
let (rec) insertion without effects, lights or magic
Oleg Kiselyov

Tohoku University, Japan
Jeremy Yallop

University of Cambridge, UK

Abstract
At last year’s ML Family Workshop we presented an interface for
let(rec) insertion – i.e. for generating (mutually recursive) definitions.
We demonstrated its expressiveness and applications, but not its
implementation, which relied on effects and compiler magic.

We now show how one can understand let insertion – and hence,
implement it in plain OCaml. We give the first denotational se-
mantics of let(rec)-insertion, which does not rely on any effects at
all.

1 Summary
Code generation, whether using quasiquotes or code comibinators,
is compositional: nested function calls in the generating program
lead to nested expressions in the generated code, and code for larger
expressions is built by incorporating code for sub-expressions un-
changed. There is, however, often a need for a sub-expression to
generate a let-statement that should scope over a larger (parent)
expression [Kiselyov 2014] – e.g. to avoid recomputations. The
non-compositionality becomes glaring when generating recursive,
especially mutually recursive definitions [Yallop and Kiselyov 2019].
Non-compositionality of let-insertion scrambles the nesting of gen-
erated binding forms – which opens the all too real possibility of
generating code with unbound or mistakenly bound variables.

Our goal is to understand the meaning of the let-inserting code
generators, such as genlet or genletrec. We have two aims: design-
ing a type system to statically prevent producing ill-scoped code,
and reasoning about programs that generate let(rec) statements
(not just about the code that they generate).

We report work-in-progress towards these goals: a denotational
semantics that for the first time describes what genlet and genletrec
mean by themselves, and in a compositional way. Our denota-
tional semantics is executable: it serves as a small standalone meta-
programming system that implements the previously-proposed
interface for generating mutually recursive definitions; it is suffi-
ciently complete to express the example programs used to intro-
duce that interface. Compositionality let us build the system in
pure OCaml using no effects whatsoever (neither control effects
nor even state, and without state-passing or CPS). Furthermore,
our semantics has already led to improvements and simplifications
to the proposed interface.

The code is available online:
http://okmij.org/ftp/meta-programming/genletrec

2 Introduction
To develop intuitions and save space, we avoid a formal presentation
and instead use examples to introduce code generation with let(rec)-
insertion and its meaning. (Some formalities can be found in the
Appendix.) This section introduces a semantics for code generation;
§3 extends the calculus to support let insertion.

As the Base calculus, we take the standard call-by-value simply-
typed lambda-calculus with constants, ordinary let-expressions
and (potentially mutually) recursive letrec-expressions: think of

the most basic, side-effect–free subset of OCaml. Here are some
sample expressions:

t1 := 1 + 2
sq := λx. x ∗ x
gib5 := λx.λy.let rec loop n =

if n=0 then x else if n=1 then y else
loop (n−1) + loop (n−2) in loop 5

The notation name := exp is not part of the calculus; it is used to
attach a name to an expression for easy reference. The function
gib5 computes the 5th element of the Fibonacci sequence whose
first two elements are given as arguments.

The Base calculus both represents the code that we generate
and serves as the core of the generating code. For generation, we
extend Basewith an additional family of types t codewhose values
represent generated Base expressions of type t – and with a means
of producing these code values. Below are some expressions in
this extension of Base, called Codec; each expression serves as a
generator of the corresponding earlier Base expression:

ct1 := int 1 + int 2
csq := λx. x ∗ x
cgib5 := λx.λy. let rec loop n =

if n=0 then x else if n=1 then y else
loop (n−1) + loop (n−2) in loop 5

Here int of the type int→ int code generates the code of an integer
literal; + of the type int code → int code→ int code combines the
code of summands to the code of the addition expression; λx.body
generates the code of a function given a generator for its body;
the variable x within the expression body represents the bound
variable in the (to be) generated function.

In what sense csq and cgib5 represent sq (resp. gib5) should be
clear after we describe the semantics of the calculi. We consider
two denotational semantics of Base; both come with their own
sets of type-indexed semantic domains Vt and with two semantic
functions:M

[
−
]
, for the meaning of whole programs, and E

[
−
]
,

for the meaning of potentially open expressions.
The first denotational semantics, notated by the subscript R, is

the standard Scott-Strachey semantics for a typed Church-style
calculus, with one small wrinkle.Vt are the standard lifted domains
(e.g.,Vint is the set of integers with⊥). We assume another semantic
domainVnom whose elements are finite sequences of small numbers
(for which we adopt the OCaml list notation). There clearly is a
bijection between Vnom and variable names. Therefore, we shall
refer to the elements of Vnom as names (distinct from the names
appearing in sourceBase terms) and use them as such. The semantic
function MR

[
e:t

]
maps (a type derivation of a closed) expression

e of type t to Vt ; ER
[
Γ ⊢ e:t

]
maps e to a continuous function from

the environment andVnom toVt . The extraVnom argument, written
as ℓ, is the wrinkle. (When writing semantic functions, we shall
show only the expression rather than its entire type derivation, and
often elide Γ and the type annotations to avoid clutter.)

1

http://okmij.org/ftp/meta-programming/genletrec

Oleg Kiselyov and Jeremy Yallop

The environment ρ is a strict finite map from variable names
to Vt ; the environment extension is written ρ[x→v]. The semantic
rules are entirely standard (modulo ℓ). We show only the rules for
abstraction and application:

ER
[
λx.e

]
ρ ℓ = λx . ER

[
e
]
ρ[x→x] (1::ℓ)

ER
[
e1 e2

]
ρ ℓ = (ER

[
e1
]
ρ (1::ℓ)) (ER

[
e2
]
ρ (2::ℓ))

MR
[
e
]
= ER

[
e
]
∅ []

For now, ℓ is not actually used, and might as well be absent. It
will help later. It will also help to re-write the semantic rule for
abstraction in the following form:

ER
[
λx.e

]
= mklR x ER

[
e
]

where mklR v d = λρℓx . d ρ[v→x] (1::ℓ)

where the semantic function mklR takes the variable name and
the denotation of a (generally open) expression and constructs
the denotation of a lambda-abstraction. The re-written rule makes
it very clear that the denotation of an abstraction is constructed
from the denotation of the abstraction body and the name of the
abstracted variable.

The semantics of Base just given could rightly be called ‘exten-
sional’. We also show an ‘intensional’ Base semantics, notated by
the superscript S, which maps an expression to its symbolic form
(a string, for example). Here every element of Vt is always a string,
regardless of t . It is a trivially compositional, bona fide denotational
semantics, and even mentioned as such by Mosses [1990]. Usually
it is quite useless – but not here.

The semantics of EC
[
−
]
of Codec is an extension of the R se-

mantics of Base1. Since what we generate are (potentially open:
think of generating function bodies) Base expressions e of type t,
the meaning of a t code value is E

[
e
]
: the meaning of e according

to R or S or some other semantics of Base2. We pair E
[
e
]
with a

sequence of so-called virtual bindings ν detailed in the next section;
they can be disregarded for now. The following are two sample
cases for the semantic function EC

[
−
]
of Codec, for generating an

integer literal and an abstraction.

EC
[
int i

]
ρ ℓ = (E

[
i
]
,∅)

EC
[
λx.e

]
ρ ℓ = map1 (mkl ℓ) (EC

[
e
]
ρ[x→(E

[
ℓ
]
,∅)] (1::ℓ))

where map1 f (d,ν) = (f d,ν)

When we generate an abstraction, the current ℓ acts as the fresh
name for the (to be) bound variable. Recall that the function mkl
provided by a Base semantics takes a variable name and the de-
notation for the abstraction body and gives the denotation for the
abstraction.

If we use the R semantics for the generated code (that is, choose
E
[
−
]
to be ER

[
−
]
) we see thatMC

R
[
ct1] is exactlyMR

[
t1
]
(which

is the integer 3), MC
R
[
csq

]
and MR

[
sq
]
both mean the squaring

function, andMC
R
[
cgib5

]
andMR

[
gib5

]
both mean the function

that takes two arguments x and y and returns the sum of 5 copies
of y and 3 copies of x.

If we use the S semantics, MC
S
[
ct1

]
and MS

[
t1
]
still coin-

cide (both mean the string 1+ 2).MC
S
[
csq

]
andMS

[
sq
]
are gen-

erally different but alpha-equivalent lambda-expression strings.
MC

S
[
cgib5

]
is now the string

1For a two-level language, the S semantics for Codec in unnecessary.
2The absence of the subscript in E means we are talking about any semantics.

λx.λy. (((y + x) + y) + (y + x)) + ((y + x) + y)

It is an ‘optimized’ version of gib5, in the sense that the loop is
unrolled; however, it contains several instances of code duplication.
Avoiding this code duplication is where let-insertion comes in.

3 Let-insertion
To support let-insertion, we add to Codec two more forms: let
locus l in e and genlet l em e. The former, similarly to the ordi-
nary let, binds the so-called locus variable l in e. In the expression
genlet l em e, l is a locus variable (previously bound by let locus),
em is a so-called memo key (for now, an int expression) and e is
a t code expression (which we take for now to be an int code ex-
pression). It is better explained by example, of the slightly adjusted
cgib5:

clgib5 := λx.λy. let locus l in
let rec loop n =
if n=0 then x else if n=1 then y else
genlet l (n−1) (loop (n−1)) + genlet l (n−2) (loop (n−2)) in
loop 5

To a first approximation, one may think of genlet l em e as generat-
ing let z=c in z where z is fresh and c is the code produced by the
expression e. Such ‘let-expansion’ is useless, however. It becomes
more useful when the binding let z=c in is actually placed some-
where ‘higher’ in the overall generated code. The form let locus l
marks that ‘higher’ place where the bindings produced by genlet
are to be placed. Since let-insertion is very common, different parts
of the generator may do their own let-insertions at different places;
the locus variable l is to connect genlet with its corresponding let
locus. Thus intuitively, genlet l em e will insert the let z=c in at
the place marked by let locus l and return the code of thus bound
variable z (which is distinct from any other variables in the code).
Placing let-bindings ‘higher’ in the code is useful because they
may be shared. The memo key defines the equivalence classes:
expressions with the same memo key may be shared. Therefore,
if genlet l em e finds that there is already a let-binding produced
by an earlier genlet l em ' e' with the same l and the memo key,
genlet l em e returns the code of the earlier bound variable.

Using the semantics of these operations, explained below, we
can see that whereasMC

R
[
clgib5

]
remains the same as ER

[
gib5

]
,

MC
S
[
clgib5

]
is the string

λx.λy. let z = y in let u = x in let v = z + u in let w = v + z in
let x6 = w + v in x6 + w

which is indeed an optimized version of gib5, without either loops
or duplication.

In the semantics of let-insertion forms, we take the locus l to be
an element ofVnom and introduce ‘virtual bindings’ ν as sequences
of tuples (l,k,n, eb) with ∅ for the empty sequence and · for the
element- or sequence concatenation. Each tuple in ν represents one
let-binding, not yet generated: l is a locus (an element of Vnom), k
is a memo key (an integer), and n and eb represent the binding:
n ∈ Vnom is the variable to be bound, and eb is E

[
e
]
, the meaning

of the expression e that n will be bound to.
The semantic rules are as follows:

EC
[
genlet l em e

]
ρ ℓ = (E

[
ℓ
]
, ν ·(l,k, ℓ, eb))

where
2

let (rec) insertion without effects, lights or magic

l = ρ(l)
k = EC

[
em

]
ρ (1::ℓ)

(eb ,ν) = EC
[
e
]
ρ (2::ℓ)

(Note that em should be an integer expression, and hence its mean-
ing (given ρ and ℓ) is an integer. On the other hand, e is assumed
to be an expression of the code type, whose meaning is the tuple:
the meaning of the produced code plus the virtual bindings.)

EC
[
let locus l in e] ρ ℓ = ((bg g1 . . . (bg gn d)),ν,ℓ)

where
(d ,ν) = EC

[
e
]
ρ[l→ℓ] (1::ℓ)

[g1,. . . ,gn] = groupby k ν=ℓ
bg [(l ,k ,n,E

[
e
]
), (_, _,n1, _), . . .] E

[
e'
]
=

mklet n E
[
e
]
(subst [n1→n,. . .] E

[
e'
]
)

Here, ν=ℓ and ν,ℓ are the partitions of ν into the sequences of
bindings whose locus is ℓ (resp., not ℓ). The semantic functionmklet,
like themkl seen earlier, builds the denotation of let x=e in e' from
the variable name x, E

[
e
]
and E

[
e'
]
.

Intuitively, genlet l em e produces a virtual (floating) let-binding:
it means the code for a fresh name, annotated with the code of the
expression it will be bound to (when the time comes to actually gen-
erate the let-expression code). On the other hand, let locus l in e
converts the virtual bindings in the code generated by e into real
let-bindings; to be precise, only the bindings annotated with the
l’s locus are converted. To a first approximation, the conversion
can be understood as turning the sequence of virtual bindings
[(l ,k ,n,E

[
e
]
), (l ,k ′,n′,E

[
e'
]
), . . .] into a nested let-expression let n=

e in let n′=e' in Incidentally, the code e' may refer to n, hence
the order of virtual bindings is important: this accounts for the
representation of virtual bindings as a sequence rather than a set.
Virtual bindings with the same locus l and the memo key k belong
to the same equivalence class, or group. The semantic operation
groupby k is meant to group the bindings of the same locus. One
let statement is generated per group, for the first binding in the
group (the group representative). All other variables within the
same group of virtual bindings are substituted with the group rep-
resentative variable3.

The interface for genlet described above differs from our previ-
ous proposal [Yallop and Kiselyov 2019] in that here we combine
memoization and let-insertion. Although both memoization and
let-insertion are usually implemented in terms of effects, we have
used no effects at all.

If let locus in clgib5 is positioned above λy. . . ., so called scope-
extrusion occurs, resulting in the generated code with have un-
bound variables (as we can verify in our semantics). It is the subject
of ongoing work to develop a type system to statically prevent such
problems.

It turns out that the genletrec for generating (mutually) recursive
definitions presented by Yallop and Kiselyov [2019] is a minor
variant of the above genlet, with almost the same semantics. The
presentation (and forthcoming full paper) will give details; for now,
we refer the interested reader to the accompanying code.

It has been recognized early on [Bondorf 1992; Lawall and Danvy
1994] that one can use control effects (either direct or realized via
CPS) to answer the compositionality challenge of the ordinary,

3This substitution is cheap since E [e] is typically a map from an environment ρ to
the appropriate Vt . The substitution of n′ with n is λρ .E [e] ρ[n′ → n].

well-nested let-insertion. Kameyama et al. [2011] give a compre-
hensive formal treatment. Unfortunately, neither CPS nor the well-
understood shift operator are of any help with let-insertion that
does not follow the stack discipline and crosses already-generated
bindings. Generating (mutually) recursive bindings has not previ-
ously been formally considered at all, to our knowledge.

In summary, we have developed an executable denotational se-
mantics for let(rec) insertion. The next step is to develop a type sys-
tem that prevents scope extrusion. Our semantics, for the first time,
lets us reason about the code with the generated let-statements,
and we plan to demonstrate this facility on standard interesting
examples (e.g. from Kameyama et al. [2011]; Kiselyov et al. [2016];
Yallop and Kiselyov [2019]).

Acknowledgements We are grateful to the anonymous reviewers
for many helpful suggestions. We thank Yukiyoshi Kameyama for
hospitality.

References
Anders Bondorf. Improving binding times without explicit CPS-conversion. In

Proceedings of the 1992 ACM Conference on LISP and Functional Programming,
LFP ’92, pages 1–10, New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi:
10.1145/141471.141483.

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Shifting the stage:
Staging with delimited control. J. Funct. Program., 21(6):617–662, November 2011.

Oleg Kiselyov. The design and implementation of BER MetaOCaml. In Michael Codish
and Eijiro Sumii, editors, Functional and Logic Programming, volume 8475 of Lecture
Notes in Computer Science, pages 86–102. Springer International Publishing, 2014.

Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. Refined environment classifiers
- type- and scope-safe code generation with mutable cells. In Atsushi Igarashi,
editor, Programming Languages and Systems - 14th Asian Symposium, APLAS 2016,
Hanoi, Vietnam, November 21-23, 2016, Proceedings, volume 10017 of Lecture Notes
in Computer Science, pages 271–291, 2016. ISBN 978-3-319-47957-6. doi: 10.1007/
978-3-319-47958-3_15.

Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In Proceedings
of the 1994 ACM Conference on LISP and Functional Programming, LFP ’94, pages
227–238, New York, NY, USA, 1994. ACM. ISBN 0-89791-643-3. doi: 10.1145/182409.
182483.

Peter D. Mosses. Denotational semantics. In J. van Leewen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 11,
pages 577–631. The MIT Press, New York, NY, 1990.

Jeremy Yallop and Oleg Kiselyov. Generating mutually recursive definitions. In
Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2019, pages 75–81, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-6226-9. doi: 10.1145/3294032.3294078.

A Base and Codec, formally
The base calculus, used for the generated code and the base of
the generator, is the standard call-by-value simply-typed lambda-
calculus with constants and ordinary let-expressions and (poten-
tially mutually) recursive letrec-expressions. Figure 1 presents its
syntax. There, c0, c1, c2 and c3 stand for constants of the corre-
sponding arity. Applications of constants to fewer arguments than
their arity are not considered expressions. The calculus includes
integer and boolean literals (as zero-arity constants), the successor
operation succ of arity 1 and binary arithmetic and comparison
operations on integers, of obvious types.

The base calculus can be represented as OCaml signature. Cal-
culus expressions of the type α are represented as OCaml values of
the type α repr. The mutually recursivemletrec takes the collection
of clauses indexed by idx; the first argument to mletrec tells the
number of clauses.

3

Oleg Kiselyov and Jeremy Yallop

Variables x,y,z,u,f,n,r. . .
Types t ::= int | bool | t→ t

Expressions
e ::= x | c0 | c1 e | c2 e e | c3 e e e | λx. e | e e

| if e then e else e | let x=e in e
| let rec x=e and x=e . . . in e

Values v ::= c0 | λx. e

Figure 1. Syntax of the base calculus; ci are constants of arity i

type α repr

val lam : (α repr→ β repr)→ (α→β) repr
val let_ : α repr→ (α repr →β repr)→ β repr
val (/) : (α→β) repr → (α repr→ β repr) (∗ application ∗)
val if_ : bool repr→ α repr → α repr→ α repr

type idx = int
val mletrec : idx →
((idx→ α repr)→ (idx → α repr))→
((idx→ α repr)→ ω repr)→ ω repr

val int : int→ int repr
val bool : bool→ bool repr

val succ : int repr→ int repr
val (+) : int repr→ int repr→ int repr
val (−) : int repr→ int repr → int repr
val (∗) : int repr→ int repr → int repr
val (=.) : int repr→ int repr → bool repr

Figure 2. Base calculus represented in OCaml: its syntax as OCaml
signature

4

	Abstract
	1 Summary
	2 Introduction
	3 Let-insertion
	References
	A Base and Codec, formally

