
Generating Mutually Recursive Definitions

Jeremy Yallop
University of Cambridge, UK
jeremy.yallop@cl.cam.ac.uk

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

Abstract
Many functional programs — state machines (Krishnamurthi
2006), top-down and bottom-up parsers (Hutton and Meijer 1996;
Hinze and Paterson 2003), evaluators (Abelson et al. 1984), GUI
initialization graphs (Syme 2006), &c. — are conveniently ex-
pressed as groups of mutually recursive bindings. One therefore
expects program generators, such as those written in MetaOCaml,
to be able to build programs with mutual recursion.

Unfortunately, currently MetaOCaml can only build recursive
groups whose size is hard-coded in the generating program. The
general case requires something other than quotation, and seem-
ingly weakens static guarantees on the resulting code. We describe
the challenges and propose a new language construct for assuredly
generating binding groups of arbitrary size – illustrating with a col-
lection of examples for mutual, n-ary, heterogeneous, value and
polymorphic recursion.

1. Introduction
MetaOCaml (whose current implementation is known as BER
MetaOCaml (Kiselyov 2014)) extends OCaml with support for
typed program generation. It makes three additions: α code is the
type of unevaluated code fragments, brackets .<e>. construct a
code fragment by quoting an expression, and splices .˜e insert a
code fragment into a larger one.

For example, here is a function t1 that builds an int code frag-
ment by inserting its int code argument within a bracketed expres-
sion:

let t1 x = .<.˜x ∗ succ .˜x>.
 val t1 : int code → int code = <fun>

and here is a call to t1 with a code fragment of the appropriate type:

let p12 = .< 1 + 2 >.
let c1 = t1 p12
 val c1 : int code = .<(1 + 2) ∗ succ (1 + 2)>.

Combined with higher-order functions, effects, modules and
other features of the host OCaml language, these constructs sup-
port safe and flexible program generation, permitting typed manip-
ulation of open code while ensuring that the generated code is well-
scoped and well-typed.

However, support for generating recursive programs is cur-
rently limited: there is no support for generating mutually-recursive
definitions whose size is not hard-coded in the generating pro-
gram (Taha 1999). For example, the following state machine:

sstart t u

A

B

A

B

B

A

is naturally expressed as a mutually-recursive group of bindings:

let rec s = function A :: r → s r | B :: r → t r | [] → true
and t = function A :: r → s r | B :: r → u r | [] → false
and u = function A :: r → t r | B :: r → u r | [] → false

where each function s, t, and u realizes a recognizer, taking a list of
A and B symbols and returning a boolean. However, the program
that builds such a group from a description of an arbitrary state
machine cannot be expressed in MetaOCaml.

The limited support for generating mutual recursion is a con-
sequence of expression-based quotation: brackets enclose expres-
sions, and splices insert expressions into expressions — but a group
of bindings is not an expression. There is a second difficulty: gen-
erating recursive definitions with ‘backward’ and ‘forward’ refer-
ences seemingly requires unrestricted, Lisp-like gensym, which de-
feats MetaOCaml’s static guarantees. It is unclear how to ensure all
gensym-ed variables are eventually bound to the intended expres-
sions, and how to ensure that generated code is well-typed.

In practice, MetaOCaml programmers fall back on a variety of
workarounds, simulating mutual recursion using ordinary recur-
sion (Kiselyov 2013) or nested recursion (Inoue 2014), encoding
recursion using higher-order state (“Landin’s knot”) (Yallop 2016)
or hard-coding templates for a few fixed numbers of binding-group
sizes (Yallop 2017). None of the workarounds are satisfactory: they
do not cover all use cases, are awkward to use, or generate ineffi-
cient programs that rely on references or auxiliary data structures.

This paper solves these challenges. Specifically, it describes:

• a low-level primitive for recursive binding insertion (§3), build-
ing on earlier designs for insertion of ordinary let bindings (§2)
• a high-level combinator built on top of the low-level primitive

(§4) that supports the generation of a wide variety of recursive
patterns — mutual, n-ary, heterogeneous, value and polymor-
phic recursion.

2. Let-insertion
The code generated for c1 above contains duplicate expressions,
which ideally should be computed only once. We can avoid the du-
plicated computation by changing t1 to generate a let expression:

let t2 x = .<let y = .˜x in y ∗ succ y>.
let c2 = t2 p12
 val c2 : int code = .<let y1 = 1 + 2 in y1 ∗ (succ y1)>.

However, in general let expressions cannot be inserted locally.
For example, in the following program, ft1 takes a code template
t as argument, using it when building the body of the generated
function:

let ft1 t x = .<fun u → .˜(t x) + .˜(t .<.˜x + u>.)>.
 val ft1 : (int code → int code) → int code → (int → int) code

Now the let expression generated by t2 is not positioned optimally:

let c3 = ft1 t2 p12;;
 val c3 : (int → int) code = .<fun u2 →

(let y4 = 1 + 2 in y4 ∗ (succ y4)) +
(let y3 = (1 + 2) + u2 in y3 ∗ (succ y3))>.

since we do not wish to compute 1+ 2 every time the function
generated by c3 is applied. The challenge is inserting let bindings
into a wider context rather than into the immediate code fragment
under construction.

Recent versions of BER MetaOCaml have a built-in genlet
primitive: if e is a code value, then genlet e arranges to generate,
at an appropriate place, a let expression binding e to a variable —
returning the code value with just that variable. (If e is already an
atomic expression, genlet e returns e as it is).

For example, in the following program p12l is bound to a code
expression 1+ 2 that is to be let-bound according to the context.
When p12l is printed – that is, used in the top-level context – the
let is inserted immediately:

let p12l = genlet p12
 val p12l : int code = .<let l5 = 1 + 2 in l5>.

If we pass p12l to t1, the let is inserted outside the template’s code:

let c1l = t1 p12l
 val c1l : int code = .<let l5 = 1 + 2 in l5 ∗ succ l5>.

Finally, in the complex ft1 example, the let-binding happens out-
side the function, as desired:

let ft1 x = .<fun u → .˜(t1 x) + .˜(t1 (genlet .<.˜x + u>.))>.
let c3l = ft1 p12l;;
 val c3l : (int → int) code =
.<let l5 = 1 + 2 in

fun u10 → let l11 = l5 + u10 in l5∗succ l5 + l11∗succ l11>.

Let-insertion and memoization Let-insertion is often used with
memoization, as we illustrate with a simplified dynamic-programming
algorithm (Kameyama et al. 2011). The fibnr function computes the
nth element of the Fibonacci sequence whose first two elements are
given as arguments x and y:

let fibnr plus x y self n =
if n= 0 then x else
if n= 1 then y else
plus (self (n−1)) (self (n−2))

The code is written in open-recursive style, and abstracted over
the addition operation. Tying the knot with the standard call-by-
value fixpoint combinator let rec fix f x = f (fix f) x we com-
pute, for example, the 5th element of the standard sequence as
fix (fibnr (+) 1 1) 5.

If, instead of passing the standard addition function + for
fibnr’s plus argument, we pass a code-generating implementation
of plus then fibnr also becomes a code generator, here building
code that computes the 5th element, given the first two:

let splus x y = .<.˜x + .˜y>. in
.<fun x y → .˜(fix (fibnr splus .<x>. .<y>.) 5)>.
 − : (int → int → int) code =
.<fun x1 y2 → (((y2+ x1)+ y2)+ (y2+ x1))+ ((y2+ x1)+ y2)>.

The duplicated expressions in the generated code reveal why fibnr
is exponentially slow.

A memoizing fixpoint combinator inserts a let-binding for the
result of each call, and maintains a mapping from previous argu-
ments to the let-bound variables (Swadi et al. 2006)

let mfix (f : (α → β code) → (α → β code)) (x : α) : β code =
let memo = ref [] in
let rec loop n = try List.assoc n !memo with Not found →

let v = genlet (f loop n) in
memo := (n,v) :: !memo; v

in loop x

letting us to compute the n-th element fast and generate fast code:

.<fun x y → .˜(mfix (fibnr splus .<x>. .<y>.) 5)>.
 − : (int → int → int) code =
.< fun x5 y6 →

let l7 = y6 + x5 in let l8 = l7 + y6 in
let l9 = l8 + l7 in let l10 = l9 + l8 in l10>.

Without genlet however, we get the same poor code as with the or-
dinary fix: memoization alone speeds up the code generation with-
out affecting the efficiency of the generated code. The crucial role
of let-insertion in these applications has been extensively discussed
by Swadi et al. (2006).

3. Inserting recursive let
As we have seen, the specialization of recursive functions calls for
generating definitions. More complicated recursive patterns require
generating recursive definitions. The simplest example is special-
izing the Ackermann function

let rec ack m n =
if m = 0 then n+ 1 else
if n = 0 then ack (m−1) 1 else
ack (m−1) (ack m (n−1))

for a given value of m. Turning ack into a generator of specialized
code is easy in the open-recursion style, by merely annotating the
code keeping in mind that n is future-stage:

let tack self m n =
if m = 0 then .<.˜n+ 1>. else

.<if .˜n = 0 then .˜(self (m−1)) 1 else

.˜(self (m−1)) (.˜(self m) (.˜n−1))>.
 val tack : (int→(int→int) code) → int→int code→int code

All that is left is to set the desired value of m and apply the mfix —
which promptly diverges:

mfix (fun self m → .<fun n → .˜(tack self m .<n>.)>.) 2

Looking at the original ack shows the reason: ack m depends not
only on ack (m−1) but also on ack m itself.

Generating recursive definitions was deemed for a long time a
difficult problem. One day, a two-liner solution emerged, from the
insight that a recursive definition let rec g = e in body may be
re-written as

let g = let rec g = e in g in body

which immediately gives us genletrec:

let genletrec : ((α→β) code → α code → β code) → (α→β) code =
fun f → genlet .<let rec g x = .˜(f .<g>. .<x>.) in g>.

The new memoizing fixpoint combinator becomes

let mrfix : ((α → (β→γ) code) → (α → β code →γ code)) →
(α → (β→γ) code) =

fun f x →
let memo = ref ([],[]) in
let rec loop n =
try List.assoc n (fst !memo @ snd !memo) with Not found →

let v = genletrec (fun g y →
let old = snd !memo in
memo := (fst !memo, (n,g) :: old);
let v = (f loop n y) in
memo := (fst !memo, old);
v) in

memo := ((n,v) :: fst !memo, snd !memo); v
in loop x

Recursive definitions have to be the definitions of functions: the fact
reflected in mrfix’s (and genletrec’s) code and type. The mrfix code
has another peculiarity: splitting of the memo table into the ‘global’
and ‘local’ parts. We let the reader contemplate its significance
(until we return to this point in §4).

Finally we are able to specialize the Ackermann function to a
particular value of m (which is two, in the code below):

mrfix tack 2
 − : (int → int) code =
.< let l13 = let rec g11 x12 = x12 + 1 in g11 in

let l14 = let rec g9 x10 =
if x10 = 0 then l13 1 else l13 (g9 (x10 − 1))

in g9 in
let l15 = let rec g7 x8 =

if x8 = 0 then l14 1 else l14 (g7 (x8 − 1))
in g7

in l15>.

One clearly sees recursive definitions that were not present in the
original ack.

4. Generating mutually-recursive functions
In many practical cases of generating recursive definitions one
wants to produce mutually recursive definitions, such as the state
machine shown in §1. To illustrate the challenges brought by mu-
tual recursion, we take a simpler running example, contrived to be
in the shape of the earlier Ackermann function. The example is the
‘classical’ even-odd pair, but taking two integers m and n and re-
turning a boolean, telling if the sum m+ n has even or odd parity,
resp.

let rec even m n =
if n>0 then odd m (n−1) else
if m>0 then odd (m−1) n else
true

and odd m n =
if n>0 then even m (n−1) else
if m>0 then even (m−1) n else
false

At first, mutual recursion seems to pose no problem: after all, a
group of mutually recursive functions may always be converted to
the ordinary recursive function by adding an extra argument: the
index of a particular recursive clause in the group1:

type evod = Even | Odd

let rec evodf self idx m n = match idx with
| Even →
if n>0 then self Odd m (n−1) else
if m>0 then self Odd (m−1) n else
true
| Odd →
if n>0 then self Even m (n−1) else
if m>0 then self Even (m−1) n else
false

 val evodf : (evod → int → int → bool) →
evod → int → int → bool

To find out if the sum of 10 and 42 has even parity one writes
fix evodf Even 10+ 42. The straightforward staging gives

let rec sevodf self idx m n = match idx with
| Even →
.<if .˜n>0 then .˜(self Odd m) (.˜n−1) else
.˜(if m>0 then .<.˜(self Odd (m−1)) .˜n>. else

.<true>.)>.
| Odd → . . .
 val sevodf : (evod → int → (int → bool) code) →

evod → int → int code → bool code

1 Since the functions even and odd have the same types, the index here is
the ordinary data type evod. The general case calls for generalized algebraic
data types (GADTs).

which looks very much like tack from §3. We could thus apply
mrfix from that section with trivial adaptations and obtain the code
for even m n specialized to a particular value of m, say, 0 (which
is just the ordinary even function):

mrfix (fun self (idx,m) x → sevodf (fun idx m → self (idx,m)) idx m x)
(Even,0)

 − : (int → bool) code = .<
let lv6 =
let rec g1 =
let lv5 =
let rec g3 x4 = if x4>0 then g1 (x4−1) else false in g3 in

fun x2 → if x2>0 then lv5 (x2−1) else true in
g1 in

lv6>.

The odd function (appearing under the generated name g3) is
nested inside even (or, g1) rather than being ‘parallel’ with it. It
means odd is not accessible from the outside; if we also want
to compute odd parity, we have to duplicate the code. There is a
deeper problem than mere code duplication: specializing even m n
to m= 1 (that is, applying the tied-knot sevodf to (Even,1)) gener-
ates no code. An exception is raised instead, telling us that MetaO-
Caml detected scope extrusion: an attempt to use a variable out-
side the scope of its binding. Indeed, we have attempted to produce
something like the following (identifiers are renamed for clarity):

let lod0 = (∗ odd 0 n ∗)
let rec od0 n =
let lev0 = (∗ even 0 n ∗)
let rec ev0 n = if n>0 then od0 (n−1) else true in ev0 in

if n>0 then lev0 (n−1) else false in od0 in
let lev1 = (∗ even 1 n ∗)
let rec ev1 n =
let lod1 = (∗ odd 1 n ∗)
let rec od1 n = if n>0 then ev1 (n−1) else lev0 n in od1 in

if n>0 then lod1 (n−1) else lod0 n in ev1
in lev1

Here, the function ev1, the specialization of even m n to m= 1
calls od0 and od1. The latter calls ev1 and fun n → even 0 n,
whose code was already generated and memoized, under the name
lev0. Unfortunately, the scope of lev0 does not extend beyond the
scope of od0 definition, and hence mentioning lev0 within od1 is
scope extrusion.

We would like to generate the mutually recursive definition
let rec even = . . . and odd = . . . that defines both even and
odd in the same scope. Alas, this is impossible using only brackets
and escapes: code values represent OCaml expressions, but the set
of bindings is not an expression. There is also a bigger, semantic
challenge. While generating the code for the i-th recursive clause
in a group we may refer to clauses with both smaller and larger
indices. It seems we have to resort to Lisp-like gensym, explicitly
creating a name and only later binding it. However, what static
assurances to we have that all generated names will be bound, and
to their intended clauses. How do we maintain the MetaOCaml
guarantee that the fully generated code is always well-typed?

The generator of mutually recursive bindings has to be a MetaO-
Caml primitive. What should be its interface? After quite a bit of
thought, it turns out that genletrec, if made primitive, would suf-
fice. For the sake of better error detection, one would generalize it
slightly. We add a second function, genletrec locus, which marks
the location where a group of recursive definitions should be in-
serted; the generated locus t value representing the location can be
passed as first argument of genletrec:

type locus t
val genletrec locus: (locus t → α code) → α code
val genletrec : locus t →

((α→β) code → α code → β code) → (α→β) code

The earlier genlet (and, hence genletrec) inserted the requested
definition in the widest possible context (while ensuring the ab-
sence of unbound variables in the generated code). With the
new interface the insertion point (and hence the scope of the in-
serted bindings) is explicitly marked using genletrec locus and
each call to genletrec indicates which group of recursive bindings
should contain the generated definition2. Correspondingly, in a call
genletrec locus (fun g x → . . .), the identifier for the binding
(bound to g) scopes beyond genletrec’s body (but within the scope
denoted by locus).

The new genletrec let us write mrfix essentially just like the
simpler mfix, without the splitting of the memo table into global
and local parts3: now, the definitions have the same scope.

let mrfix :
((α → (β→γ) code) → (α → β code →γ code)) →

(α → (β→γ) code) =
fun f x →

genletrec locus @@ fun locus →
let memo = ref [] in
let rec loop n =
try List.assoc n !memo with Not found →

genletrec locus (fun g y →
memo := (n,g) :: !memo;
f loop n y)

in loop x

With this new mrfix but the same sevodf from §4 we are able to
generate the specialized even 1 n code, with four mutually recur-
sive definitions.

Finite State Automata, reprise Recognizers of finite state au-
tomata are produced by the following generic, textbook generator4:

type token = A | B
type state = S | T | U
type (α,σ) automaton =
{finals: σ list; trans: (σ ∗ (α ∗ σ) list) list}

let makeau {finals;trans} self state stream =
let accept = List.mem state finals in
let next token = List.assoc token (List.assoc state trans) in
.<match .˜stream with
| A :: r → .˜(self (next A)) r
| B :: r → .˜(self (next B)) r
| [] → accept>.

In particular, the automaton in §1 is represented by the following
description

let au1 =
{finals = [S];
trans = [(S, [(A, S); (B, T)]); (T, [(A, S); (B, U)]);

(U, [(A, T); (B, U)]);]}

Then mrfix (makeau au1) S generates:

2 It hence becomes the programmer’s responsibility to place genletrec lo-
cus correctly. We are yet to explore and resolve the trade-off between auto-
matically floating genlet and genletrec whose scope is to be set manually.
3 Previously, genletrec relied on the trick let g = let rec g = e in g in
body, which binds two different g, one of which is in scope of the local let
rec, and another is out. Therefore, the memo table had two parts. The local
part tracks the identifiers that are valid only while we are generating the
let rec body; the global part, to which we only add, collects the externally
visible gs.
4 The generator makeau is indeed polymorphic over the type of the state;
the dependence on the alphabet shows in the match statement. Inciden-
tally, MetaOCaml also has a facility to generate pattern-match clauses of
statically unknown length and content. With its help, we can make makeau
fully general.

let rec x1 y = match y with
| A::r → x1 r
| B::r → x5 r
| [] → true

and x5 y = match y with
| A::r → x1 r
| B::r → x9 r
| [] → false

and x9 y = match y with
| A::r → x5 r
| B::r → x9 r
| [] → false
in x1

Status Currently the proof-of-concept of the described genletrec
is prototyped5 using plain MetaOCaml as well as MetaOCaml
with delimited control effects, such as those provided by Multicore
OCaml (Dolan et al. 2015) or the delimcc library (Kiselyov 2012).
We are working at supporting it above-the-board in the forthcoming
release of MetaOCaml. The presentation will additionally describe
extensions to nested mutually-recursive bindings (to show that gen-
eration is modular), heterogeneous and polymorphic recursion.

Acknowledgments
We thank Jun Inoue for earlier discussions and posed challenges
and Atsushi Igarashi for hospitality. We are grateful to anonymous
reviewers for many helpful suggestions.

References
Hal Abelson, Jerry Sussman, and Julie Sussman. Structure and Interpreta-

tion of Computer Programs. MIT Press, 1984. ISBN 0-262-01077-1.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil
Madhavapeddy. Effective concurrency through algebraic effects. OCaml
Users and Developers Workshop 2015, September 2015.

Ralf Hinze and Ross Paterson. Derivation of a typed functional LR parser,
2003.

Graham Hutton and Erik Meijer. Monadic Parser Combinators. Technical
Report NOTTCS-TR-96-4, Department of Computer Science, Univer-
sity of Nottingham, 1996.

Jun Inoue. Supercompilation via staging. In Fourth International Valentin
Turchin Workshop on Metacomputation, June 2014.

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Shifting the
stage: Staging with delimited control. J. Funct. Program., 21(6):617–
662, November 2011.

Oleg Kiselyov. Delimited control in ocaml, abstractly and concretely.
Theor. Comput. Sci., 435:56–76, June 2012. ISSN 0304-3975. . URL
http://dx.doi.org/10.1016/j.tcs.2012.02.025.

Oleg Kiselyov. Simplest poly-variadic fix-point combinators for mutual
recursion, August 2013. http://okmij.org/ftp/Computation/
fixed-point-combinators.html#Poly-variadic.

Oleg Kiselyov. The design and implementation of BER MetaOCaml.
In Michael Codish and Eijiro Sumii, editors, Functional and Logic
Programming, volume 8475 of Lecture Notes in Computer Science,
pages 86–102. Springer International Publishing, 2014.

Shriram Krishnamurthi. Educational pearl: Automata via macros. J. Funct.
Program., 16(3):253–267, 2006. . URL https://doi.org/10.1017/
S0956796805005733.

Kedar Swadi, Walid Taha, Oleg Kiselyov, and Emir Pašalić. A monadic ap-
proach for avoiding code duplication when staging memoized functions.
In PEPM, pages 160–169, 2006.

Don Syme. Initializing mutually referential abstract objects: The value
recursion challenge. In Proceedings of the ACM-SIGPLAN Workshop
on ML (2005). Elsevier, March 2006.

5 https://github.com/yallop/metaocaml-letrec

Walid Mohamed Taha. Multistage Programming: Its Theory and Applica-
tions. PhD thesis, Oregon Graduate Institute of Science and Technology,
1999. AAI9949870.

Jeremy Yallop. Staging generic programming. In Proceedings of the
2016 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM ’16, pages 85–96, New York, NY, USA, 2016.
ACM. .

Jeremy Yallop. Staged generic programming. Proc. ACM Program. Lang.,
1(ICFP):29:1–29:29, August 2017. ISSN 2475-1421. . URL http:
//doi.acm.org/10.1145/3110273.

A. Further extensions
We sketch some extensions to the mrfix combinator of Section 4.

A.1 Arbitrary bodies in let rec expressions
The mrfix combinator has the following type:

val mrfix : ((α → (β→γ) code) → (α → β code →γ code)) →
α → (β→γ) code

There are two arguments: the first is a function that builds
recursive definitions; the second (of type α) is an index that selects
the identifier associated with one of the definitions to appear in the
body of the generated let rec expression. For example, in the code
generated for the Ackermann function by the call mrfix tack 2 in
Section 3, the body of the generated expression is l15, the identifier
associated with the definition generated by tack 2. And in the
code generated for the finite state automaton in Section 4 the body
of the generated expression is x1, the name of the function that
corresponds to the start symbol.

However, it is sometimes convenient to generate let rec expres-
sions with bodies that are more complex than single identifiers. The
following function, mrfixk, generalizes mrfix to additionally sup-
port generation of arbitrary bodies:

val mrfixk : ((α → (β→γ) code) → (α → β code →γ code)) →
((α → (β→γ) code) → γ code) → γ code

Rather than an index, the second argument is now a function that
calls its argument to insert recursive definitions and builds a body
of type γ code. For example, here is the code that builds a recur-
sive group representing the state machine from previous examples,
whose body is a tuple returning all the recognizer functions:

mrfixk (makeau au1) (fun f → .< (.˜(f S), .˜(f U), .˜(f T)) >.)

The generated code is the same as the code generated by mrfix,
except for the more complex body:

let rec x1 y = match y with
| A::r → x1 r
| B::r → x5 r
| [] → true

and x5 y = match y with
| A::r → x1 r
| B::r → x9 r
| [] → false

and x9 y = match y with
| A::r → x5 r
| B::r → x9 r
| [] → false
in (x1, x9, x5)

A.2 A syntax extension
Third-order functions such as mrfixk are not always easy to un-
derstand and use. The following small syntax extension improves
readability in many cases:

let%staged rec f p p’ = e in e’
 mrfixk (fun f p p’ → e) (fun f → e’)

Here %staged is an attribute that indicates the need for a rewrite
by an plug-in program that expands the syntax as shown above.

Then ack can be written as follows

let%staged rec ack m n =
if m = 0 then .<.˜n+ 1>. else
.<if .˜n = 0 then .˜(ack (m−1)) 1 else
.˜(ack (m−1)) (.˜(ack m) (.˜n−1))>.

in ack 2

As this example shows, the syntax extension avoids the need for
explicitly higher-order code and for open recursion; the identifier
ack serves as the self argument in the expanded syntax, and so the
calls to ack appear as standard recursion.

