • Γ ⊢=−1 41 : Codeg , and 41

0.
Therefore, • Γ ⊢= $41 : g by rule c-splice, and $41

1.
• Case rule codeGen, where 4 = $41, and f Ω Γ ⊢=−1s 41 : Codeg { 41 f2.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 209. Publication date: August 2023.



209:42 Ningning Xie, Leo White, Olivier Nicole, and Jeremy Yallop

By I.H, we have • Γ ⊢=−1 41 : Codeg , and 41
0.

By Lemma B.8, we know that 41 contains no locations.
By Lemma B.9, we know that we have • Γ ⊢=−1 41 : Codeg in the constrained core calculus
with (= − 1) − 0 = = − 1.

We’re given f2 Ω 41
0
−→∗ ⟨E1⟩ f3

By Lemma B.6, f3 Γ ⊢=−1 ⟨E1⟩ : Codeg in the constrained core calculus with = − 1.
By inversion, we have f3 Γ ⊢= E1 : g in the constrained core calculus with = − 1.
According to the definition, E an expression at level 0.
By Lemma B.10, we know that E does not contain any ; .
By strengthening, • Γ ⊢= E : g .
• Case rule eq follows directly from I.H. and rule c-eq.

□

B.5 Phase Distinction

JMK
JstructS endK = struct JSK end
J"K = "

J?."K = ?."

JSK
J•K = •

Jmodule" : Δ =M;SK = module" : JΔK = JMK; JSK
Jdef : = 4;SK = def : = 4; JSK
Jtype C = g ;SK = type C = g ; JSK

Jdef↓< = E ;SK = JSK
Jimport" : Δ =M;SK = import" : JΔK = JMK; JSK
Jimport↓ " : Δ =M;SK = JSK

JΩK
J•K = J•K
JΩ;" =MK = JΩK;" = JMK
JΩ;: = EK = JΩK;: = E

JΔK
Jsigq endK = sig JqK end

JqK
J•K = •

J" : (Δ, 0);qK = " : (JΔK, 0); JqK
J" : (Δ,−1);qK = JqK
J: : g ;qK = : : g ; JqK
JC = g ;qK = C = g ; JqK
J< : g ;qK = JqK

JΓK
J•K = •
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JΓ, " : (Δ, 0)K = JΓK, " : (JΔK, 0)
JΓ, " : (Δ,−1)K = JΓK
JΓ, : : gK = JΓK, : : g

JΓ, C = gK = JΓK, C = g

JΓ,< : gK = JΓK

Theorem B.13 (Phase Distinction). Given Γ ok, f ok, and f Γ ⊢r Ω,

• if f Γ ⊢ M : Δ, and f Ω M −→M′ f ′, then f JΩK JMK −→ JM′K f ′.
• if f Γ ⊢ S : q , and f Ω S −→ S′ f ′, then f JΩK JSK −→ JS′K f ′,
• if f Γ ⊢= 4 : g and 4= , and f Ω 4

=
−→ 4′ f ′, then f JΩK 4

=
−→ 4′ f ′,

Proof. By induction on the evaluation derivation.

Part 1 • Case rule ev-m-struct. By Part 2, we have f1 Ω JSK −→ JS′K f2.
We have f1 Ω JstructS endK −→ JstructS′ endK f2 by rule ev-m-struct.
• Case rule ev-m-mvar.
As J"K = " and" = JMK ∈ JΩK, we have f JΩK " −→ JMK f by rule ev-m-mvar.
• Case rule ev-m-pmvar is similar as above.

Part 2 • Case rule ev-st-module1.
By Part 1, f1 Ω JMK −→ JM′K f2.
So f1 Ω module" : JΔK = JMK; JSK −→ module" : JΔK = JM′K; JSK f2 by rule ev-
st-module1.
• Case rule ev-st-module2. Note JMEK remains a value.
So the goal follows from I.H..
• Case rule ev-st-def1 follows from Part 3.
• Case rule ev-st-def2 follows from I.H..
• Case rule ev-st-type follows from I.H..
• Case rule ev-st-macro.
We have Jdef↓< = E ;SK = JSK and Jdef↓< = E ;S′K = JS′K.
By I.H., f1 JΩK JSK −→ JS′K f2.
• Case rule ev-st-importC.
We have Jimport↓ " : Δ =M;SK = JSK and Jimport↓ " : Δ =M;S′K = JS′K
By I.H., f1 JΩK JSK −→ JS′K f2.
• Case rule ev-st-importR1 follows from Part 1.
• Case rule ev-st-importR2. Note JMEK remains a value.
So the goal follows from I.H..

Part 3 Most cases follow straightforwardly from I.H.. Note rules ev-macro and ev-pmacro are
impossible as = ≥ 0.

□
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