
An idiom’s guide to formlets?

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

The University of Edinburgh

Abstract. We present a novel approach to HTML form abstraction,
which we call formlets. A formlet hides the underlying representation of
a data type. For instance, a date formlet may allow a user to enter a date
as a single text field, or separate fields for day, month, and year, or a
combination of pulldown menus, or a custom JavaScript calendar widget;
any consumer of the data from the form would see only the abstract data
type Date. Remarkably, this form of abstraction is unsupported in almost
all web frameworks, and not fully supported in any web framework of
which we are aware.
Formlets are defined in terms of Conor McBride’s idioms (also called
applicative functors), a program structuring technique halfway between
Moggi’s monads and Hughes’s arrows.
We have implemented formlets in the Links programming language. The
core functionality is implemented entirely in library code. In addition
we offer syntactic sugar which makes formlets particularly easy to use.
We show how to extend formlets to support validation by composing the
underlying idiom with an additional idiom.

1 Introduction

Raw HTML forms, together with the code that handles them, give a low-level
interface to a browser’s form facilities which poses several problems:

Accordance The code which handles the input submitted through a form is
separate from the form’s definition, and they have no static association;
changes to one are not propagated to the other, causing runtime errors.

Aggregation Form-field inputs are always submitted individually and always
as strings: HTML provides no facility for submitting structured data.

Composition Given two forms, there is generally no easy way to combine them
into a new form without fear of name clashes amongst the fields—thus it is
not easy to write a form that uses subcomponents abstractly.

Formlets are abstract form components that: statically check that a form and
its handler are compatible, translate raw form strings into structured values, and
automatically generate distinct names for distinct fields. Thus formlets solve all
three problems.

Conventional web programming frameworks such as PHP [14] and Ruby on
Rails (RoR) [17] break abstraction by exposing to programmers each field in
? draft (October 2007)

F
o
rm

le
ts

W
U

I

iD
a
ta

W
A

S
H

J
W

IG

S
cr

ip
tl

et
s

L
in

k
s

0
.3

P
H

P
,
R

o
R

Statically checked fields ! ! ! ! ! ! !

Compositionality of forms ! ! ! ! !

Field name abstraction ! ! ! !

Multiple forms per page ! ! ! ! ! ! !

Arbitrary component placement ! ! ! ! ! ! !

Presentation abstraction ! ! ! ! ! ! !

Parametric form abstractions ! !

Functional form composition !

Dynamic number of fields ! ! ! ! ! !

Table 1. Form features of web programming frameworks

a form. Research frameworks such as JWIG [4], scriptlets [7] and our previous
design for Links [5] all fall short in the same way.

Three existing web programming frameworks that do support some degree
of abstraction over form components are WASH [18], iData [15] and WUI [8,
9]. A key feature of formlets that is not supported by any other framework,
to our knowledge, is form abstraction over function types. Such abstractions
allow forms to be composed using straightforward function application, and are
fundamental to the simplicity of the idiomatic semantics of formlets described
in Sect. 4.

Table 1 summarises the features supported by a range of web programming
frameworks. Several features require explanation. Parametric form abstractions
are form abstractions that can be used to input values of any type (some systems
restrict the input type). Functional form composition is the use of functional form
abstractions for composing forms using straightforward function application.

The technical contributions of this paper are:

– A unified design for an abstraction over HTML forms which is compositional,
type-safe, parametrically polymorphic, and easy to use;

– A definition of this feature in terms of idioms, a simple semantic framework;
– An extended design supporting form validation;
– A comparison of form-abstraction features in web-programming systems.

The rest of the paper is organised as follows. Section 2 gives a tour of form-
lets by example. Section 3 defines them precisely, while Section 4 factors this
definition into standard idioms. Section 5 adds support for validation. Section 6
compares formlets with other web-programming systems. Section 7 concludes.

2 Formlets by Example

We illustrate formlets at a high level with an example. We assume familiarity
with HTML and use Links syntax. Fig. 1 gives a Links refresher; more detail

Terms
sig g : A function type signature
fun g(p1 , . . . , pn) {e} function definition
op p1 ⊕ p2 {e} operator definition
typename C(α1, . . . , αn) = A type alias declaration
var p = e1; e2 binding

<t as>q</t> XML tree
<#>q</#> XML forest
{e} XML antiquote

Types
(A)→ B function type
C(A1, . . . , An) type constructor application
(A1, . . . , An) tuple type
[|L1 : A1, . . . , Ln : An|] variant type
[A] list type

Meta variables

e expression
p pattern
⊕ symbolic identifier
g function

q XML quasiquote
t tag

as attribute list

A, B type
α, β type variable
L label
C type constructor

Fig. 1. Syntax reference

is available in our earlier work [5]. One point bears noting: the Links type Xml
captures the general notion of XML documents; in this paper we use the type
only for HTML, and thus we will refer to HTML values although they have
type Xml . (This is an instance of the common phenomenon whereby a type
system may not be precise enough to capture some patterns of use. Though well
studied [13], static validity checking for XML is not a clear win. It can lead to
large types, for instance, and handling polymorphism is challenging.)

The following Links expression creates a formlet, called date, with two text
input fields, labeled “Month” and “Day”:

sig date : Formlet(Date);
var date = formlet <#>Month: {inputInt → month},

Day: {inputInt → day}</#>
yields makeDate(month, day);

This defines date as a value, of type Formlet(Date), which can be embedded in
a page as an HTML form. Upon submission of the form, this formlet will yield
a Date value representing the date entered; the user-defined makeDate function
translates the day and month into a suitable representation.

The expression formlet body yields result constructs a formlet. The value
yielded by the formlet is given by the expression result . The expression body is
an XML quasiquote augmented with a facility for binding formlets. A formlet
binding {f → p} binds the value yielded by f to the pattern p in result .

To evaluate a formlet expression, each antiquote term in the body expression
is evaluated and its result replaces the antiquote term; the body expression de-
termines the “rendering” of the formlet. The result expression is evaluated when
the form is submitted; it determines the “collector” of the formlet.

The value inputInt : Formlet(Int) is a formlet that allows the user to enter
an Int , using an HTML text input element. Although the inputInt formlet is
used twice, the formlet library ensures that no field name clashes arise.

Next we illustrate how user-defined formlets can be usefully combined to
create larger formlets. We construct a “travel” formlet which asks for a name,
an arrival date, and a departure date.

var travelFormlet =

formlet
<#><label>Name: {input → name}</label>

<div>

<label>Arrival date: {date → arrival}</label>
<label>Departure date: {date → departure}</label>

</div>

{submit("Submit")}
</#>

yields (name, arrival, departure);

This formlet includes a submit button, created using submit , which simply re-
turns the HTML for a submit button. Although submit does not produce a
formlet, the generated element cannot cause a name clash because it is not
given a name attribute.

Having created a formlet, how do we use it? For a formlet to become a form,
we need to connect it with a handler, which will consume the form input and
perform the rest of the user inrteraction. To allow this, we introduce the page q
construct. Here q is an XML quasiquote augmented with a facility to associate
formlets with handlers. A formlet/handler association is written {f ⇒ h}. In-
tuitively, the value of page q is an HTML value where each formlet/handler
association {f ⇒ h} has been replaced by an HTML form. The body of that
form is the rendering of the formlet f , and the action of the form applies the
handler h to the result of invoking f ’s collector.

Continuing the above example, we render travelFormlet onto a simple page,
and attach a handler that displays the chosen itinerary back to the user.

sig displayItinerary : ((String, Date, Date)) → Xml
fun displayItinerary((name, arrival, departure)) {

<html><body>

Itinerary for: {stringToXml(name)}.
Arriving: {dateToXml(arrival)}.
Departing: {dateToXml(departure)}.
Duration of trip: {dateToXml(duration(departure, arrival))}.

</body></html>

}

page <html><body>

<h1> Welcome to Bruntsfield Travel Services </h1>

{travelFormlet ⇒ displayItinerary}
</body></html>

A more interesting application might render another form on the displayItinerary
page, one which allows the user to confirm the itinerary and purchase tickets; it
might then take actions such as lodging the purchase in a database, and so on.

3 Formlets by Definition

Having shown how formlets look to the programmer, we now develop a defini-
tion. We begin by asking what operations we would like to perform on formlets.
We then show how the formlet syntax can be desugared into the fundamental
formlet operations. In Appendix A we give a concrete Links implementation of
the operations.

3.1 Operations

From the programmer’s viewpoint, formlets consist of two functions: a renderer
and a collector. The renderer returns the HTML rendering of a form, and the
collector transforms raw submitted form data into the desired value. The ren-
derer corresponds roughly to the body of a formlet expression and the collector
to the result part of a formlet expression.

As functional programmers, we ask for a repertoire of transformations of
these parts: we would like to be able to operate on the value yielded by the
collector, transforming a Formlet(A) into a Formlet(B) by means of a function
(A)→ B. Such an operation can be expressed applicatively by means of ordinary
functions—but we use a specialised notion of function application, written with
the operator (~) : (Formlet(α)→ β, Formlet(α))→ Formlet(β). In addition,
we want to be able to lift any value of type A into a formlet of type Formlet(A),
which we do using pure : (α) → Formlet(α). As we shall see in Sect. 4, these
two operations are exactly what we need for defining an idiom.

Further, we want to be able to transform the HTML rendering, so we de-
fine an operation plug : (XmlContext, Formlet(α)) → Formlet(α) and de-
fine the type

typename XmlContext = (Xml) → Xml

(The names XmlContext and plug will make more sense when we discuss certain
restrictions on their intended use, in Sect. 3.3.)

Finally, we define a library of formlet operations corresponding to HTML
input elements, each of which generates one or more names. These include input ,
textarea and button (which give rise to the eponymous HTML elements), as well
as choice (corresponding to HTML option/select elements), submit (which
produces HTML for a submit button) and others. It is easy to add similar basic
operations to the library. (We could define a single operation that generalises all

typename Formlet(α)

fundamental operations
sig pure : (α) → Formlet(α)
infixl ~
sig ~ : (Formlet((α) → β), Formlet(α)) → Formlet(β)
sig plug : (XmlContext, Formlet(α)) → Formlet(α)

library operations
sig input : Formlet(String)
sig inputInt : Formlet(Int)
sig submit : (String) → Xml

rendering
sig render : (Formlet(α), (α) → Xml) → Xml

Fig. 2. The basic formlet operations

of these, which handles only the name-generation and is parameterised on the
HTML rendering; but we find the above more convenient.)

A formlet can be rendered as HTML using the render function, which takes
a formlet and a handler, and produces an HTML form as output. The render
function is not intended to be used directly by programmers; page expressions
should be used instead.

The basic formlet operations are summarised in Fig. 2.

3.2 Desugaring

In order to define the translation from the formlet syntax to the fundametal
operations, we give a precise definition of the Links syntax for XML quasiquotes:

(trees) r ::= s | <t as>xs</t>
(nodes) x ::= r | {e} | {f → p}

(forests) xs ::= | x xs
(XML quasiquotes) q ::= <#>xs</#> | <t as>xs</t>

The desugaring translation (·)◦ compiles away the syntactic sugar.

(formlet q yields e)◦ = pure(fun (q†){e◦}) ~ q∗

Its definition uses two auxiliary operations (·)∗ and (·)†.

s† =
{e}† =

{f → p}† = p

<t as>xs</t>† = xs†

<#>xs</#>† = xs†

(x1 . . . xk)† = (x †1 , . . . , x †k)

s∗ = body(stringToXml(s))
{e}∗ = body(e◦)

{f → p}∗ = f◦

<t as>xs</t>∗ = plug(fun(x){<t as>{x}</t>},
xs∗)

<#>xs</#>∗ = xs∗

(x1 . . . xk)∗ = pure(fun (x †1) . . . (x †k) {

(x †1 , . . . , x †k)
}) ~ x∗1 · · · ~ x∗k

The translation (·)◦ commutes with all other syntax constructors. Given an XML
quasiquote q, the operation q∗ : Formlet(α) returns a formlet expression; the
operation q† : α returns a pattern. The desugaring translation uses a helper
function to lift an HTML value to a trivial formlet that renders to the supplied
HTML value and whose collector returns the unit value.

sig body : (Xml) → Formlet(())
fun body(x) { plug(fun (y){<#>{x}{y}</#>}, pure(())) }

Note that the target of the (·)◦ operation is just ordinary applicative Links
syntax, without any formlet-expressions or -bindings. An essential property of
this desugaring is that every XmlContext it produces is linear. We rely on this
property in Sect. 3.3.

Without the aid of the sugar, the travel formlet is written as follows.

pure(fun (name)(arrival, departure)(_) { (name, arrival, departure) }) ~
plug(fun (x){<label>Name: {x}</label>}, input) ~
plug(fun (x){<div>{x}</div>},

pure(fun (x)(y) {(x, y)}) ~
plug(fun (x){<label>Arrival date: {x}</label>}, date) ~
plug(fun (x){<label>Departure date: {x}</label>}, date)) ~

body(submit("Submit"))

Compare this with the sugared version on page 4. The sugar has allowed us to
flatten out the formlet composition into a single formlet expression; note that
the plugging operation falls out naturally from the XML quasiquote syntax.

Page expressions are desugared using the operation (·)•:

{f ⇒ h}• = {render(f , h)} (page q)• = q•

The (·)• operation commutes with all other syntax constructors. The desugaring
of page expressions becomes more interesting when we add validation (Sect. 5).

3.3 Limitations of static safety

One of the aims of formlets is to ensure compatibility between the field names
in the HTML and the names read by the collector. More precisely, each name
appearing in the HTML should be distinct, and the set of names appearing

in the HTML should be exactly the set of names the collector expects. These
properties are almost guaranteed by construction—the formlet library functions
ensure that whenever a name is used in the rendered HTML, the same name
is read in the collector. However, there are two ways in which things could go
wrong.

If we implement HTML contexts as functions and expose the plug function
then there is nothing to stop the programmer passing a context to plug that
does not use its argument linearly. This would allow names to be duplicated or
deleted altogether in the HTML whilst leaving them unchanged in the collector.
Our solution is to hide plug , and insist that programmers use the syntactic sugar
instead. As noted, desugaring produces only linear contexts.

Still, a programmer may try to plug a formlet into an HTML context that
contains input elements or other HTML form components, potentially leading
to a name clash. In our current implementation we leave it up to the programmer
to ensure that the elements form, input, button, textarea, select, option and
optgroup never appear in the source, outside of the formlet library. The library
can be used when these elements are needed.

4 The formlet idiom

A natural question to ask is whether formlets fit into a well-understood semantic
framework. Clearly formlets involve side-effects, in the form of name generation
and user interaction. Monads [2] provide the standard semantic tools for rea-
soning about side-effects. It is not difficult to see that there is no monad corre-
sponding to the formlet type. Intuitively, the problem is that if we try to define
a bind operation for the formlet type, then it would have to read some of the
input submitted by the user before the form had been rendered, which is clearly
impossible. Idioms are a generalisation of monads that are suitable for modelling
formlet. In fact, the formlet idiom is the composition of three primitive idioms.

Recall [11] that an idiom is simply a type constructor together with op-
erations pure and ~, pronounced “apply”, obeying certain laws. These op-
erations permit injecting values into the idiom as well as general applicative
computations—but the idiom gives a special meaning to the notion of applica-
tion. Typically, an idiom will also come with some operations for constructing
impure (or effectful) values.

Formally, an idiom is a type constructor I together with operations

pure : (α)→ I(α) ~ : (I((α)→ β), I(α))→ I(β)

that satisfy the following equations:

pure(id) ~ u ≡ u (id is the identity function)
pure(◦) ~ u ~ v ~ w ≡ u ~ (v ~ w) (◦ is function composition)

pure(f) ~ pure(x) ≡ pure(f(x))
u ~ pure(x) ≡ pure(fun(f){f(x)}) ~ u

These laws guarantee that pure computations can be reordered. In particular, an
idiomatic effectful computation cannot depend on the result of a pure computa-
tion, and any expression built from pure and ~ can be rewritten in the canonical
form: pure(f) ~ u1 ~ · · · ~ uk, where f is the pure part of the computation
and u1 . . . uk are the effectful parts of the computation.

Now we can show the idioms that comprise formlets. The name-generation
idiom threads a source of names through all of its computations; this permits
the effect of fresh name generation.

typename In(α) = (Gen) → (α, Gen)
fun puren(v) { fun(gen) { (v, gen) } }

op f ~n a { fun (gen) {

var (v, gen) = f (gen); var (w, gen) = a(gen);
(v(w), gen)

}

}

The accumulation idiom over the monoid of XML forests carries a value from
the monoid alongside its computations. The idiom’s application operation also
combines the two computations’ monoidal values using the monoid multiplica-
tion.

typename Ix(α) = (Xml, α)
fun purex(v) { (<#/>, v) }

op (x, f) ~x (y, a) { (<#>{x}{y}</#>, f (a)) }

The environment idiom passes some environment (e.g. an association list)
through all its computations; the available effect is reading from the environment.

typename Ie(α) = (Env) → α
fun puree(v) { fun (env) { v } }

op f ~e a { fun (env) { f (env)(a(env)) } }

(Readers familiar with monads can check that these are just standard monads,
viewed as idioms. The transformation from a monad to an idiom takes pure =
return and f ~ x = f ? (λf. x ? (λx. fx)) where ? is the Kleisli star or “bind”
operation.)

Any two idioms can be composed, producing an idiom. The composition of
two idiom triples is defined pointwise. Given idioms I and J with associated
operations pureI, ~I and pureJ, ~J (respectively), we obtain the idiom I pre-
composed with J as I ◦ J where

var pureI◦J = pureI ◦ pureJ;

op f ~I◦J a { pureI((~J)) ~I f ~I a }

The formlet idiom We now give an implementation of formlets as the com-
position of the above idioms. The reader should see that this provides the basic
architecture of formlets and that it corresponds to the complete implementation
in Appendix A.

I = In ◦ Ix ◦ Ie

typename I(α) = (Gen) → ((Xml, (Env) → α), Gen);
fun pure(v) { fun (gen) { ((<#/>, fun (_) { v }), gen) } }

op f ~ a { fun (gen) {

var ((x, c), gen) = f(gen);
var ((y, d), gen) = a(gen);
((<#>{x}{y}</#>, fun(env){c(env)(d(env))}), gen)
}

}

(In the implementation given in Appendix A we flatten the nested pairs into
triples.)

5 Form Validation

Up to this point we have been proceeding on the impractical assumption that
text entered into forms is always valid. For example, we have not made any
provision for the case where the user enters non-digit characters into a field which
is interpreted as an integer. We wish to provide the following behaviour: when an
invalid form is submitted, the page on which it appeared should be redisplayed,
together with error messages describing the problems with the form.

5.1 Adding validation

In order to keep track of error messages we modify the Formlet type, changing
the return type of the collector component from α to (Xml,Maybe(α)):

typename Maybe(α) = [| Just : α | Nothing |]

typename Formlet(α) = (Gen) → (Xml,Collector((Xml,Maybe(α))),Gen)

When passed an environment a Collector((Xml , Maybe(A))) attempts to extract
a value v of type A, returning Just(v) if the extraction succeeds, or Nothing if
it fails. The second component of the return value, the error rendering, is the
HTML that should be displayed in an error situation, whether that arose due to
this or some other collector. When no validator is attached to the component,
the component succeeds, using the original HTML as the error rendering. Given
these adjustments we can add a validating operation, satisfies, on formlets:

typename Validator(α) = (α,Xml) → (Xml,Maybe(α));
sig satisfies : (Formlet(α),Validator(α)) → Formlet(α)

An auxiliary function, err , constructs a validator from a predicate and a function
that builds an error message; if the predicate fails then the message function will
be passed the failing value.

sig err : ((α) → Bool, (α) → String) → Validator(α)
fun err(pred, error) (val, xml) {

if (pred(val)) (xml, Just (val))
else (<#>{xml}

 {stringToXml(error(x))}
</#>, Nothing)

}

Besides these new operations, we must adjust the fundamental formlet operations
to support validation. An implementation is given in Appendix B.

Using satisfies and err we can add error-checking to a formlet component.
For example, we can now improve the definition of inputInt (Appendix A) so
that a suitable message is displayed if parsing the string fails:

fun isInt(s) { s ∼ /ˆ-?[0-9]+$/ }

fun intError(s) { s ++ " is not an integer!" }

sig inputInt : Formlet(Int)
var inputInt = formlet <#>{input 8satisfies 8 (isInt 8err 8 intError) → s}</#>

yields stringToInt(s);

Validation can be added to any formlet value regardless of whether there is
validation code attached to the value already. For example, starting with the
inputInt formlet we can construct a formlet that accepts only even numbers:

fun evenError(i) { intToString(i) ++ " is not even!" }

var inputEven = inputInt 8satisfies 8 (even 8err 8 evenError);

If the user enters a non-integer into an inputEven field then the error message
generated by intError will be displayed. If integer parsing succeeds but the
parity check fails then the message generated by evenError will be displayed. In
general, when additional validation is applied to a component c which already
includes validation code, the validators are run from innermost outwards; only
the first failing validator is used to label c with an error message. However, errors
may also be displayed from other components, which are not descendents of c.
For instance, a component constructed from two inputEven components may
display errors for both from either integer or parity-checking validation.

We might similarly improve the formlets from Sect. 2 by adding validation
that tests that the dates are within range, or that the departure date is no earlier
than the arrival date. We have only shown an error message combinator (err)
that takes a message and displays it in a standard place. The datatype permits
user-defined combinators that indicate the error in other ways.

5.2 The validating formlet idiom

In Sect. 4 we saw that formlets arise as the composition of three idioms. The
type of formlets extended with validation is obtained by the composition of the
original formlet idiom with idioms for XML accumulation and failure.

I = In ◦ Ix ◦ Ie ◦ Ix ◦ Io

The failure idiom Io is derived from the standard error monad.

5.3 Pages with validation support

The following example creates a page containing two forms:

fun displayEven (e) {

<html><body>

An even number: {intToString(e)}
</body></html>

}

fun displayDate(d) {

<html><body>

A date: {dateToString(d)}
</body></html>

}

page <html><body>

Enter an even number: {inputEven ⇒ displayEven}
Alternatively, enter a date: {date ⇒ displayDate}

</body></html>

As explained earlier, we want a formlet that fails validation to be presented
a second time to the user along with error messages. Further, we want this
formlet to be presented in its original context. If the user enters non-numeric text
into the inputEven form then the implementation should re-display the entire
page, with an error message beside the offending field. If the user subsequently
submits invalid input in the date form then the entire page should be re-displayed
with error messages accompanying both forms: the state of the inputEven form,
including error messages, should be preserved.

In order to implement such behaviour we refine our notion of pages. Validat-
ing pages represent composable web-page fragments containing validated forms.
A page consists of a k-holed XML context, k formlets and k handlers. Following
the presentation of formlets, we first give the operations on pages, then describe
the desugaring rules, and finally the implementation in Links.

The abstract type is given in Fig. 3. Pages have a monoid structure. The unit
value represents an empty page fragment with no forms or handlers; g1 ⊗ g2

concatenates two page fragments together by concatenating the contexts, form-
lets and handlers of the pages g1 and g2. The plug operations is analogous to
the equivalent formlet operation. The form function realises a pair of a formlet
and a handler as a page.

In order to support validation the desugaring and type of pages needs to
be adjusted. Top-level pages are automatically rendered to HTML using the
internal renderPage function.

<#>xs</#>∇ = xs∇ <t as>xs</t>∇ = plug(fun(x){<t as>{x}</t>},

xs∇)

{e}∇ = body(e•) s∇ = body(stringToXml(s))

{f ⇒ h}∇ = form(f•, h•) (x1 . . . xk)∇ = joinMany([x∇1 , . . . ,x∇k])

{|g|}∇ = g• (page q)• = q∇

Formlet instantiations are desugared to calls to form. Note the difference be-
tween embedded XML expressions (which are desugared using body—analogous
to the equivalent formlet operation) and embedded pages (which are desugared
by simply recursing). The joinMany function is the k-ary version of the multi-
plication operation join.

fun joinMany(gs) { foldl(join, unit, gs) }

typename Page

sig unit : Page
sig ⊗ : (Page, Page) → Page

sig plug : (XmlContext, Page) → Page
sig form : (Formlet(α), Handler(α)) → Page

sig renderPage : (Page) → Xml

Fig. 3. The abstract type of pages

The implementation of validating pages is given in Appendix B.2. We briefly
outline some of the interesting aspects. Recall that a page consists of a multi-
holed XML context, and a list of formlet/handler pairs. To support concatenation
of contexts we must also store the number of holes in the context. The formlets
in the list may have different types; we might elude the typing problem by hiding
the types behind an existential.

typename MultiXmlContext = ([Xml]) → Xml
typename Page = (Int, MultiXmlContext, [∃α.(Formlet(α), Handler(α))])

Links does not support existential types, so instead we store the code that will
be used to eliminate the formlet/handler pairs. We hide the ∃-bound type using
a closure, in essence the inverse of Minamide et al’s typed closure conversion [12],
which introduces existentials for encoding heterogeneous environments.

Another interesting aspect of the typing arises from the validation loop. In
order to tie the recursive knot we make use of a recursive type. An abstraction
is introduced for each HTML form, such that it is parameterised over the list of
all HTML forms on a page. This allows every form to be updated when one of
them changes (due to a validation error).

6 Related work

JWIG JWIG [4] is an extension of Java for building web services. It builds on
ideas developed in MAWL [1] and <bigwig> [3]. JWIG allows HTML (including
forms) to be composed using templates. Templates are first-class multi-holed
HTML contexts with named holes. Both templates and simple values can be
plugged into templates. Regular expressions are used to validate form input
data at run-time. The field validation is performed both on the client and on the
server. A flow analysis is used to statically check validity of generated HTML
documents. The flow analysis requires that field names be constants, so it is not
possible to abstract over form components.

Scriptlets Scriptlets are build on top of SMLserver [6], a webserver for serving
web applications written in Standard ML. Elsman and Larsen [7] implemented
static typing for HTML on top of SMLserver. Their system uses phantom types
to enforce validity of HTML, and SML functors called scriptlets for building

statically checked forms. SML functors are not first class, which limits the scope
for dynamically composing forms using scriptlets.

WUI The WUI (Web User Interface) library [8, 9] implements form abstrac-
tions for the functional logic programming language Curry. The WUI library
composes form abstractions using simple combinators for building up tuples,
but WUIs do not directly support functional form composition.

Of the existing web form frameworks, WUI is the one that is closest to
formlets in spirit. Indeed there is an embedding of formlets into WUIs. Formlets
are simpler than WUIs in that unlike WUIs they do not take an input argument.
This is not an important restriction as input arguments can be straightforwardly
simulated using functional abstraction. In fact using functional abstraction for
inputs is more flexible, as it allows both the rendered HTML and the collector
to depend on the input value. The negative occurrence of the input argument
in the datatype for WUIs means that it is not possible to directly characterise
WUIs as idioms. It is, however, possible to characterise a generalisation of WUIs
as arrows [10], a generalisation of idioms (exercise).

WASH The WASH/CGI Haskell library [18] treats HTML forms in a well-
typed manner, but does not support the same degree of abstraction as formlets.

The paradigm of WASH is monadic. The data produced by a form component
is carried forward as values are carried forward by a monad, and the HTML part
of the component is accumulated as a monadic effect. Further, since handlers are
attached to submit buttons (rather than to the entire form), a submit button is
forced to appear below the fields that it depends on.

WASH supports using a user-defined type for an individual form field, and it
supports aggregating data from multiple fields in a standard way, but it does not
support aggregating multiple fields into an arbitrary user-defined type. Hence,
the programmer cannot abstract over the HTML presentation of a component:
the nature of its form fields is revealed in its type. For example, given a one-
field component, a programmer cannot readily modify it to consist of two fields,
without changing all the uses of the component.

A page generated by WASH has at most one form on it. The library provides
a notion of “form” distinct from the HTML notion of form. This prevents varying
the HTML attributes, such as the form encoding, between forms; furthermore, all
form data must be submitted whenever any submit button is pressed. This can
affect privacy and network usage. Consider the result if the user has tentatively
selected a file to upload in one form and then decides to submit a different form:
the entire file must be transferred although the user may not intend this.

iData The iData library [15] takes a model-view-controller approach to editing
program values using HTML forms. An iData is the fundamental abstraction
for editing values in a web form. The iData library makes use of type-directed
overloading to automatically derive editors for certain types. At a lower-level
form abstractions can be constructed in a non-type-directed manner.

As well as abstracting over forms, the iData library builds in a control flow
mechanism which effectively forces the programmer to treat an entire program

as a single web page consisting of a collection of interdependent iData. Whenever
one of the elements is edited by the user, the form is submitted and then re-
displayed to the user with any dependencies resolved. The iTasks library [16]
builds on top of iData and addresses this issue by enabling or disabling iData
according to the state of the program.

7 Conclusion

We have presented formlets as a form abstraction based on idioms. We have
implemented formlets in Links and shown that they can be cleanly extended to
support new features such as validation.

Our current implementation of formlets always runs form handlers on the
server. Links supports code running on the client as well as the server, so a
natural extension would be to allow form handlers to run on the client. A more
challenging area of future work is to extend formlets to respond to events other
than submitting the form. It is straightforward to support certain client-side
functionality such as validation, but seems harder to give a general model. Par-
ticular difficulties arise if we allow client-side code to dynamically modify forms.

References

1. D. L. Atkins, T. Ball, G. Bruns, and K. C. Cox. Mawl: A domain-specific language
for form-based services. IEEE Trans. Software Eng., 25(3):334–346, 1999.

2. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In Applied Semantics:
Advanced Lectures, volume 2395 of LNCS, pages 42–122, 2002.

3. C. Brabrand, A. Møller, and M. I. Schwartzbach. The <bigwig> project. ACM
Trans. Internet Techn., 2(2):79–114, 2002.

4. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Extending java for high-level
web service construction. ACM Trans. Program. Lang. Syst., 25(6):814–875, 2003.

5. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web programming without
tiers. In FMCO, 2006. To appear.

6. M. Elsman, N. Hallenberg, and C. Varming. SMLserver—A Functional Ap-
proach to Web Publishing (Second Edition), April 2007. (174 pages). Available
via http://www.smlserver.org.

7. M. Elsman and K. F. Larsen. Typing XHTML web applications in ML. In PADL,
pages 224–238, 2004.

8. M. Hanus. Type-oriented construction of web user interfaces. In PPDP, pages
27–38, 2006.

9. M. Hanus. Putting declarative programming into the web: Translating curry to
javascript. In PPDP’07, pages 155–166, 2007.

10. J. Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-3):67–111,
2000.

11. C. McBride and R. Paterson. Applicative programming with effects. JFP, 17(5),
2007.

12. Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In POPL
’96, pages 271–283, 1996.

13. A. Møller and M. I. Schwartzbach. The design space of type checkers for XML
transformation languages. In ICDT ’05, January 2005.

14. PHP Hypertext Preprocessor. http://www.php.net/.

15. R. Plasmeijer and P. Achten. iData for the world wide web: Programming inter-
connected web forms. In FLOPS, pages 242–258, 2006.

16. R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable specifications of
interactive work flow systems for the web. SIGPLAN Not., 42(9):141–152, 2007.

17. Ruby on Rails. http://www.rubyonrails.org/.

18. P. Thiemann. An embedded domain-specific language for type-safe server-side web
scripting. ACM Trans. Inter. Tech., 5(1):1–46, 2005.

A Implementation of formlets

Here we give the implementation of the basic formlet functions. The concrete
type of formlets is as follows:

typename Gen = Int
typename Env = [(String, String)]
typename Collector(α) = (Env) → α
typename Formlet(α) = (Gen) → (Xml, Collector(α), Gen)

In order to ensure that the input fields rendered by formlets have distinct
names, a name generator of type Gen is threaded through formlets. The name
generator is implemented as an single integer. When generating a name, this is
converted to a string; then it is incremented before being passed onward.

When the user submits a form, the Links runtime turns the submitted data
into an environment (of type Env), which maps input-field names to input values.
Currently an environment is implemented as an association list from strings to
strings. A Collector(α) produces a value of type α from such an environment.
Finally, a Formlet(α) is a function taking a name generator and producing a
triple of the HTML rendering, the collector, and the updated name generator.

Now the fundamental formlet functions are straightforward to define:

sig pure : (α) → Formlet(α)
fun pure(a) { fun (gen) (<#/>, fun (_) {a}, gen) }

infixl ~
sig ~ : (Formlet((α) → β), Formlet(α)) → Formlet(β)
op f ~ a {

fun (gen) {

var (x, c, gen) = f (gen);
var (y, d, gen) = a(gen);
(<#>{x}{y}</#>, fun (env) {c(env)(d(env))}, gen)

}

}

sig plug : (XmlContext, Formlet(α)) → Formlet(α)
fun plug(k, f) {

fun (gen) {

var (x, c, gen) = f (gen);
(k(x), c, gen)

}

}

The basic formlet operations must generate fresh names using the name
generator, which is defined by the following function:

typename Gen = Int
sig nextName : (Gen) → (String, Gen)
fun nextName(gen) { ("input_" ++ intToString(gen), gen + 1) }

The nextName function takes a name generator and returns a fresh string
along with an updated name generator. The input formlet illustrates a use of
nextName:

sig input : Formlet(String)
fun input(gen) {

var (name, gen) = nextName(gen);
(<input name="{name}" />,

fun (env) {lookup(name, env)},
gen)

}

The generated name is used both in the rendered HTML, as a field name, and
in the collector, to look up the input data. The implementations of the other
library operations are similar.

The inputInt formlet is a straightforward wrapper over the input formlet.

sig inputInt : Formlet(Int)
var inputInt =

formlet
<#>{input → s}</#>

yields
stringToInt(s);

The render function is defined in terms of a helper, mkForm.

sig mkForm : ((α) → Xml, Xml) → Xml
fun mkForm(cont, contents) {

<form enctype="application/x-www-form-urlencoded"

action="#" method="POST">

<input type="hidden" name="_k" value="{pickleCont(cont)}" />

{contents}
</form>

}

sig render : (Formlet(α), (α) → Xml) → Xml
fun render(f , handler) {

var (x, c, _) = f (0);
mkForm(fun (env) {handler(c(env))}, x)

}

In render , the handler is composed with the collector, which together are pickled
into a string and stored in the special hidden field _k which the Links runtime
recognised as an entry point. The pickleCont function is a built-in Links function
for marshalling a closure as a string.

sig pickleCont : ((Env) → Xml) → String

B Implementation of validation

B.1 Formlets

Here we give the implementation of the validating version of formlets.

typename Maybe(α) = [| Just : α | Nothing |]

typename Formlet(α) = (Gen) → (Xml,Collector((Xml,Maybe(α))),Gen)

The collector of the pure function now returns an empty error rendering and a
value wrapped in Just .

sig pure : (α) → Formlet(α)
fun pure(a) { fun (gen) {(<#/>, fun (_) {(<#/>, Just (a))}, gen)} }

The ~ operator concatenates the error renderers; collection now succeeds only
if it succeeds for both operands.

sig ~ : (Formlet((α) → β), Formlet(α)) → Formlet(β)
op f ~ a {

fun (gen) {

var (x, c, gen) = f (gen); var (y, d, gen) = a(gen);
(<#>{x}{y}</#>,
fun (env) { var (x, v) = c(env); var (y, w) = d(env);

(<#>{x}{y}</#>, v ~o w)},

gen)
}

}

The plug operation applies the XMLContext to both the regular and the error
renderers.

sig plug : (XmlContext, Formlet(α)) → Formlet(α)
fun plug(k, f) {

fun (gen) {

var (x, c, gen) = f (gen);
fun d(env) {

var (v, y) = c(env);
(v, k(y))

}

(k(x), d, gen)
}

}

The input formlet includes HTML for both the regular renderer and the error
renderer. If collection fails then the subitted value is available to the error ren-
derer, so we can repopulate the field by supplying a value for the value attribute.

sig input : Formlet(String)
fun input(gen) {

var (name, gen) = nextName(gen);
(<input name="{name}"/>,
fun (env) {

var v = assoc(name, env);
(<input name="{name}" value="{v}"/>, Just (v))},

gen)
}

B.2 Pages

Here we give the implementation of the validating version of pages. In order to
avoid an existential type, we need to examine how the formlets and handlers are
going to be consumed. The key component is the validate function.

typename RecForms = [µα.([α]) → Xml]

sig validate :

(Collector(α), Handler(α), MultiXmlContext, RecForms, Int)
→ (Env) → Xml

fun validate(c, h, k, zs, i)(env) {

switch (c(env)) {

case (_, Just(v)) → h(v)
case (x, Nothing) → {

fun z(zs) { mkForm(validate(c, h, k, zs, i), x) }

var zs = substAt(zs, i, z);
k(map(fun (z) {z(zs)}, zs))

}

}

}

The validate function takes six arguments: c and h are the collector and handler
for the i-th form in the multi-holed context k, zs is a list of functions for gener-
ating the HTML for the forms to be plugged into k and env is the environment.
The collector is run on the environment, returning some HTML x and an op-
tional return value v. If validation succeeds then the value is simply passed to
h. If validation fails then the HTML for the i-th form is updated and the page
is re-rendered. The HTML for each form is generated by applying each z in zs
to the entire list zs. This is where the recursive knot is tied.

We can now give an implementation of pages that does not depend on an
existential type.

typename CheckedFormBuilder =

(MultiXmlContext, RecForms, Int) → Xml
typename Page =

(Int, MultiXmlContext, (Gen) → ([CheckedFormBuilder], Gen))

sig renderPage : (Page) → Xml
fun renderPage((n, k, fs)) {

var (ms, _) = fs(0);
var zs = mapi(fun (m, i)(zs) {m(k, zs, i)}, ms);
k(map (fun (z) {z(zs)}, zs))

}

sig mkCheckedFormBuilder : (Xml, Collector(α), Handler(α))
→ (MultiXmlContext, RecForms, Int) → Xml

fun mkCheckedFormBuilder(x, c, h)(k, zs, i) {

mkForm(validate(c, h, k, zs, i), x)
}

sig unit : Page
var unit = (0, fun ([]) {<#/>}, fun (gen) ([], gen));

sig join : (Page, Page) → Page
fun join((i1, k1, fs1), (i2, k2, fs2)) {

(i1 + i2,
fun (xs) {

<#>{k1(take(i1, xs))}{k2(drop(i1, xs))}</#>
},

fun (gen) {

var (gen, ms1) = fs1(gen);
var (gen, ms2) = fs2(gen);
(ms1 ++ ms2, gen)

})

}

sig body : (Xml) → Page
fun body(x) {

(0, fun ([]) {x}, fun (gen) {([], gen)})
}

sig plug : (XmlContext, Page) → Page
fun plug(context, (i, k, fs)) {

(i, fun (xs) {context(k(xs))}, fs)
}

sig form : (Formlet(α), Handler(α)) → Page
fun form(f , h) {

(1,
fun ([x]) {x},
fun (gen) {

var (x, c, gen) = f (gen);
([mkCheckedFormBuilder(x, c, h)], gen)

})

}

