Fusing Lexing and Parsing

ANONYMOUS AUTHOR(S)

Lexers and parsers are typically defined separately and connected by a token stream. This separate definition is important for modularity, but harmful for performance.

We show how to fuse together separately-defined lexers and parsers, drastically improving performance without compromising modularity. Our staged parser combinator library, flap, provides a standard parser combinator interface, but generates specialized token-free code that runs several times faster than ocamlyacc on a range of benchmarks.

1 INTRODUCTION

Software systems are easiest to understand when their components have clear interfaces that hide internal details. For example, a typical compiler includes separate lexer and parser components that communicate via a token stream.

Unfortunately, while interfaces improve clarity, they can harm performance, since hiding internal details reduces optimization opportunities. Parsers exemplify this tension: the token stream interface isolates parser definitions from character syntax details like whitespace, but it also carries overheads that reduce parsing speed.

Parsers built for efficiency avoid backtracking: only the initial token of the stream is typically needed at any time. However, even with this restriction, materializing and case-switching on tokens comes with a cost.

Contributions. This paper presents a transformation that significantly improves the performance of parsing by entirely eliminating tokens and fusing together lexers and parsers. Specifically, we present lexer-parser fusion using a parser combinator library, flap (fused lexing and parsing). The lexers and parsers are built using standard tools: Brzozowski’s derivatives [Brzozowski 1964] for lexers (as reformulated by Owens et al. [2009]), and Krishnaswami and Yallop’s typed algebraic parser combinators [Krishnaswami and Yallop 2019]. We review these standard tools in Section 2.

We present the following contributions:

• We propose Deterministic Greibach Normal Form, a variant of Greibach Normal Form [Greibach 1965] for deterministic languages that captures syntactically the constraints enforced by the types in Krishnaswami and Yallop’s typed context-free expressions (Section 3.1). We then formalize a translation from typed context-free expressions into Deterministic Greibach Normal Form, which serves as a basis for follow-up optimizations. We prove that the translation is well-defined and preserves the semantics of context-free expressions (Section 4).

• We present lexer-parser fusion, showing how to transform a separately-defined lexer and a normalized parser into a single piece of code that is specialized for calling contexts, entirely avoids materializing tokens, and case-switches only on individual characters, not on intermediate structures (Section 5).

• We implement our techniques as a parser combinator library flap and use multi-stage programming to generate efficient token-free code from the fused grammar (Section 6).

• We demonstrate the performance of flap, by showing that lexer-parser fusion results in efficient code that runs several times faster than code produced by standard tools such as ocamllex, ocamlyacc and menhir. We also assess other metrics, such as code size and compilation time (Section 7).

Finally, Section 8 surveys related work and Section 9 sets out some directions for further development.
2 BACKGROUND: LEXER AND PARSER COMBINATORS

Figure 1 presents the novel code generation architecture of flap. As the figure shows, flap’s interface is built from standard lexer [Owens et al. 2009] and parser combinators [Krishnaswami and Yallop 2019] drawn from existing work. This section gives an overview of those combinators.

2.1 Derivatives of regular expressions

Since lexical syntax is typically regular, lexers are typically defined using regular expressions (regexes). One particularly elegant formulation of regex matching, introduced almost six decades ago [Brzozowski 1964], is based on the idea of derivatives.

The derivative of a regex \(r \) with respect to a character \(c \) is another regex \(\partial_c r \) that matches \(s \) exactly when \(r \) matches \(c \cdot s \). For example, the regex \((b|c)^+\) matches a sequence of one or more occurrences of \(b \) and \(c \) in any order. For a string that begins with \(c \), either an empty suffix or some further sequence of \(b \) and \(c \) is acceptable, and so we have:

\[
\partial_c (b|c)^+ = (b|c)^* \]

The full rules, shown in Figure 2, are defined inductively on the syntax of regexes, with cases for the standard constructs \(\bot \) (which matches nothing), \(\epsilon \) (which matches only the empty string), characters \(b \) and \(c \), sequencing, alternation, and Kleene star, and for the less commonly-supported constructs intersection and negation. We refer the reader to Owens et al. [2009] for a fuller exposition.

There is a simple relationship between derivatives and automata for regular expressions: one way to construct an automaton is to take regular expressions \(r \) as states, and add a transition from \(r_i \) to \(r_j \) via character \(c \) whenever \(\partial_c r_i = r_j \). For example, here is an automaton for \((b|c)^+\):

\[
\begin{array}{c}
\text{start} \rightarrow (b|c)^+ \\
\text{b} \quad \text{c} \quad \text{b} \\
\text{c} \quad \text{c} \quad \text{c}
\end{array}
\]

In this example, the transitions all target the same state, since \(\partial_b (b|c)^+ = \partial_c (b|c)^+ = \partial_b (b|c)^* = \partial_c (b|c)^* = (b|c)^* \). Additionally, since that state also accepts the empty string, it is marked as an accepting state for the whole automaton.

Constructing an automaton is a common way to implement a regex matcher, and derivatives make it straightforward to build an automaton that is deterministic and compact. This process often involves representing the automaton as a graph or table. Alternatively, multi-stage programming [Taha 1999], makes it possible to directly generate code embodying the automaton.

Regex matching is an archetypal example of staged computation [Davies and Pfenning 1996] as found in languages like BER MetaOCaml [Kiselyov 2014]: although matching is a function of two inputs, regex and string, since the former is typically available first, it can be used to construct specialized code for processing the latter. In other words, while an unstaged matcher might have the following two-argument OCaml type
regexes built from derivatives are convenient for building lexers. A lexer is typically defined as an ordered mapping from regular expressions to actions, where an action might return a token, raise an error or invoke the lexer recursively to skip over some input. Figure 3a gives an example lexer with four actions: three of which return tokens atom, lpar and rpar, and one of which skips over whitespace.

Using MetaOCaml it is straightforward to express lexers as functions that accept lists of regex-action pairs and return code:

```ocaml
val slex : (re * 'a action) list -> (string -> 'a) code
```

In practice, it is useful to extend these definitions with additional actions (such as Error) and additional information (such as the position of matched strings), which we omit here for succinctness.

Regex derivatives extend naturally to lexers by matching the input string against multiple regexes in parallel. Figure 3b is the automaton for matching one token with the sexp lexer, where each state corresponds to a vector of regexes, one for each lexer rule. The transition function \(\partial_c \) acts pointwise on the regex vector. Return rules correspond to labeled accepting states, and the Skip rule resets the vector to its initial state.

As Owens et al. [2009] show, lexers based on derivatives provide a practical basis for real-world lexing tools such as ml-ulex and the PLT Scheme scanner generator. One particularly useful feature for implementing lexers is the support derivatives provide for negation and disjunction, which make
id \Rightarrow \text{Return \textsc{ATOM}}

space \Rightarrow \text{Skip}

(\Rightarrow \text{Return \textsc{LPAR}}

) \Rightarrow \text{Return \textsc{RPAR}}

id \overset{\text{def}}{=} [a-z]^+

space \overset{\text{def}}{=} _{\perp} | \backslash n

(a) S-expression lexer

(b) An automaton for matching one token

Fig. 3. Example: S-expression lexer and an automaton

it straightforward to transform implicitly-ordered clauses for regexes \(r \) and \(s \) into order-independent disjoint clauses for \(r \) and \(\neg(r)\&s \) with the same semantics.

2.3 Parsing with typed context-free expressions

Parser combinators, introduced almost four decades ago by Wadler [1985], provide an elegant way to define parsers using functions. A parser combinator library provides functions denoting token-matching, sequencing, disjunction, and so on, allowing the library user to describe a parser by combining these functions in a way that reflects the structure of the corresponding grammar.

Here are partial interfaces for constructing both regexes (type \textsc{re}) and parsers (type \textsc{pa}) in this way:

\[
\begin{align*}
\text{(* Regex combinators *)} \\
\text{type \textsc{re}} & \\
\text{val \text{chr}} : \text{char} \rightarrow \textsc{re} & (\text{\textsc{token match}}) \\
\text{val \text{tok}} : \text{'}a\text{ tok} \rightarrow \text{'}a\text{ pa} & \\
\text{val \text{>>}} : \textsc{re} \rightarrow \textsc{re} \rightarrow \textsc{re} & (\text{\textsc{sequence}}) \\
\text{val \text{fix}} : \text{'}a\text{ pa} \rightarrow \text{'}a\text{ pa} \rightarrow \text{'}a\text{ pa} & (\text{\textsc{fix}})
\end{align*}
\]

Both interfaces provide functions for token matching, sequencing and recursion. However, there are some important differences: first, regexes act on characters, while parsers act on tokens (type \textsc{tok}, a parameter of the library); second, parsers provide a general-purpose recursion operator \textsc{fix}, while regexes offer only the more restrictive Kleene star; finally, the parser type is parameterized, allowing parsers to construct and return suitably-typed syntax trees.

The earliest parser combinator libraries represented nondeterministic parsers, with support for arbitrary backtracking and multiple results. Parsers defined in this way enjoyed various pleasant properties (such as a rich equational theory), but suffered from potentially disastrous performance.

In a recent departure from the nondeterministic tradition, Krishnaswami and Yallop [2019] define \textit{typed context-free expressions}, whose types track properties such as \textsc{first} sets and nullability in order to preclude nondeterminism and ensure linear-time parsing using a single token of lookahead. Krishnaswami and Yallop’s design provides the standard set of parser combinators (as defined above), but adds an additional type-checking step. They further apply multi-stage programming to ensure that type-checking is completed before parsing begins, and to generate specialized parsing code based on type information, leading to performance competitive with \textit{ocamllyacc}.

Figure 4 summarizes Krishnaswami and Yallop’s type system. A type is a triple recording nullability, the first set, and \textsc{FLAST} (analogous to the \textsc{follow} set). There is one typing rule for each combinator (e.g. sequencing \(g_1 \cdot g_2 \) and recursion \(\mu x : \tau . g \)); types are constructed using corresponding combinators (e.g. \(\tau_1 \cdot \tau_2 \)). The two contexts \(\Gamma \) and \(\Delta \) restrict the positions in which variables can occur to disallow left recursion, and the side conditions separation \(\tau_1 \otimes \tau_2 \) and apartness \(\tau_1 \neq \tau_2 \)
The following code shows how to use Krishnaswami and Yallop’s parser combinators to define this
token combinator. The example additionally
transforms the parsing result via a user-defined function,
and that languages
matched by alternated parsers do not overlap.

As an example, consider the following well-typed s-expression (we often omit \(\tau \) in \(\mu \alpha : \tau . g \)):

\[
\mu \text{sexp} . (\text{lpar} \cdot (\mu \text{sexps} . \epsilon \lor \text{sexp} \cdot \text{sexps}) \cdot \text{rpar}) \lor \text{ATOM}
\]

The following code shows how to use Krishnaswami and Yallop’s parser combinators to define this
grammar, using a token type with \text{Lpar}, \text{Rpar} and \text{ATOM} constructors, with the explicit fixed point
represented using the Kleene star:

\[
\text{fix} \left(\text{fun} \; \text{sexp} \rightarrow \left(\text{tok lpar} \lor \star \text{sexp} \lor \text{tok rpar} \right) \right)
\]

The \text{fix}, \text{tok}, \lor and \star constructors are from the parser interfaces. The example additionally
uses alternation \(<\mid >\) and map \$\$, which transforms the parsing result via a user-defined function,
and MetaOCaml’s quotation and antiquotation constructs \(\langle \exp \rangle \) and \(\langle \exp \rangle \) to build code values.

3 OVERVIEW

The algorithm for parsing with typed context-free expressions introduced by Krishnaswami and
Yallop is efficient at a high level, since it uses only a single token of lookahead and its execution
time is linear in the length of its input. However, it is less efficient at a low level, since it examines
each token multiple times: once at each alternation in the grammar, and then once again at the
token combinator.

As an example, consider again \(\mu \text{sexp} . (\text{lpar} \cdot (\mu \text{sexps} . \epsilon \lor \text{sexp} \cdot \text{sexps}) \cdot \text{rpar}) \lor \text{ATOM} \). In
the sub-grammar \(\epsilon \lor \text{sexp} \cdot \text{sexps} \), neither alternative explicitly matches a token. Determining
which branch to take therefore requires analysing the types to calculate whether the next tokens
in the input fall into the **FIRST** set of either ϵ or $\text{sexp} \cdot \text{sexps}$. Furthermore, once the token has been examined and the branch taken, the parsing algorithm must examine it a second time. For example, since $\text{lpar} \in \text{FIRST}(\text{sexp} \cdot \text{sexps})$, the token lpar causes the parsing algorithm to switch to the $\text{sexp} \cdot \text{sexps}$ branch. After the switch, parsing again uses the typing information for the selected branch to determine which of sexp's sub-branches to take (i.e. $\text{lpar} \text{ or } \text{ATOM}$). Eventually, the parsing algorithm encounters the LPAR node in the grammar, and the token is consumed. To address these low-level inefficiencies, Krishnaswami and Yallop applied a variety of multi-stage programming techniques, such as CPS conversion [Bondorf 1992; Nielsen and Sørensen 1995] to improve the results of staging, ultimately achieving performance that is competitive with ocamlex and ocamlyacc.

In this work, we take a more systematic approach, making use of the guarantees offered by the types to transform grammars into a normal form that is amenable to a sequence of further optimizations. More precisely,

(1) We first propose a novel normal form, **Deterministic Greibach Normal Form (DGNF)**, which gathers together the places in the grammar that involve branching on tokens, allowing tokens to be discarded immediately after inspection (Section 3.1).

(2) We then formalize a normalization algorithm that traverses a context-free expression and returns a DGNF grammar. Normalization works well for well-typed context free expressions, and the resulting DGNF grammar sets the basis for follow-up optimizations (Section 3.2).

(3) Based on the normal form, we present a fusion process that ultimately eliminates the need to materialize tokens altogether. The fusion algorithm starts with a separately-defined lexer and parser, connected together via tokens, and produces entirely token-free code, in which the only branches involve inspecting individual characters (Section 3.3).

(4) Finally, flap uses MetaOCaml’s staging facilities to generate code for the fused grammar. Since the normalized grammar representation is already amenable to generating optimized code, flap does not need the sophisticated techniques used by Krishnaswami and Yallop [2019] (Section 3.4).

As we shall see, these optimizations make parsers built from typed context-free expressions significantly more efficient than both ocamlyacc and Krishnaswami and Yallop’s system (Section 7).

The running example. This section illustrates flap’s key ideas through a running example given in Figure 5. Figure 5a presents the grammars that will be used throughout this paper. Figure 5b and 5c repeat our previous s-expression lexer and example grammar respectively for better readability.

From now on we use colors to distinguish different grammars. Regular expressions r include \perp for nothing, ϵ for the empty string, characters c, sequencing $r \cdot s$, alternation $r \mid s$, Kleene star r^*, intersection $r \& s$, and negation $\neg r$. Lexers L are a set of regex-action pairs where each action either returns a token or skips. Context-free expressions g are \perp for the empty language, ϵ for the language containing only the empty string, t which matches the language containing only the single-element string t, variables α, sequences $g_1 \cdot g_2$, unions $g_1 \lor g_2$, and the least fixed point operator $\mu \alpha : \cdot g$. We will introduce the normal form grammar G and fused grammar F later.

3.1 Deterministic Greibach Normal Form

Like Krishnaswami and Yallop’s system, flap first ensures that input grammars are well-typed according to the rules in Figure 4. It then applies a normalization algorithm that transforms well-typed grammars into a novel normal form that avoids the need for repeated branching.

Specifically, to ensure that grammars can be used for deterministic parsing with a single token of lookahead, we introduce **Deterministic Greibach Normal Form (DGNF)** [Greibach 1965]. More precisely, in GNF, all the productions of a grammar take the...
regular expression

\[r ::= \perp \mid e \mid c \mid r \cdot s \mid (r \mid s) \mid r^* \mid (r \& s) \mid \neg r \]

lexer

\[L ::= \{ r \Rightarrow \text{Return } t \} \cup \{ r \Rightarrow \text{Skip } \} \]

context-free expression

\[g ::= \perp \mid e \mid t \mid \alpha \mid g_1 \cdot g_2 \mid g_1 \lor g_2 \mid \mu \alpha : \tau . g \]

normal form

\[N ::= e \mid t \mid \bar{n} \mid \alpha \]

normal form grammar

\[G ::= \{ n \rightarrow N \} \]

fused grammar

\[F ::= \{ n \rightarrow r \bar{n} \} \cup \{ n \rightarrow ?r \} \]

(a) Syntax of lexers, forms, and grammars in \textit{flap}

\[
\begin{align*}
\text{id} & \Rightarrow \text{Return ATOM} \\
\text{space} & \Rightarrow \text{Skip} \\
(& \Rightarrow \text{Return LPAR} \\
) & \Rightarrow \text{Return RPAR}
\end{align*}
\]

(b) S-expression lexer (2.2)

\[
\mu \text{ sexp} \cdot (\text{LPAR} \cdot (\mu \text{ sexps} \cdot e \lor \text{sexp} \cdot \text{sexps}) \cdot \text{RPAR}) \lor \text{ATOM}
\]

(c) A well-typed s-expression grammar (2.3)

\[
\begin{align*}
\text{sexp} & ::= \text{LPAR} \text{ sexps} \text{ rpar} \\
\text{rpar} & ::= \text{RPAR} \\
\text{sexps} & ::= \text{LPAR} \text{ sexps} \text{ rpar} \text{ sexps} \\
& \mid \text{ATOM} \\
& \mid e
\end{align*}
\]

(d) The above s-expression grammar in Deterministic Greibach Normal Form (3.2)

\[
\begin{align*}
\text{id} & \Rightarrow \text{Return ATOM} \\
\text{space} & \Rightarrow \text{Skip} \\
(& \Rightarrow \text{Return LPAR} \\
) & \Rightarrow \text{Return RPAR}
\end{align*}
\]

(e) Fusing drops lexing rules that return non-matchable tokens (top); the fused s-expr grammar (bottom) (3.3)

Fig. 5. \textit{flap}: running example of an s-expression. Grammars in the example are written in BNF form.

form \(n \rightarrow tn_1n_2 \ldots n_k (k \geq 0) \) where \(n \) and \(n_i \) are nonterminals and \(t \) is a terminal. DGNF further imposes the following syntactic constraints:

Definition 1 (Deterministic Greibach Normal Form (Syntax)). A grammar \(G \) is in Deterministic Greibach normal form if all productions are of form \(n \rightarrow tn_1n_2 \ldots n_k (k \geq 0) \), and moreover,

- (Determinism) for any pair of a nonterminal \(n \) and a terminal \(t \), there is at most one production beginning \(n \rightarrow tn_1n_2 \ldots n_k \);
We formalize a normalization algorithm, which, given any well-typed context-free expression, turns it into a DGNF grammar. As an example, Figure 5d presents the result in BNF form of normalizing the s-expression grammar in Figure 5c. It is straightforward to check that the normalized grammar represents exactly the same language as the original context-free expression.

Importantly, the normalized DGNF presentation addresses the problem of repeated branching discussed in the beginning of Section 3. With this normalized form, parsing a `sexps` involves reading the next token, and branching to the first, second or third branch depending on whether the token is `LPAR`, `ATOM` or something else. In the first two cases the token is consumed immediately, and parsing moves on to the next token in the input. The last case is somewhat more costly, since the token may be needed again immediately afterwards, and more care is needed to avoid wasted work.

Section 4 discusses the normalization algorithm, which traverses a context-free expression, and builds grammar productions according to the expression structure. As we will see, defining the algorithm poses significant challenges, particularly around fixed points. When normalizing `μα. g`, although we do not yet know the normalized grammar for `α`, we must proceed with normalizing `g`...
regardless. In this case, it is necessary to "tie the knot" when the result of normalizing g becomes available, which requires us to introduce an intermediate non-DGNF form $n \rightarrow a \pi$, causing complication and subtleties during normalization. This non-DGNF form is purely internal, and does not appear in the normalization results of closed expressions.

Finally, great care needs to be taken to guarantee that normalization produces indeed DGNF grammars. That requires us to ensure that the normalization captures the constraints enforced by the types in Krishnaswami and Yallop’s system. We prove that normalization is correct, and that normalized grammars preserve the denotational semantics of context-free expressions (Section 4).

3.3 Fusion

Next, flap applies lexer-parser fusion, one of our central contributions. Fusion acts on a lexer and a normalized parser, connected together via tokens, and produces a grammar representation that is entirely token-free, in which the only branches involve inspecting individual characters.

Figure 5a defines the syntax of fused grammars, where the fused form f is either a regex followed by a list of nonterminals $r \pi$, or a single-token lookahead $?r$ for tokens matched by r. The fused grammar \mathcal{F} is a set of productions $\{ n \rightarrow f \}$.

We illustrate the key idea of fusion through Figure 5e, which fuses the s-expression lexer in Figure 5b and the normalized parser in Figure 5d. As the first step, the fusion algorithm implicitly specializes the lexer to each nonterminal n in the normalized grammar, and lexing rules that return tokens not in productions for the nonterminal n are discarded. We take rpar as an example: the rpar nonterminal has only a single production, which begins with the terminal rpar. We then look at the lexing rules, and discard those rules that do not return rpar. However, the skip rule is retained, since skipped characters can precede any token. Then, the algorithm fuses the lexing rules and the parsing rules, by substituting the tokens in the parsing rules by regexes in the lexing rules that return corresponding tokens. The bottom of Figure 5e presents the fused grammar for rpar, which has two branches. The first branch fuses lexing and parsing, by having the original token rpar replaced with the regex $)$. The second branch is an extra production corresponding to the skip rule in the lexer, allowing rpar to match an arbitrary number of space. Notably, after fusion rpar now directly matches space or $)$, without referring to the token rpar.

The bottom of Figure 5e presents the complete result of fusing the s-expression lexer and normalized grammar. Like the case for rpar, the tokens ATOM, LPAR and RPAR in the grammar have been replaced with the regular expressions id, (and) associated with those tokens in the lexer. Moreover, for each nonterminal n there is an extra production $n ::= space n$, corresponding to the skip rule in the lexer. Finally, the ϵ-production sexps $\rightarrow \epsilon$ has been replaced with a lookahead rule sexp $\rightarrow ?(id \mid space \mid ()$, consisting of the complement of the three regular expressions that appear at the start of the right hand side of the other productions.

Normalization allows the fusion algorithm to be defined concisely (Section 5). In particular, the constraints on the positions of terminals make it straightforward to fuse the lexing rules into the grammar without disrupting its structure. More importantly, the fused grammar inherits the properties of DGNF: the productions of a nonterminal start with distinct regexes, and an optional lookahead rule may only be used when no regexes in other productions match the input string.

In summary, fusion transforms a separately-defined lexer and a normalized parser into branches on individual characters, entirely eliminating intermediate tokens. As Section 7 shows, fusion significantly improves the performance of parsing. Furthermore, Section 7.3 suggests that the size increase resulting from normalization and fusion in flap is relatively modest, and Section 7.4 reports that compilation times are sufficiently low for interactive use.
normal form grammar \[G ::= \{ n \to N \} \]

\[\mathcal{N}[g] \] returns \(n \Rightarrow G \), with a grammar \(G \) and the start nonterminal \(n \)

Each rule allocates a fresh nonterminal \(n \), except for rule (fix), which allocates a fresh \(\alpha \)

\[(\text{epsilon})\] \[\mathcal{N}[\epsilon] = n \Rightarrow \{ n \to \epsilon \} \]

\[(\text{token})\] \[\mathcal{N}[t] = n \Rightarrow \{ n \to t \} \]

\[(\text{bot})\] \[\mathcal{N}[\bot] = n \Rightarrow \emptyset \]

\[(\text{seq})\] \[\mathcal{N}[g_1 \cdot g_2] = n \Rightarrow \{ n \to N_1 n_2 | n_1 \to N_1 \in G_1 \} \cup G_1 \cup G_2 \]

\[\text{where } \mathcal{N}[g_1] = n_1 \Rightarrow G_1 \land \mathcal{N}[g_2] = n_2 \Rightarrow G_2 \]

\[(\text{alt})\] \[\mathcal{N}[g_1 \lor g_2] = n \Rightarrow \{ n \to N_1 | n_1 \to N_1 \in G_1 \} \cup \{ n \to N_2 | n_2 \to N_2 \in G_2 \} \cup G_1 \cup G_2 \]

\[\text{where } \mathcal{N}[g_1] = n_1 \Rightarrow G_1 \land \mathcal{N}[g_2] = n_2 \Rightarrow G_2 \]

\[(\text{fix})\] \[\mathcal{N}[\mu \alpha. \; g] = \alpha \Rightarrow \{ \alpha \to N | n \to N \in G \} \]

\[\cup \{ n' \to N \; \overline{N}' | n' \to \alpha \; \overline{N}' \in G \land n \to N \in G \} \]

\[\cup G\backslash n'\to\alpha \; \overline{N}' \]

\[\text{where } \mathcal{N}[g] = n \Rightarrow G \]

\[G\backslash \alpha \to \alpha \; \overline{N}' \] is \(G \) with all \(n' \to \alpha \; \overline{N}' \) removed for any \(n' \) and \(\overline{N}' \)

\[(\text{var}) \]

\[\mathcal{N}[\alpha] = n \Rightarrow \{ n \to \alpha \} \]

Fig. 6. Normalization of well-typed context-free expressions.

3.4 Staging

In the last step, flap uses MetaOCaml’s staging facilities to generate code for the fused grammar. The normalized grammar representation used in flap makes this process comparatively straightforward; it does not involve sophisticated optimization techniques such as the binding-time improvements applied by Krishnaswami and Yallop [2019]. Furthermore, flap does not rely on compiler optimizations to further simplify the code it generates; instead, it directly generates efficient code, containing no indirect calls, no higher-order functions and no allocation, except where these elements are inserted by the user of flap in semantic actions.

Specifically, the staging step in flap generates one function for each parser state (i.e. for each pair of a nonterminal and a regex vector), following a parsing algorithm with fused grammars, but eliminating information that is statically known, such as the nullability and derivatives of the regexes associated with each state.

Section 6 presents the algorithm underlying flap’s staged parsing implementation, and Section 6.5 describes the implementation itself in more detail.

4 NORMALIZING CONTEXT-FREE EXPRESSIONS

This section presents a normalization algorithm that transforms context-free expressions into grammars in Deterministic Greibach Normal Form (DGNF). The normalization sets the basis for follow-up optimizations of fusion and staging.

4.1 Normalization to DGNF

Figure 6 defines a normalization algorithm for typed context-free expressions. We repeat here the syntax of normal forms and normal form grammars. As discussed in Section 3.2, normal forms...
include a non-DGNF internal form $\alpha \overline{n}$ used when normalizing fixpoints, where α is interpreted as a special kind of nonterminals. Since α is a nonterminal, α itself may appear as part of a $t \overline{n}$ (e.g., $t \alpha$). Because of this internal form, normal forms N are actually *not* in DGNF. But as we will show later, $\alpha \overline{n}$ is an intermediate form which will be entirely eliminated in the final result, eventually turning the grammar into DGNF.

The key to normalization is the function $N[g]$ that normalizes a context-free expression g, yielding a normalized grammar G and a distinguished start nonterminal n of the grammar.

There are seven cases for the seven context-free expression constructors. Each case involves allocating a fresh nonterminal (n or α) to use as the start symbol. The cases with sub-expressions $(g_1 \cdot g_2, g_1 \lor g_2$ and $\mu \alpha. g)$ are defined compositionally in terms of the normalization of those sub-expressions. Since normalization simply merges together all the production sets resulting from sub-expressions, the situation frequently arises where some productions are not reachable from the start symbol; the definition here ignores this issue, since it is easy to trim unreachable productions in the implementation.

Rules (epsilon), (token), and (bot) are straightforward. For each of ϵ and c, normalization produces a grammar with a single production whose right-hand side is ϵ or c respectively. For \bot, normalization produces an empty grammar, with a start symbol and no productions.

Rule (seq) is defined compositionally in terms of the normalization of their sub-expressions. For sequencing $g_1 \cdot g_2$, normalizing g_1 and g_2 produces the start symbol n_1 and n_2, respectively. Now what we want is $n \to n_1 n_2$. That is:

$$N[g_1 \cdot g_2] = n \Rightarrow \{ n \to n_1 n_2 \} \cup G_1 \cup G_2$$

where $N[g] = n \Rightarrow G$

However, while this is semantically correct, $n \to n_1 n_2$ is not in normal form. Therefore, normalization in rule (seq) copies each production N_1 of n_1 and appends to each the start symbol n_2, producing $N_1 n_2$. To see why that is correct, consider if N_1 is of form $t \overline{n}$ or $\alpha \overline{n}$. Then $N_1 n_2$, i.e., $t \overline{n} n_2$ or $\alpha \overline{n} n_2$, is indeed of normal form. However, we need to prevent N_1 from being ϵ, or otherwise ϵn_2 would be ill-formed. The case for sequencing is one of several places where the correctness of normalization depends on the types. In particular, if $g_1 \cdot g_2$ is well-typed, then N_1 cannot be ϵ. Specifically, the typing rule for sequencing (Figure 4) depends on the separation relation $\tau_1 \odot \tau_2$, which guarantees that the NULL of g_1 is false. With that guarantee, we show that N_1 cannot be ϵ (Lemma 4.2), ensuring that the result of the normalization function is in normal form.

Rule (all) for alternation $g_1 \lor g_2$ is similar. In this case, normalization merges the productions for the start symbols n_1 of g_1 and n_2 of g_2 into the productions for the new start symbol n. During typing (Figure 4), the apartness relation $\tau_1 \neq \tau_2$ ensures that the FIRST sets of g_1 and g_2 do not intersect, and that at most one of g_1 and g_2 is nullable. This guarantees that the result is well-formed.

The final two rules (fix) and (var) deal with the binding fixed point operator $\mu \alpha. g$ and with bound variables α. In rule (fix), we assume we can always alpha-rename a fixed point so α is unique. Normalization for the fixed point operator $\mu \alpha. g$ takes place in two stages. First, the body g is normalized. The normalization result suggests that the grammar of the body g has a start symbol n. Then, according to the semantics of fixed point, we should proceed to tie the knot by producing $\alpha \to n$ and return α as the start symbol. That is:

$$N[\mu \alpha. g] = \alpha \Rightarrow \{ \alpha \to n \} \cup G$$

However, the rule $\alpha \to n$ is not in normal form. Therefore, instead of directly returning $\alpha \to n$, we proceed to copy the productions for n into the rules for α:

$$N[\mu \alpha. g] = \alpha \Rightarrow \{ \alpha \to N \mid n \to N \in G \} \cup G$$

But there is some extra work before we return the result. In particular, productions in G might start with α (e.g., $n' \to \alpha \overline{n}'$). While such form is allowed by the syntax of N, our ultimate goal is to turn...
the productions into DGNF, where every nonterminal either starts with a terminal or is ϵ. Now that we learn the rules of α, we can look up and substitute in G all productions that start with α. For example, if $\alpha \rightarrow b$ and $n' \rightarrow \alpha \bar{n}$, then after substitution we have $n' \rightarrow b \bar{n}$. Note that we still allow α, as a special kind of nonterminal, to appear inside G if it is not the start of a production. That is, if α in $n' \rightarrow t \alpha$ won’t get substituted. It would actually be wrong to perform the substitution: if $\alpha \rightarrow b$, then after substitution $n' \rightarrow tB$ is not in DGNF.

Rule (fix) in Figure 6 presents the final form of normalizing a fixed point. The normalization first copies the productions for n into the rules for α (1), then substitutes in G all productions that start with α (2), and finally adds back all productions in G that do not start with α (3). As we will see, rule (fix) effectively guarantees that normalizing closed context-free expressions produces DGNF.

Lastly, in rule (var), we create a fresh start symbol n with a singleton production $n \rightarrow \alpha$. Combining rule (fix) with rule (var), normalization essentially treats α as a placeholder for the productions denoted by the fixed point. As soon as we know what α should be, we substitute α with its productions if necessary (as in rule (fix)). It may be tempting here to return $\alpha \Rightarrow \emptyset$ with α as a start symbol and no productions. That would be wrong, as $\alpha \Rightarrow \emptyset$ means an empty grammar, causing problems when, for example, rule (all) copies productions.

Example. Figure 7 presents the simplified derivation of normalizing

\[g = \mu \text{sexp} \cdot (\text{Lpar} \cdot (\mu \text{sexps} \cdot \epsilon \lor \text{sexp} \cdot \text{sexps}) \cdot \text{Rpar}) \lor \text{ATOM} \]

where we highlight grammar changes in light gray, and omit some details via \cdots for space reasons and also since normalizing tokens is straightforward. We include the complete derivation tree in the appendix. Of particular interest is the last step, which normalizes a fixed point. In this case, sexp is used as the variable bound by the fixed point, and we have a production $\text{sexps} \rightarrow \text{sexp sexps}$ which is not DGNF. First, sexp copies all productions from n_4. Then, since the production $\text{sexps} \rightarrow \text{sexp sexps}$ starts with sexp, the production expands to two productions where sexp is replaced by its two normal forms respectively, making the resulting grammar in DGNF.

\section{Semantics of DGNF}

Our Definition 1 of DGNF presented in Section 3.1 gives a high-level description of a DGNF grammar. To prove that our normalization actually results in DGNF grammars, we first define the meaning of DGNF in terms of our formalization.

We start with the expansion relation:

\textbf{Definition 2} (Expansion ($G \vdash \rightarrow$)). \textit{Given a grammar G, we define the expansion relation by (1) (Base) $G \vdash n \leadsto n$; (2) (Step) if $G \vdash n \leadsto \bar{t}n' \bar{n}$, and ($n' \rightarrow N' \in G$), we have $G \vdash n \leadsto \bar{t}N' \bar{n}$. We write $G \vdash n \leadsto w$ when n expands to a complete word w.}

The expansion relation essentially captures what a nonterminal can expand to. For example, if $n \rightarrow b n_1 \in G$ and $n_1 \rightarrow c \in G$, then we have $G \vdash n \leadsto bc$. We enforce a left-to-right expansion
order for clarity and to stay close to the parsing behavior, but that is not necessary: it is easy to imagine an arbitrary order expansion, but any order leads to the same set of words.

With the notion of expansion, we define what it means for a grammar to be in DGNF precisely. The definition below gives the syntax given in Definition 1:

Definition 3 (Deterministic Greibach Normal Form (Semantics)). A grammar G is in Deterministic Greibach normal form if all productions are of form $n \rightarrow t_1 n_2 \ldots n_k (k \geq 0)$, and moreover,

- (Determinism) for any pair of a nonterminal n and a terminal t, if there are two distinct productions $(n \rightarrow t_1 \overline{n}) \in G$ and $(n \rightarrow t_2 \overline{n}) \in G$, we have $t_1 \neq t_2$;
- (Guarded ϵ-productions) If $G \vdash n \rightarrow \overline{t} n_1 n_2 \overline{n}$, if $(n_1 \rightarrow \epsilon) \in G$, then for any t either $(n_1 \rightarrow t \overline{n}) \notin G$ or $(n_2 \rightarrow t \overline{n}) \notin G$.

The Determinism condition is straightforward, while the Guarded ϵ-productions condition needs more explanation. In Definition 1, we mentioned that the ϵ-production may only be used when no terminal symbol in other productions matches the input string. Consider that the next character to match is c. The case when both the ϵ-production $n_1 \rightarrow \epsilon$ and a production $n_1 \rightarrow c$ can match raises when n_1’s follow-up nonterminal n_2 can also match c, making it possible to use the ϵ-production while $n_1 \rightarrow c$ also matches. Definition 3 captures such cases, requiring that n_1 and n_2 cannot match the same terminal if n_1 has an ϵ-production, and thus rules out example (4) in Section 3.1.

Now we can formally define the important property of DGNF that makes it practically useful.

Theorem 4.1 (Deterministic Parsing). If G is a DGNF grammar, then for any expansion $G \vdash n \rightarrow w$, there is a unique derivation for such expansion.

4.3 Well-definedness and correctness

The normalization process serves as the basis for the parsing algorithm, and thus establishing its correctness is crucial for flap. In this section, we prove three key properties of normalization: first, normalization always succeeds for well-typed expressions (Section 4.3.1); then, normalization result will eventually get rid of the internal form $\alpha \overline{n}$ (Section 4.3.2); and finally, the result of normalization is a DGNF grammar (Section 4.3.3).

4.3.1 Normalization is well-defined

As we have briefly discussed in Section 4.1, correctness of normalization depends on types. For example, when normalizing sequencing $g_1 \cdot g_2$, rule (seq) returns $N_1 n_2$ with $n_1 \rightarrow N_1$ from g_1, and n_2 from g_2. In order for $N_1 n_2$ to be well-formed, we must ensure that N_1 is not ϵ, or otherwise ϵn_2 is ill-formed.

To this end, we make use of the typing information during normalization. In the case of sequencing, since $g_1 \cdot g_2$ is well-typed, the separation relation ($r_1 \otimes r_2$ in Figure 4) ensures g_1 is not nullable. We then prove that if an expression is not nullable, its normalization cannot have an ϵ production.

Lemma 4.2 (Productions of Null). Given $\Gamma; \Delta \vdash g : \tau$ and $N[g]$ returns $n \Rightarrow G$, $\tau.\text{Null} = \text{true}$ if and only if (1) $n \rightarrow \epsilon \in G$; or (2) $n \rightarrow \alpha \in G$ where $(\alpha : \tau') \in \Gamma$ and $\tau'.\text{Null} = \text{true}$.

In other words, if $\tau.\text{Null} = \text{false}$, then $n \rightarrow \epsilon \notin G$.

With Lemma 4.2 and similar reasoning about typing during normalization, we prove that normalization is well-defined for well-typed expressions.

Theorem 4.3 (Well-definedness). If $\Gamma; \Delta \vdash g : \tau$, then $N[g]$ returns $n \Rightarrow G$ for some G and n.

4.3.2 Normalizing closed expressions produces no $\alpha \overline{n}$ form

Theorem 4.3 says that if an expression is well-typed, then normalization returns a grammar successfully. However, this grammar may not be in DGNF. For example, the grammar may include $n \rightarrow \alpha \overline{n}$, which is not a valid DGNF form.
Therefore, in order for the normalization result to be in DGNF, we need to prove that all \(n \rightarrow \alpha \bar{n} \) productions are removed from the normalization result.

In this part, we prove that the normalization result cannot contain any \(\alpha \bar{n} \) production for a closed well-typed expression. To do so, we need to reason about the occurrences of \(\alpha \). The following lemma says that all \(\alpha \) returned as the head of a production must be in the typing context.

Lemma 4.4 (Internal Normal Form). Given \(\Gamma; \Delta \vdash g : \tau \) and \(N[g] \) returns \(n \Rightarrow G \),

- if \((n \rightarrow \alpha \bar{n}) \in G \), then we have \(\alpha \in \text{dom} (\Gamma) \);
- if \((n' \rightarrow \alpha \bar{n}) \in G \) for any \(n' \), then we have \(\alpha \in \text{fv} (g) \), and thus \(\alpha \in \text{dom} (\Gamma, \Delta) \).

Note that the first result applies only to the start symbol \(n \), and its proof relies on the typing rule where \(\alpha \) is well-typed only if \(\alpha \in \Gamma \) (Figure 4). The second result applies to any \(n' \), and is proved making use of the first result. Specifically, the proof goes by induction on \(\Gamma; \Delta \vdash g : \tau \), and the most interesting case is when normalizing \(\mu \alpha. g \), where we need to prove that the productions of the start symbol of \(g \) cannot start with \(\alpha \), or otherwise normalizing \(\mu \alpha. g \) would copy all productions from \(g \) for \(\alpha \) which would result to, e.g., \(\alpha \rightarrow \alpha \) that fails the lemma. Fortunately, that is exactly what the first result tells us: when typing \(\mu \alpha. g \), we add \(\alpha \) in \(\Delta \) (Figure 4), and thus normalizing \(g \) cannot have \(\alpha \) at the head of a production for its start symbol.

Our goal then follows as a corollary of Lemma 4.4, which says that normalizing any closed well-typed expression only produces the desired normal form.

Corollary 4.5 (Normal form). Given \(\bullet; \bullet \vdash g : \tau \) and \(N[g] \) returns \(_\Rightarrow G \), then for all \((n \rightarrow N) \in G, N \) is \(e \) or \(t \bar{n} \) for some \(t \) and \(\bar{n} \).

4.3.3 Normalization returns DGNF grammars

Finally, we prove that normalization returns DGNF grammars. That requires productions to satisfy the conditions given in Definition 3.

We start with Determinism: all \(n \rightarrow t \bar{n} \) for the same \(n \) to start with different \(t \). To prove that, we again make use of the typing information. The following lemma says that a production can start with \(t \) if and only if it belongs to the \textsc{First} set of the type.

Lemma 4.6 (Terminals in First). Given \(\Gamma; \Delta \vdash g : \tau \) and \(N[g] \) returns \(n \Rightarrow G \), we have \(t \in \tau. \text{First} \) if and only if (1) \((n \rightarrow t \bar{n}) \in G \); or (2) \((n \rightarrow \alpha \bar{n}) \in G \) where \((\alpha : \tau') \in \Gamma \) and \(t \in \tau. \text{First} \).

This lemma is particularly important when proving the case for normalizing \(g_1 \lor g_2 \), where the typing condition \(\tau_1 \neq \tau_2 \) ensures that \(g_1 \) and \(g_2 \) have disjoint \textsc{First}, which in turn ensures that rule (all) only copies distinct head terminals from \(g_1 \) and \(g_2 \).

The proof for guarded \(e \)-productions is more involved, which essentially requires us to show that during expansion \(G \vdash n \sim \vec{t} n_1 n_2 \bar{n} \), the \textsc{First} of \(n_1 \) is disjoint with the \textsc{First} of \(n_2 \) (if \(n_1 \) is nulle). The proof relies on showing that “expansion preserves typing”. Think about that from the well-typed context free expressions’ point of view: if \((g_1 \lor g_2) \cdot g_3 \) is well-typed, then \(g_1 \cdot g_3 \) (and \(g_2 \cdot g_3 \)) must also be well-typed, and going from \((g_1 \lor g_2) \cdot g_3 \) to \(g_1 \cdot g_3 \) is one step of branching, similar to one step of expansion. We refer the reader to the appendix for more details.

With all the conditions proved, we conclude our goal.

Theorem 4.7 (\(N[g] \) Produces DGNF). If \(\bullet; \bullet \vdash g : \tau \) and \(N[g] \) returns \(_\Rightarrow G \), then \(G \) is DGNF.

4.4 Normalization Soundness

Normalization transforms a context-free expression into a DGNF grammar. As the final piece of metatheory for normalization, we would like to establish that normalization is sound with respect to the denotational semantics of well-typed context-free expressions defined in Krishnaswami and Yallop [2019]. The denotational semantics \(\llbracket g \rrbracket_\gamma \) interprets \(g \) as a language (i.e., the set of all strings \(w \) matched by \(g \)), where \(\gamma \) gives interpretation of free variables in \(g \).
We assume a more restrictive definition of lexers than the interface in Section 2 provides. In
\(\text{lexer} \) would be possible to implement fixed point normalization with significantly less fuss.

This section shows how the compositionality of the normalization algorithm simplifies the implementation of normalization rules, and no token appears in more than one rule (i.e. there is exactly one Skip rule, and no token appears in more than one Return rule). Using negation and intersection, it is easy to transform a lexer that does not obey these constraints into an equivalent lexer that does,

Most definitions are straightforward. The semantics interpret \(\epsilon \) as the singleton set containing the empty set, \(\{ t \} \) as the singleton set that matches a one-character string \(t \), \(\emptyset \) as an empty language, and \(g_1 \lor g_2 \) as unions of sets. The interpretation of \(g_1 \lor g_2 \) appends a string from \(g_1 \) to a string from \(g_2 \). Variables \(\alpha \) have their interpretation from the environment \(\gamma \), and \(\mu \alpha . g \) is interpreted as the least fixed point of \(g \) with respect to \(\alpha \).

To prove that our normalization is sound, we show that the normalized DGNF denotes exactly the same language as the denotation semantics of an expression. Recall that we have defined the expansion relation in Definition 2, where \(G \vdash n \leadsto w \) denotes that \(n \) expands to a complete string \(w \), where all non-terminals have been expanded. We prove the normalized grammar can expand to a string if and only if the string is included in the denotational semantics of the expression. The proof is done by first induction on the length of \(w \) and then on the structure of \(g \).

Theorem 4.8 (Soundness). Given \(\bullet : \bullet \vdash g : \tau \) and \(N[g] \) returns \(n \Rightarrow G \), we have \(w \in [g]_\bullet \) if and only if \(G \vdash n \leadsto w \) for any \(w \).

4.5 Implementation

The compositionality of the normalization algorithm simplifies the implementation of normalization in flap. Since the normalization of each term is defined in terms of the normal forms of its subterms, flap can represent terms in normal form. For example, if \(g \) and \(g' \) are flap parsers in normal form, then \(g \gg g' \) is also a parser in normal form, built from \(g \) and \(g' \) using the rules in Figure 6.

The simplicity of the normalization algorithm is reflected in the implementation of flap. Additionally, the most intricate part of the algorithm — dealing with fixed points — is also the subtest part of the implementation. The implementation follows the formal algorithm closely, inserting placeholders (\(\alpha \)s) that are tracked using an environment and resolved later. This kind of “backpatching” mirrors the way in which recursion is commonly implemented in eager functional languages such as OCaml [Reynaud et al. 2021]; if flap were instead implemented in a lazy language then it would be possible to implement fixed point normalization with significantly less fuss.

5 Fusion

This section shows how flap, starting with a separately-defined lexer and normalized parser, makes use of the syntactic restrictions of DGNF to implement lexer-parser fusion, eliminating tokens from generated code altogether.

5.1 Canonicalizing lexer

We assume a more restrictive definition of lexers than the interface in Section 2 provides. In particular, we assume that rules are disjoint on the left (i.e. there is no string that is matched by more than one regular expression in a set of rules), and disjoint on the right (i.e. there is exactly one Skip rule, and no token appears in more than one Return rule). Using negation and intersection, it is easy to transform a lexer that does not obey these constraints into an equivalent lexer that does,
fused grammar \(F := \{ n \rightarrow r \bar{n} \} \cup \{ n \rightarrow ?r \} \)

\[
\mathcal{F}[L, G] = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3
\]

where \(\mathcal{F}_1 = \{ n \rightarrow r \bar{n} | r \Rightarrow \text{Return } t \in L \land n \rightarrow t \bar{n} \in G \} \)

(\text{inline the lexer})

\(\mathcal{F}_2 = \{ n \rightarrow r n | r \Rightarrow \text{Skip } \in L \land n \in G \} \)

(\text{whitespace})

\(\mathcal{F}_3 = \{ n \rightarrow ?\neg r | n \rightarrow e \in G \land r = \bigvee \{ r | n \rightarrow r \bar{n} \in \mathcal{F}_1 \cup \mathcal{F}_2 \} \} \)

(\text{epsilon productions})

Fig. 8. Lexer-parser fusion

so there is no need to restrict the interface exposed to the user. With the lexer thus canonicalized and the parser translated into DGNF, it is straightforward to define fusion.

5.2 The fusion algorithm

Figure 8 formally defines the fusion algorithm.

The fusing function \(\mathcal{F}[L, G] \) operates on a canonicalized lexer \(L \) and a normalized grammar \(G \), yielding a fused grammar \(F \). The fused result consists of three parts.

First, we replace each production \(n \rightarrow t \bar{n} \) with a new production \(n \rightarrow r \bar{n} \), retrieving the regex \(r \) that is associated with the token \(t \) in the lexer \(L (\mathcal{F}_1) \). This is where the fusion function implicitly specializes the lexer to each nonterminal in the normalized grammar, and discards lexing rules that return tokens not in productions for the nonterminal. Canonicalizing the lexer to enforce disjointness simplifies this discarding of rules.

Then, we add an additional production \(n \rightarrow r n \) for the \texttt{skip} regex \(r \) (which may be \(\bot \)) for each nonterminal, allowing each nonterminal to match an arbitrary number of the skip regex (\(\mathcal{F}_2 \)).

Finally, for nonterminals with an epsilon production, the discarded regexes, along with the skip regex, are incorporated into a lookahead regex (\(\mathcal{F}_3 \)). That is, we add a lookahead production \(n \rightarrow ?\neg r \) for the regex that is the complement of the regexes that appear in other productions for \(n \).

Fusion with normalized grammars is strikingly simple; it would be significantly more involved to directly fuse the context-free expressions with the lexing rules. Furthermore, as with normalized grammars, an expansion relation for fused grammars would carry the guarantee that every expansion has a unique derivation.

6 IMPLEMENTATION OF PARSING

This section describes the lexing and parsing algorithms, shows how to stage the parsing algorithm to improve performance, and explains details of the implementation of the algorithms in \texttt{flap}.

6.1 The lexing algorithm

Figure 9 presents the lexing algorithm. The algorithm has the \texttt{longest-match} semantics conventional for lexers: each token returned corresponds to the lexing rule that matches the longest possible prefix of the input string. This behaviour is implemented by repeatedly updating the best match seen so far until none of the lexing rules matches the input string.

\(\text{Lex} \) is the top-level lexing algorithm that takes the lexing rules \(L \) and an input string \(s \), with two key utility functions \(\mathcal{L} \) and \(M \). For simplicity, we assume utility functions can freely access the \(L \) argument to \(\text{Lex} \). At a high level, \(\mathcal{L} \) reads a single token from a prefix of a string, pairs the token action with the remainder of the string, and passes it to \(M \). \(M \) constructs a sequence of tokens, updating the sequence according to the action passed from \(\mathcal{L} \).

The \(\mathcal{L} \) function takes four arguments: \(L' \) is a set of lexing rules; \(k \) is a token action representing the best match so far; \(r \) is the remainder string for the best match; \(s \) is the input string. For empty input strings the best match information \(k \) and \(r \) is passed to \(M \). For non-empty input strings

\[\text{Lex}(L, s) = L(L, \text{NO}, [], s) \]
\[\mathcal{L}(L', k, rs, []) = \mathcal{M}(k, rs) \]
\[\mathcal{L}(L', k, rs, c::cs) = \begin{cases} \mathcal{M}(k, rs) & \text{if } L'_c \neq \emptyset \\ \text{else case } K \text{ of } \emptyset \mapsto L(L'_c, k, rs, cs) \end{cases} \]
\[(k') \mapsto \mathcal{L}(L'_c, k', cs, cs) \]
\[\text{where } L'_c = \{ \partial_c(r) \Rightarrow k | r \Rightarrow k \in L' \land \partial_c(r) \neq \bot \} \]
\[K = \{ k | r \Rightarrow k \in L'_c \land v(r) \} \]

Fig. 9. Lexing algorithm

\[\mathcal{P}(n \Rightarrow G, s) = \mathcal{P}(n, s) \]
\[\mathcal{P}(n, []) = \text{if } n \rightarrow \epsilon \in G \text{ then } [] \text{ else FAIL} \]
\[\mathcal{P}(n, t::ts) = \text{if } n \rightarrow t\bar{n} \in G \text{ then } Q(\bar{n}, ts) \]
\[\text{else if } n \rightarrow \epsilon \in G \text{ then } t::ts \text{ else FAIL} \]

Fig. 10. Parsing algorithm for DGNF grammars

\[\mathcal{F}(F_n, k, rs, s) = \]
\[\text{case } s \text{ of } [] \mapsto \text{Step}(k, rs) \]
\[c::cs \mapsto \text{if } F'_n \neq \emptyset \text{ then } \text{Step}(k, rs) \]
\[\text{else case } K \text{ of } \emptyset \mapsto \mathcal{F}(F'_n, k, rs, cs) \]
\[\{ ns \} \mapsto \mathcal{F}(F'_n, \text{on } ns, cs, cs) \]
\[\text{where } F'_n = \{ (\partial_c(r), k) | (r, k) \in F_n \land \partial_c(r) \neq \bot \} \]
\[K = \{ k | (r, k) \in F'_n \land v(r) \} \]

Fig. 11. Parsing algorithm for fused grammars

\[\text{S\text{P}\text{a}\text{r}\text{e}_{n=F}(s)} = \mathcal{T}([n], s) \]
\[\text{S}_{F_n,k}(rs, s) = \]
\[\text{case } s \text{ of } [] \mapsto \text{Step}(k, rs) \]
\[c::cs \mapsto \text{if } F'_{n,i} \neq \emptyset \text{ then } \text{Step}(k, rs) \]
\[\text{else case } K_i \text{ of } \emptyset \mapsto \text{S}_{F'_{n,i}, k}(rs, cs) \]
\[\{ ns \} \mapsto \text{S}_{F'_{n,i}, \text{on } ns}(cs, cs) \]
\[\text{where } F'_{n,i} = \{ (\partial_{c_i}(r), k) | (r, k) \in F_n \land \partial_{c_i}(r) \neq \bot \} \]
\[K_i = \{ k | (r, k) \in F'_{n,i} \land v(r) \} \]

Fig. 12. Staged parsing algorithm
c::cs, the result depends on \(L' \), the set of lexing rules updated to use the non-empty derivatives with respect to \(c \) (Figure 2) of the string. If \(L' \) is empty, lexing cannot proceed any further, and so \(L \) transfers control to \(M \), passing the best match information. Otherwise, the result depends on the rule \(r \Rightarrow a \) that matches the string up to this point including \(c \) (i.e. the rule that accepts \(e \) after consuming \(c \)). If there is no such rule, then lexing continues with \(k \). If there is such a rule, it is unique (since lexing rules are disjoint (Section 2.2)), and it represents a new longest-match \(k' \), and lexing continues with \(k' \) and the remainder for the best match \(cs \).

The \(M \) function takes two arguments \(k \), a token action and \(rs \), a remainder string. There are five cases, one for the sentinel NO action, two for Skip actions, and two for Return actions. The sentinel NO indicates that lexing has failed. For Skip, lexing continues if the remainder \(rs \) is non-empty. For Return \(t \), \(t \) is added to the output sequence, and lexing continues if the remainder \(rs \) is non-empty. In the cases where lexing continues, it commences by supplying NO for the best-match-so-far, so that reading the next token only succeeds if \(L \) matches a non-empty prefix of the remaining input.

6.2 The DGNF parsing algorithm

Figure 10 presents the parsing algorithm for grammars in Deterministic Greibach Normal Form. Deterministic parsing makes the algorithm simple, since there is no need for backtracking.

\(\mathcal{P} \)arse is the top-level parsing algorithm which takes the parsing grammar \(n \Rightarrow G \) and a sequence of tokens \(s \). There are two key functions: \(\mathcal{P} \) parses using a single nonterminal \(n \), and \(Q \) parses using a sequence of nonterminals \(ns \). Again, we assume \(\mathcal{P} \) and \(Q \) can freely access \(G \).

\(\mathcal{P} \) takes the nonterminal \(n \) and a sequence of tokens and returns the remainder of the sequence after parsing. For empty sequences parsing succeeds only if the grammar has a rule \(n \rightarrow e \). For non-empty sequences \(ts:ts \), if the grammar has a rule \(n \rightarrow t\tilde{n} \), \(\mathcal{P} \) consumes \(t \) and parses \(ts \) with \(Q \). Otherwise, parsing succeeds (consuming nothing) only if the grammar has a rule \(n \rightarrow e \).

\(Q \) takes a sequence of nonterminals \(ns \) and a sequence of tokens \(ts \) and parses successive prefixes of \(s \) with each nonterminal in \(ns \).

6.3 The parsing algorithm for fused grammars

In practice, flap does not need separately-defined lexing and DGNF parsing algorithms, since it fuses lexing and parsing. We presented those algorithms to allow a direct comparison with the parsing algorithm for fused grammars.

Figure 11 shows an algorithm for parsing with fused grammars. The algorithm combines the features of the lexing algorithm (Figure 9) and the parsing algorithm (Figure 10): like the lexing algorithm it maintains a set of derivatives and an action and remainder string for the current best match; like the parsing algorithm, it keeps track of the current non-terminal.

\(\mathcal{F}P\text{arse} \) takes the fused grammar \(n \Rightarrow F \) and an input string \(s \), with two key functions: \(\mathcal{F} \) parses using a single nonterminal \(n \), and \(G \) parses using a sequence of nonterminals \(ns \) using \(F \).

\(\mathcal{F} \) takes four arguments: \(F_n \), a set of pairs representing non-epsilon productions for \(n \); \(k \), an action; \(rs \), a remainder string; and \(s \), an input string. For empty input strings the best match information \(k \) and \(rs \) is passed to \(G \) (via the auxiliary function \(\text{Step} \)). For non-empty input strings \(c::cs \), the result depends on \(F'_n \), the production pairs for \(n \) updated to use the non-empty derivatives with respect to \(c \) (Figure 2) of the string. If \(F'_n \) is empty, parsing cannot proceed any further, and so \(\mathcal{F} \) transfers control to \(G \) (via \(\text{Step} \)), passing the best match information. Otherwise, the result depends on the production pair \((r, \tilde{n}) \) for which \(r \) matches the string up to this point including \(c \) (i.e. the rule that accepts \(e \) after consuming \(c \)). If there is no such rule, then parsing continues with \(k \). If there is such a rule, it is unique (since the regular expressions for a particular nonterminal are disjoint), and it represents a new longest-match \(\overline{ns} \), and parsing continues, updating the best match information to \(\overline{ns} \). Here \(\overline{ns} \) represents one of three continuation types, and indicates that parsing should
continue using the nonterminal sequence \(\overline{ns} \); the others are back, indicating that parsing with \(n \) should succeed, consuming no input, and no, indicating that parsing with \(n \) should fail. The \textit{Step} function matches these three cases, and takes an action appropriate to each continuation.

The \(\mathcal{G} \) function takes a sequence of nonterminals \(ns \) and a sequence of characters \(s \) and parses successive prefixes of \(s \) with each nonterminal in \(ns \) by calling \(\mathcal{F} \). The value of \(\mathcal{F} \)'s \(k \) argument depends on whether there is an epsilon rule for \(n \) in the fused grammar: if so, then a parsing failure with \(n \) should backtrack, consuming no input; if not, then parsing returns \textit{fail}.

We draw attention to two salient features of the fused parsing algorithm: first, it consists of elements from the lexing and parsing algorithms of Sections 6.1 and 6.2; second, it does not materialize the tokens produced by the lexing algorithm, instead operating directly on the character string. The final algorithm in the next section makes this even more apparent.

6.4 The staged parsing algorithm

The parsing algorithm for fused grammars described in Section 6.3 is impractically inefficient. For each character of the input, the algorithm computes derivatives and checks emptiness and nullability for sets of regular expressions. However, since the regular expressions and other information about the grammar are known in advance of parsing, the inefficient algorithm can be \textit{staged} [Taha 1999] to produce an efficient algorithm. The idea of staging is to identify those parts of the algorithm that do depend only on static information — i.e. on the grammar — and execute them first, leaving only the parts that depend on dynamic information — i.e. on the input string — for later. The result of staging, as illustrated below, is to transform the unstaged parser into a parser generator that produces as output a parser specialized to the input grammar.

Figure 12 shows a staged version of the fused parsing algorithm. The structure of the algorithm is very close to the fused grammar parsing algorithm of Section 6.3: \(S \) corresponds to \(\mathcal{F} \) and \(T \) corresponds to \(\mathcal{G} \). However, there are three key differences.

First, those parts of the algorithm that depend on the input string are marked as \textit{dynamic}, indicated with red highlighting. These dynamic elements are not executed immediately; instead they become part of the generated specialized parser produced by the first stage of execution.

Second, in the function \(S \), \(F_n \) and \(k \) have become indexes rather than arguments. Consequently, rather than being passed to the function at run-time, those arguments serve to distinguish generated functions: each instantiation of \(F_n \) and \(k \) generate a distinct function \(S \) in the specialized parser.

Finally, the case match in \(S \) is expanded to include a distinct case for each character \(c_i, c_j \), etc. This expansion resolves a tension in the distinction between static and dynamic data: the static computation of derivatives \(\partial_c(r) \) in the first stage depends on the value of \(c \), which is only available dynamically. In the expanded case match the value of \(c_i \) is known on the right-hand side of the corresponding case, making it possible to compute derivatives valid within that program context. This scrutiny of a statically-unknown expression using a case match over its statically-known set of possible values is known as “The Trick” in the partial evaluation literature [Danvy et al. 1996].

The evaluation of the staged parsing algorithm is largely standard: the unhighlighted (static) expressions are executed first, producing the highlighted (dynamic) expressions as output. Each call to a dynamic indexed function \(S_{F_n,k} \) triggers the generation of a dynamic function whose body consists of the result of executing the right-hand side of \(S_{F_n,k} \) in Figure 12. To ensure that the generation process terminates, the generation of these indexed functions is memoized: there is at
most one generated function $S_{F_n,k}$ for any particular F_n and k. The result of the algorithm is a set of mutually recursive functions that operate only on strings, not on components of the grammar:

$$S_{n \rightarrow r_1 \ldots r_n, \pi, \text{BACK}}(r, s) = \text{case } s \text{ of } \begin{cases} \text{[]} \rightarrow s \\ 'a' :: cs \rightarrow S_{n \rightarrow r, \pi, \text{BACK}}(r, cs) \\ 'b' :: cs \rightarrow S_{n \rightarrow r, \pi, \text{BACK}}(r, cs) \\ \ldots \end{cases}$$

$$S_{n \rightarrow r_1 \ldots r_n, \pi, \text{ON}}(r, s) = \ldots$$

6.5 Implementing the staged parsing algorithm

The flap library generates code for the fused grammar using MetaOCaml’s staging facilities together with Yallop and Kiselyov’s [2019] letrec insertion library for creating the indexed mutually-recursive functions produced by the staged parsing algorithm (Section 6.4).

There are three key differences between the pseudocode algorithm in Figure 12 and flap’s implementation. First, while the pseudocode presents a recognizer that either consumes input or fails, flap supports semantic actions — i.e. constructing and returning ASTs or other values when parsing succeeds — as described in Section 2.3.

Second, while the input to the pseudocode is a linked list of characters, flap operates on OCaml’s more efficient flat array representation of strings, using indexes to keep track of string positions as parsing proceeds. Relatedly, flap also optimizes the test for the end of input by taking advantage of the fact that OCaml’s strings are null-terminated, to ease interoperability with C. This representation allows the check for end of input to be incorporated into the branch on the next character in the generated code: a null character '\000' indicates a possible end of input, which can subsequently be confirmed by checking the string length.

Third, while the pseudocode generates a case in each branch for each possible character in the input, flap generates a much smaller number of cases by grouping characters with equivalent behaviour into classes. Branching on these character classes rather than treating characters individually leads to a substantial reduction in code size. Owens et al. [2009] describe the construction of these classes in described in detail.

Here is an excerpt of the code generated by flap for the s-expression parser:

```
and parse⁵ r i len s = match s.[i] with
  | ' ' | '\n' → parse⁶ r (i + 1) len s
  | ' ' | '\' → parse⁹ r (i + 1) len s
  | 'a'..'.z' → parse³ r (i + 1) len s
  | '\000' → if i = len then [] else failwith "unexpected"
  | _ → []
```

This excerpt shows the code generated for a single indexed function $S_{F_n,k}$. There are four arguments, representing the beginning of the current token r (to support backtracking in the lookahead transition), the current index i, the input length len, and the input string s.

The subscripts 5, 6, etc. attached to the parse functions correspond to the indexes F_n, k in the pseudocode algorithm; the letrec insertion library assigns a fresh subscript to each distinct index.

The character range pattern 'a'..'z' illustrates the character class optimization described above. Without that optimization, each of the characters from 'a' to 'z' would have a separate case in the match expression.

The check $i = len$ determines whether the character '\000' represents the end of input or a null character in the input string.

The value [] corresponds to a semantic action: it is the empty list returned when an empty sequence of s-expressions is parsed. It appears twice in the generated code, since (as Figure 12
shows), parsing for a particular nonterminal can end in two ways: when it encounters the end of input, and when it encounters a non-matching character.

7 EVALUATION

This section evaluates the performance of flap, and shows that lexer-parser fusion drastically improves performance. Many parser combinator libraries suffer from poor performance, but the experiments described here show that combinator parsing does not need to be slow.

Three key techniques account for flap’s speed. First, Krishnaswami and Yallop’s type system ensures that the time taken for parsing is linear in the length of the input, a substantial advantage over libraries that require backtracking. Second, staging eliminates the overhead arising from parsing abstractions, generating parsing code that is specialized to a particular grammar. Finally, lexer-parser fusion eliminates the overhead arising from defining lexers and parsers separately: in particular, it avoids the materialization of tokens, and eliminates all branching except for approximately one branch on each character in the input.

Krishnaswami and Yallop showed that the first two of these techniques can be used to build a parser combinator library that outperforms code generated by ocamlyacc. We focus here on the question of how much additional performance benefit arises from lexer-parser fusion.

7.1 Benchmarks

We build on the benchmark suite published by Krishnaswami and Yallop [2019], adding implementations of each benchmark for flap, for the parser generator menhir [Pottier and Régis-Gianas [n.d.]], and for the ParTS deterministic parsing library [Casinghino and Roux 2020], and extending the suite with an additional benchmark for parsing CSV files.

For each benchmark we compare up to six implementations. We make no comparison with unstaged parser combinators, which Krishnaswami and Yallop found to be significantly slower than their staged implementation, and between 4.5 and 125 times slower than ocamlyacc.

(a) an implementation generated by ocamllex and ocamlyacc
(b) an implementation generated by ocamllex and menhir in table-generation mode
(c) an implementation generated by ocamllex and menhir in code-generation (tableless) mode
(d) an implementation created using flap
(e) the staged parser implementation from Krishnaswami and Yallop [2019]
(f) an implementation using ParTS, where one is available

(a)–(c) use identically structured grammars and lexers in each benchmark, since menhir accepts ocamlyacc files as input. (d)–(f) also use identically structured grammars in each benchmark, since they all use the standard parser combinator interface (Section 2.3). However, (d)–(f) use differently-structured lexers: (e) and (f), taken respectively from Krishnaswami and Yallop [2019] and Casinghino and Roux [2020], reuse the deterministic parser combinators for lexing, while flap uses the more conventional lexing interface described in Section 2.2.

The benchmarks are as follows:

(1) (pgn) Chess game descriptions in Portable Game Notation format. The semantic actions extract the result of each game. The input is a corpus of 6759 Grand Master games.
(2) (ppm) Image files in Netpbm format. The semantic actions validate the non-syntactic constraints of the format, such as colour range and pixel count.
(3) (sexp) S-expressions with alphanumeric atoms. The semantic actions of the parser count the number of atoms in each s-expression.
(4) (csv) A parser for the Comma-Separated Value format. The grammar conforms quite closely to RFC 4180 [Shafranovich 2005], but makes the terminating CRLF mandatory and does not treat
headers specially. The semantic actions check that each row contains the same number of fields. There is no implementation using Krishnaswami and Yallop’s combinators for this benchmark, because more than a single character of lookahead is needed to distinguish escaped (i.e. repeated) double-quotes " from unescaped quotes ”, and so the lexer cannot be implemented with typed context-free expressions without substantial changes to its structure. The lexer interface used in flap (Section 2.2) does not suffer from this limitation.
Table 1. Sizes of inputs, intermediate representations, and generated code

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Input</th>
<th>Normalized</th>
<th>Fused</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lexer rules</td>
<td>Context-free exps</td>
<td>Nonterms</td>
<td>Productions</td>
</tr>
<tr>
<td>pgn</td>
<td>13</td>
<td>95</td>
<td>38</td>
<td>53</td>
</tr>
<tr>
<td>ppm</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>sexp</td>
<td>4</td>
<td>11</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>csv</td>
<td>3</td>
<td>14</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>json</td>
<td>12</td>
<td>42</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>arith</td>
<td>14</td>
<td>143</td>
<td>28</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 2. Compilation time (type-checking, normalization, fusion, code generation)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Compilation time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sexp</td>
<td>0.331</td>
</tr>
<tr>
<td>pgn</td>
<td>212</td>
</tr>
<tr>
<td>ppm</td>
<td>3.60</td>
</tr>
<tr>
<td>json</td>
<td>28.5</td>
</tr>
<tr>
<td>csv</td>
<td>0.499</td>
</tr>
<tr>
<td>arith</td>
<td>460</td>
</tr>
</tbody>
</table>

(5) (json) A parser for JavaScript Object Notation (JSON). The semantic actions count the number of objects represented in the input. Following Krishnaswami and Yallop, we use the simple JSON grammar given by Jonnalagedda et al. [2014].

(6) (arith) A miniature programming language with constructs for arithmetic, comparison, let-binding and branching. The semantic actions evaluate the parsed expression.

7.2 Running time

Figure 13 shows the absolute and relative throughput of the six implementations using the six benchmark grammars. For the benchmarks that are taken from [Krishnaswami and Yallop 2019] we use the test corpora from the same source. For the CSV benchmark we have generated a set of files of various sizes and dimensions, using a random variety of textual and numeric data.

The benchmarks were compiled with BER MetaOCaml N111 with flambda optimizations enabled and run on a single Intel i9-12900K core with 8GB memory running Ubuntu Linux, using the Core_bench micro-benchmarking library [Hardin and James 2013].

As the graph shows, our experiments confirm the results reported by Krishnaswami and Yallop: the staged implementation of typed context-free expressions generally outperforms ocamllyacc. The addition of lexer-parser fusion makes flap considerably faster than both typed CFEs and ocamllyacc, reaching around 1.3GB/s (a little under 2.5 cycles per byte) on the json benchmark.

Linear-time parsing. Finally, as Figure 14 illustrates, on Krishnaswami and Yallop’s benchmark suite, parsers built with flap, like parsers built with Krishnaswami and Yallop’s combinators, execute in time linear in the length of their input.

7.3 Code size

A second important measure of usefulness for parsing: if parsing tools are to be usable in practice, it is essential that they do not generate unreasonably large code.

There are several reasons to be apprehensive about the size of code generated by flap. First, conversion to Greibach Normal Form is well known to substantially increase the size of grammars; for example, in the procedure given by Blum and Koch [1999] the result of converting a grammar
G has size $O(|G|^3)$. Second, the fusion process is inherently duplicative, repeatedly copying the lexer rules into the various grammar productions. Finally, experience in the multi-stage programming community shows that it is easy to inadvertently generate extremely large programs, since antiquotation makes it easy to duplicate terms. However, measurements largely dispel these concerns. Table 1 gives the size of the representations of the benchmark parsers at various stages in f1ap’s pipeline. The leftmost pair of columns shows the size of the input parsers, measured as the number of lexer rules (including both Return and Skip rules) and the number of context-free expression nodes, as described in Section 2. The pair of columns to the right shows the number of nonterminals and productions after the grammar is converted to Deterministic GNF using the procedure in Section 4. As the figures show, the normalization algorithm for typed context-free expressions does not produce the drastic increases in size that occurs in the more general form of conversion to GNF. The next column to the right shows the size of the grammar after fusion (Section 5). Fusion does not alter the number of nonterminals, but it can add productions: for example, the Skip rules in the s-expression lexer add additional productions to each nonterminal. Finally, the rightmost column shows the number of function bindings in the code generated by f1ap. Comparing this generated function count with the number of context-free expressions in the input reveals a fairly unalarming relationship: with one exception (pgn), the ratio between the two barely exceeds 2.

Sharing. The entries for pgn and arith hint at opportunities for further improvement. In both cases, the number of context-free expressions that make up the grammar (95 and 143) is surprisingly high, since both languages are fairly simple. Inspecting the implementations of the grammars reveals the cause: in several places, the combinators that construct the grammar duplicate subexpressions. For example, here is the implementation of a Kleene plus operator used in pgn:

```plaintext
let oneormore e = (e >>> star e) ...
```

Normalization turns these two occurrences of e into multiple entries in the normalized form, and ultimately to multiple functions in the generated code. The core problem is that the parser combinator interface (Section 2.3) provides no way to express sharing of subgrammars. Since duplication of this sort is common, it is likely that extending f1ap with facilities to express and maintain sharing could substantially reduce generated code size.

7.4 Compilation time

A final measure of practicality is the time taken to perform the fusion transformation. Slow compilation times can have a significant effect on usability; as Nielsen [1993] notes, software that takes more than one second to respond can cause a user to lose concentration, harming interactivity. Table 2 shows the compilation time for the six benchmark grammars. In each case, the total time taken to type-check and normalize the grammar, fuse the grammar and lexer and generate optimized code is less than half a second.

8 RELATED WORK

Deterministic Greibach Normal Form. There are several longstanding results related to deterministic variants of Greibach Normal Form. For example, Geller et al. [1976] show that every strict deterministic language can be given a strict deterministic grammar in Greibach Normal Form, and Nijholt [1979] gives a translation into Greibach Normal Form that preserves strict determinism. The distinctive contributions of this paper are the new normal form that is well suited to fusion, and the compositional normalization procedure from typed context-free expressions, allowing deterministic GNF to be used in the implementation of parser combinators.
Combining lexers and parsers. The work most closely related to ours, by Casinghino and Roux [2020] investigates the application of traditional stream fusion techniques to parser combinators in the ParTS system. We have included their two published benchmarks in the evaluation of Section 7 and found that, as they report, when the flambda suite of compiler optimizations is applied to their code, its performance is similar to the results achieved by Krishnaswami and Yallop [2019]. A significant difference between their work and ours is that they approach fusion as a traditional optimization problem, in which transformations are applied to code that satisfies certain heuristics, and are not applied in more complex cases. In contrast, we treat lexer-parser fusion as a sequence of total transformations that is guaranteed to convert every input (i.e., every parser) into a form that enjoys pleasant performance properties. More concretely, Figure 13 shows significant performance differences between ParTS and flap, with ParTS achieving one half and a tenth of the throughputs of flap on the sexp and json benchmarks.

Another line of work, on Scannerless GLR parsing [Economopoulos et al. 2009; van den Brand et al. 2002], also aims to eliminate the boundary between lexers and parsers, both in the interface and the implementation. The principal aim is to provide a principled way to handle lexical ambiguity, in contrast to our focus on performance.

Context-aware scanning, introduced by Van Wyk and Schwerdfeger [2007] is another variant on the parser-scanner interface focused on disambiguation; it passes contextual information from the parser to the scanner about the set of valid tokens at a particular point, in a similar way to the lexer specialization in Section 3.3 of this paper. However, Van Wyk and Schwerdfeger’s framework goes further, and allows the automatic selection of a lexer (not just a subset of lexing rules) based on the parsing context.

Fusion. The notion of fusion, in the sense of merging computations to eliminate intermediate structures, has been applied in several domains, including query engines [Shaikhha et al. 2018], GPU kernels [Filipovic et al. 2015] and tree traversals [Sakka et al. 2019].

Perhaps the most widespread is stream fusion, which appears to have originated with Wadler’s deforestation [Wadler 1990], and has since been successfully applied as both a traditional compiler optimization [Coutts et al. 2007] and as a staged library [Kiselyov et al. 2017] that provides guarantees similar to those we give here for parsers.

Parser optimization. Finally, in contrast to the constant-time speedups resulting from lexer-parser fusion, we note an intriguing piece of work by Klyuchnikov [2010] that applies two-level-supercompilation to parser optimization, leading to asymptotic improvements.

9 Future Work

There are a number of promising avenues for future work. First, extending flap’s rather minimal lexer and parser interfaces to support common needs such as left-recursive grammars, lexers and parsers with multiple entry points, mechanisms for maintaining state during parsing, and more expressive lexer semantic action could make the library substantially more usable in practice.

Second, building on the proofs of normalization correctness in Section 4 to cover the whole of flap, we plan to formally establish that the code generated by Section 5 faithfully represents the semantics of the combinators in Section 2.

Third, applying the ideas in this paper to more powerful parsing algorithms such as LR(1) and LALR(1), and incorporating them into traditional standalone parser generator (rather than a staged library) could make lexer-parser fusion available to many more software developers.

Finally, it may be that fusion can be extended to longer pipelines than the lexer-parser interface that we investigate here. Might it be possible to fuse together (e.g.) decompression, unicode decoding, lexing and parsing into a single computation that does not materialize intermediate values?
REFERENCES

1227

A COMPLETE DERIVATION

This section presents the complete derivation for normalizing

$$g = \mu \text{sexp}. (\text{LPAR} \cdot (\mu \text{sexps} \cdot \epsilon \lor \text{sexp} \cdot \text{sexps}) \cdot \text{RPAR}) \lor \text{ATOM}$$

We automatically remove unreachable productions in the result.

$$N[\text{sexp}] = n_2 \Rightarrow \{ n_2 \rightarrow \text{sexp} \} \quad N[\text{sexps}] = n_3 \Rightarrow \{ n_3 \rightarrow \text{sexps} \}$$

$$N[\epsilon] = n_1 \Rightarrow \{ n_1 \rightarrow \epsilon \}$$

$$N[\text{LPAR}] = n_6 \Rightarrow \{ n_6 \rightarrow \text{LPAR} \}$$

$$N[(\mu \text{sexps} \cdot \epsilon \lor \text{sexp} \cdot \text{sexps}) \cdot \text{RPAR}] = n_8 \Rightarrow \{ n_8 \rightarrow \text{LPAR} \cdot \text{sexps} \cdot \epsilon \lor \text{sexp} \cdot \text{sexps} \cdot \text{RPAR} \}$$

$$N[\text{ATOM}] = n_9 \Rightarrow \{ n_9 \rightarrow \text{ATOM} \}$$

Comparing the simplified derivation in Section 4.1 with the complete derivation, we note the following simplification: first, we omit the derivation of tokens; second, when normalizing sexps we produce a nonterminal n_3 with a production $n_3 \rightarrow \text{sexp}$. This means n_3 is equivalent to sexps. However, this n_3 is retained in the final result, making the final grammar a bigger. It’s easy to check that the grammar is equivalent to the one given in the paper.

It is easy to consider an optimization process that gets rid of n_3 in the middle of the derivation. For example, for the result for n_5, instead of

$$n_5 \Rightarrow n_5 \rightarrow \epsilon, n_5 \rightarrow \text{sexp} \cdot n_3, n_3 \rightarrow \text{sexps}$$

We can have

$$n_5 \Rightarrow n_5 \rightarrow \epsilon, n_5 \rightarrow \text{sexp} \cdot \text{sexps}$$

Then the normalization result would be exactly the same as the one in the paper.
B DETERMINISTIC PARSING

THEOREM 4.1 (Deterministic Parsing). If \(G \) is a DGNF grammar, then for any expansion \(G \vdash n \leadsto w \), there is a unique derivation for such expansion.

PROOF. By straightforward induction on \(G \vdash n \leadsto w \).

C WELL-TYPED NORMALIZATION

This section presents well-typed normalization, which shows how normalization captures the type information, and then proves its properties that are important for later proofs.

First, we note that during normalization (Figure 6), we create one fresh nonterminal exactly for one context-free expression. Therefore, we can attach to each nonterminal its type information. That is, instead of \(n \), we have \(n_\tau \), where \(\tau \) indicates the type of \(n \). We also write \(\alpha_\tau \) where \(\tau \) is the type of \(\alpha \) as in \(\mu \alpha : \tau \cdot g \).

Refining the normalization, we have:

\[
\mathcal{N}[g] \quad \text{returns} \quad n_\tau \Rightarrow G, \text{ with a grammar } G \text{ and the start nonterminal } n \text{ of type } \tau \text{ (with } n \text{ fresh)}
\]

- (epsilon) \(\mathcal{N}[t] = n_\tau \rightarrow \{ n_\tau \rightarrow \epsilon \} \)
- (token) \(\mathcal{N}[t] = n_\tau \rightarrow \{ n_\tau \rightarrow t \} \)
- (bot) \(\mathcal{N}[\bot] = n_\tau \rightarrow \emptyset \)
- (seq) \(\mathcal{N}[g_1 \cdot g_2] = n_{t_1 \cdot t_2} \rightarrow \{ n_{t_1} \rightarrow \{ n_{t_1} \rightarrow n_1 \cdot n_{t_2} \rightarrow n_1 \in G_1 \cup G_1 \cup G_2 \} \}
\]
- (alt) \(\mathcal{N}[g_1 \lor g_2] = n_{t_1 \lor t_2} \rightarrow \{ n_{t_1 \lor t_2} \rightarrow n_1 \lor n_2 \rightarrow n_1 \in G_1 \cup G_1 \cup G_2 \}
\]
- (fix) \(\mathcal{N}[\mu \alpha : \tau \cdot g] = \alpha_\tau \rightarrow \{ \alpha_\tau \rightarrow N \mid n_\tau \rightarrow N \in G \} \cup \{ n_{t_1} \rightarrow n_1 \in G \} \cup \{ n_{t_2} \rightarrow n_2 \in G \}
\]
- (var) \(\mathcal{N}[\alpha_\tau] = n_\tau \rightarrow \{ n_\tau \rightarrow \alpha_\tau \}
\]

We also add to typing that

\[\Gamma; \Delta \vdash n_\tau : \tau \]

With that, we can type-check any \(N \) according to the typing rules, by treating \(t \) as constants, \(n_\tau \) as nonterminal of type \(\tau \), and lists as sequences (e.g., \(n_{t_1}, n_{t_2} \) as \(n_{t_1}, n_{t_2} \)).

Now we can prove properties about the well-typed normalization. While those lemmas are proved in the typed normalization, they naturally hold for the untyped normalization as the two are the same process.

Lemma C.1. Given \(\Gamma; \Delta \vdash g : \tau \), and \(\mathcal{N}[g] \) returns \(n_{t'} \Rightarrow G \), then \(\tau = t' \).

Proof. By a straightforward induction on \(\Gamma; \Delta \vdash g : \tau \).

Lemma C.2. Given \(\Gamma; \Delta \vdash g : t' \), and \(\mathcal{N}[g] \) returns \(_ \Rightarrow G \), then for any \(n_\tau \in G \), if \(N_1, ..., N_i \) are all productions of \(n \), we have

\[\begin{align*}
& \tau = t_1 \lor t_2 \lor \cdots \lor t_i, \text{ where} \\
& (n_\tau \rightarrow N_1 \in G \land \Gamma; \Delta \vdash N_1 : t_1) \text{ and } (n_\tau \rightarrow N_2 \in G \land \Gamma; \Delta \vdash N_2 : t_2) \text{ and } \cdots \text{ and } (n_\tau \rightarrow N_i \in G \land \Gamma; \Delta \vdash N_i : t_i); \text{ and}
\end{align*} \]

Fusing Lexing and Parsing

1:31

• \(\tau_1 \neq \tau_2 \cdots \neq \tau_l \), i.e., all \(\tau_1, \tau_2, \ldots, \tau_l \) are apart from each other.

Proof. By induction on \(\Gamma; \Delta \vdash g : \tau \).

• The cases for \(\varepsilon, t, \perp \) and \(\alpha \) follow trivially.
• The case for \(g_1 \cdot g_2 \):
 \[
 \mathcal{N}[g_1 \cdot g_2] = \{ n_{\tau_1 \cdot \tau_2} \rightarrow N_1 \mid n_{\tau_1} \rightarrow N_1 \in G_1 \} \cup G_1 \cup G_2 \\
 \mathcal{N}[g_1] = n_{\tau_1} \rightarrow G_1 \wedge \mathcal{N}[g_2] = n_{\tau_2} \rightarrow G_2
 \]
 By I.H., we know that for each \(N_1 \), we have \(\Gamma; \Delta \vdash N_1 : \tau'_1 \) for some \(\tau'_1 \), and \(\tau_1 \) is the \(\vee \) of all \(\tau'_1 \), and all \(\tau'_1 \) is apart (\(\# \)) from each other.
 According to well-typedness, we know that \(\tau_1 \) is apart from each other.
 \[
 \mathcal{N}[g_1 \lor g_2] = \{ n_{\tau_1 \lor \tau_2} \rightarrow N_1 \mid n_{\tau_1} \rightarrow N_1 \in G_1 \} \cup \{ n_{\tau_1 \lor \tau_2} \rightarrow N_2 \mid n_{\tau_2} \rightarrow N_2 \in G_2 \} \\
 \cup G_1 \cup G_2 \\
 \mathcal{N}[g_1] = n_{\tau_1} \rightarrow G_1 \wedge \mathcal{N}[g_2] = n_{\tau_2} \rightarrow G_2
 \]
 By I.H., we know that for each \(N_1 \), we have \(\Gamma; \Delta \vdash N_1 : \tau'_1 \) for some \(\tau'_1 \), and \(\tau_1 \) is the \(\vee \) of all \(\tau'_1 \), and all \(\tau'_1 \) is apart (\(\# \)) from each other. Moreover, for each \(N_2 \), we have \(\Gamma; \Delta \vdash N_2 : \tau'_2 \) for some \(\tau'_2 \), and \(\tau_2 \) is the \(\vee \) of all \(\tau'_2 \), and all \(\tau'_2 \) is apart (\(\# \)) from each other.
 It’s easy to see that \(\tau_1 \lor \tau_2 \) is the \(\vee \) of all \(\tau'_1 \) and \(\tau'_2 \).
 According to well-typedness, we know that \(\tau_1 \) is apart from \(\tau_2 \). That is \(\tau_1 \) is apart from \(\tau_2 \).
 \[
 \mathcal{N}[\mu \alpha : \tau. g] = \{ \alpha \rightarrow N \mid \alpha \rightarrow N \in G \} \cup \{ n_{\tau'} \rightarrow N \mu' \mid n_{\tau'} \rightarrow \alpha \mu' \in G \wedge \alpha \rightarrow N \in G \} \\
 \cup G \setminus n_{\tau'} \rightarrow \alpha \mu'
 \]
 By I.H., we know that for each \(N \), we have \(\Gamma; \Delta \vdash N : \tau'' \) for some \(\tau'' \), and \(\tau \) is the \(\vee \) of all \(\tau'' \), and all \(\tau'' \) is apart (\(\# \)) from each other.
 The goal for \(\alpha \) follows from \(n_\varepsilon \). The remaining is to show that the goal holds for each \(n_{\tau'} \) that has a production that starts with \(\alpha \). Essentially what happens is that one production \(n_{\tau'} \rightarrow \alpha \mu' \) is replaced by multiple productions \(n_{\tau'} \rightarrow N \mu' \) for each \(n_\varepsilon \rightarrow N \in G \) where \(\Gamma; \Delta \vdash N : \tau'' \).
 First, we need to show that \(N \mu' \) is well-typed. We already know each individual terminal or nonterminal in \(N \mu' \) is well-typed, so the only requirement is the \(\circ \) condition during type-checking. Given that \(\alpha \mu' \) is well-typed, we know that \(\tau \mu' \) is well-typed. Moreover, \(\tau''. \mu' \subseteq \tau. \mu' \). With that, and the fact that \(\alpha \mu' \) is well-typed, we can derive that the \(\circ \) condition is always satisfied when type-checking \(N \mu' \). Therefore, \(N \mu' \) is well-typed.
 Because \(\tau \) is the \(\vee \) of all \(\tau'' \), it’s easy to show that the type of \(\alpha \mu' \) is the \(\vee \) of the types of all \(N \mu' \). Therefore, the type of \(n' \) is the same as before. Also, all types of the productions of \(n' \) are still apart with each other.
D NORMALIZATION IS WELL-DEFINED (PROOF)

Lemma 4.2 (Productions of Null). Given $\Gamma; \Delta \vdash g : \tau$ and $N[\[g\]]$ returns $n \Rightarrow G$, τ.Null = true if and only if (1) $n \rightarrow e \in G$; or (2) $n \rightarrow \alpha \in G$ where $(\alpha : \tau') \in \Gamma$ and τ.Null = true.

Proof. Left to right According to Lemma C.2, we must have one $n_\tau
Rightarrow N \in G$, where $\Gamma; \Delta \vdash N : \tau$, and τ.Null = true. We case analyze the shape of N:
- If $N = e$, then we have proved (1).
- If $N = t \bar{n}$, then it’s impossible that τ.Null = true.
- If $N = \alpha \bar{n}$. Since $\alpha \bar{n}$ is well-typed, then the type must have Null = false. Therefore \bar{n} must be empty, and α has its type $\text{Null} = \text{true}$. So we have proved (2).

Right to left Following Lemma C.2, the type τ is the \lor of all types. If either $n \rightarrow e$ of α has type $\text{Null} = \text{true}$, we know that τ.Null = true.

\[\square\]

Theorem 4.3 (Well-definedness). If $\Gamma; \Delta \vdash g : \tau$, then $N[\[g\]]$ returns $n \Rightarrow G$ for some G and n.

Proof. By induction on g. Most cases are straightforward. The only interesting cases are when $g = g_1 \cdot g_2$ or $g = \mu \alpha. g'$.
- $g = g_1 \cdot g_2$. We have:
 $\begin{align*}
 \mathcal{N}[\{g_1 \cdot g_2\}] &= n \Rightarrow \{n \rightarrow N_1 \mid n_1 \rightarrow N_1 \in G_1\} \cup G_1 \cup G_2 \\
 \mathcal{N}[\{g_1\}] &= n_1 \Rightarrow G_1 \land \mathcal{N}[\{g_2\}] = n_2 \Rightarrow G_2
 \end{align*}$
 As $g_1 \cdot g_2$ is well-typed, we know that the type of g_1 has $\text{Null} = \text{false}$. By Lemma 4.2, N_1 is not e, ensuring that $N_1 n_2$ is a valid form.
- $g = \mu \alpha. g'$. We have:
 $\Gamma; \Delta; \alpha : \tau \vdash g : \tau$

\[\mathcal{N}[\mu \alpha. g] = \alpha \Rightarrow \{n \rightarrow N \mid n \rightarrow N \in G\} \cup \{n' \rightarrow N \bar{n}' \mid n' \rightarrow \alpha \bar{n}' \in G \land n \rightarrow N \in G\} \cup G[n' \rightarrow \alpha \bar{n}']\]

$\mathcal{N}[\{g\}] = n \Rightarrow G$

\[G[n' \rightarrow \alpha \bar{n}'] \text{ is G with all $n' \rightarrow \alpha \bar{n}'$ removed for any n' and \bar{n}'}\]

We need to show that $N \bar{n}'$ is valid, requiring either N to not be e, or \bar{n}' to be empty. Since $\alpha \bar{n}'$ is well-typed (Lemma C.2), we know that either \bar{n}' is empty, or α must have $\text{Null} = \text{false}$. In the first case we are done. In the second case, following Lemma 4.2, we know N cannot be e.

\[\square\]

E NORMALIZATION RETURNS DGNF GRAMMARS (PROOF)

E.1 Normalizing closed expressions produces no $\alpha \bar{n}$ form

Lemma 4.4 (Internal normal form). Given $\Gamma; \Delta \vdash g : \tau$ and $\mathcal{N}[\[g\]]$ returns $n \Rightarrow G$,
- if $(n \rightarrow \alpha \bar{n}) \in G$, then we have $\alpha \in \text{dom}(\Gamma)$;
- if $(n' \rightarrow \alpha \bar{n}) \in G$ for any n', then we have $\alpha \in \text{fv}(g)$, and thus $\alpha \in \text{dom}(\Gamma, \Delta)$.

Proof. Part 1 By induction on $\Gamma; \Delta \vdash g : \tau$, most cases are straightforward. We discuss the following three cases:
- $g = \alpha$. As g is well-typed, it must be $\alpha \in \text{dom}(\Gamma)$. The goal follows directly.
- $g = g_1 \cdot g_2$. The goal follows by the I.H. on g_1.
- $g = \mu \alpha. g'$. As the well-typedness of g' adds α to Δ, the goal follows directly by the I.H. on g'.

Part 2 By induction on $\Gamma; \Delta \vdash g : \tau$. The only interesting case is when $g = \mu \alpha. g'$. We have
\[\Gamma, \Delta, \alpha : \tau \vdash g : \tau \]
\[\mathcal{N}[\mu a. g] = \alpha \Rightarrow \{ \alpha \rightarrow N \mid n \rightarrow N \in G \} \cup \{ n' \rightarrow N \bar{n}' \mid n' \rightarrow \alpha \bar{n}' \in G \land n \rightarrow N \in G \} \cup G_{n' \rightarrow \alpha \bar{n}'} \]
\[\mathcal{N}[g] = n \Rightarrow G \]
\[G_{n' \rightarrow \alpha \bar{n}} \] is \(G \) with all \(n' \rightarrow \alpha \bar{n}' \) removed for any \(n' \) and \(\bar{n}' \)
By I.H., we know that for all \((n' \rightarrow \text{beta} \bar{n}) \in G_{n' \rightarrow \alpha \bar{n}}\), \(\beta \in \text{fv}(g) \).
For \(N \), if it is \(\text{beta} \bar{n} \), then either \(\beta \in \text{fv}(\mu a. g) \), or \(\beta = \alpha \). By Part 1, we know that \(\beta \in \text{dom}(\Gamma) \), so \(\beta \neq \alpha \). So it can only be \(\beta \in \text{fv}(\mu a. g) \). And the goal follows.
\[\square \]

Corollary 4.5 (Normal form). Given \(\bullet \bullet \vdash g : \tau \) and \(\mathcal{N}[g] \) returns \(_{-} \Rightarrow G \), then for all \((n \rightarrow N) \in G, N \in \varepsilon \) or \(t \bar{n} \) for some \(t \) and \(\bar{n} \).

Proof. Follows directly from Lemma 4.4.

\[\square \]

E.2 A nonterminal’s non-\(\varepsilon \) productions start with distinct terminals.

Lemma 4.6 (Terminals in First). Given \(\Gamma, \Delta \vdash g : \tau \) and \(\mathcal{N}[g] \) returns \(n \Rightarrow G \), we have \(t \in \tau \).\text{First}
if and only if (1) \((n \rightarrow t \bar{n}) \in G \); or (2) \((n \rightarrow \alpha \bar{n}) \in G \) where \((\alpha : \tau') \in \Gamma \) and \(t \in \tau \).\text{First}.

Proof. \textbf{Left to right} According to Lemma C.2, we must have one \(n_r \rightarrow N \in G \), where \(\Gamma, \Delta \vdash N : \tau \), and \(t \in \tau \).\text{First}. We case analyze the shape of \(N \):

- If \(N = \varepsilon \), then it’s impossible.
- If \(N = t \bar{n} \), then we have proved (1).
- If \(N = \alpha \bar{n} \). Since \(\alpha \bar{n} \) is well-typed, the \text{First} of the type of \(\alpha \bar{n} \) is equivalent to the \text{First} of the type of \(\alpha \). So we have proved (2).

\textbf{Right to left} Following Lemma C.2, the type \(\tau \) is the \(\lor \) of all types. If either \(n \rightarrow t \bar{n} \) of \(\alpha \) has type \(t \in \text{First} \), we know that \(t \in \tau \).\text{First}.

\[\square \]

Lemma E.1 (Productions with distinct terminals). If \(\Gamma, \Delta \vdash g : \tau \), and \(\mathcal{N}[g] \) returns \(_{-} \Rightarrow G \), then for any two productions \((n \rightarrow t_1 \bar{n}_1) \in G \) and \((n \rightarrow t_2 \bar{n}_2) \in G \), we have \(t_1 \neq t_2 \).

Proof. Suppose there are \(n \rightarrow t_1 \bar{n}_1 \) and \(n \rightarrow t_2 \bar{n}_2 \).
By Lemma C.2, we know that the types of \(t_1 \bar{n}_1 \) and \(t_2 \bar{n}_2 \) must be apart. Therefore they have disjoint \text{First}.
By Lemma 4.6, we know that both \(t_1 \bar{n}_1 \) and \(t_2 \bar{n}_2 \) have \(t \in \text{First} \). However, since their types have disjoint \text{First}, this is impossible. So contradiction.

\[\square \]

E.3 The \(\varepsilon \)-production may only be used when other productions do not apply.

We defined the notion of containment of types as follows. The key of the definition is rule \text{ST-BASE},
which says that a grammar \(g_1 \) is a subtype grammar of \(g_2 \), if \(g_1 \) is of type \(\tau_1 \), \(g_2 \) is of type \(\tau_2 \), and \(\tau_1 = \tau_2 \lor \tau \) for some \(\tau \). Notably, we have \(\Gamma, \Delta \vdash g \leq g \) for any well-typed grammar \(\Gamma, \Delta \vdash g : \tau \), as we have \(\tau = \tau \lor \{ \text{null} = \text{false}; \text{First} = \emptyset; \text{FLast} = \emptyset \} \).
\[\Gamma; \Delta \vdash g_1 \leq g_2 \]

Lemma E.2. If \(\Gamma; \Delta \vdash g_1 : \tau_1 \), and \(\Gamma; \Delta \vdash g_1 \leq g_2 \), then \(\Gamma; \Delta \vdash g_2 : \tau_2 \), and \(\tau_1 = \tau_2 \lor \tau \) for some \(\tau \).

Proof. By induction on \(\Gamma; \Delta \vdash g_1 \leq g_2 \).

- **Case** \textbf{ST-BASE} follows trivially.
- **Case** \textbf{ST-TRANS} follows trivially.

 \[
 \frac{\Gamma; \Delta \vdash g_1 \leq g_2 \quad \Gamma; \Delta \vdash g_2 \leq g_3}{\Gamma; \Delta \vdash g_1 \leq g_3}
 \]

 We have \(g_1 \) of type \(\tau_1 \).

 By I.H., \(g_2 \) of type \(\tau_2 \), and \(\tau_1 = \tau_2 \lor \tau \).

 By the second I.H., \(g_3 \) of type \(\tau_3 \), and \(\tau_2 = \tau_3 \lor \tau' \).

 Therefore, \(\tau_1 = \tau_3 \lor (\tau \lor \tau') \).

- **Case** \textbf{ST-CON} follows trivially.

 \[
 \frac{\Gamma; \Delta \vdash g_1 \leq g'_1 \quad \Gamma; \Delta \vdash g_2 \leq g'_2}{\Gamma; \Delta \vdash g_1 \cdot g_2 \leq g'_1 \cdot g'_2}
 \]

 We have \(g_1 \cdot g_2 \) of type \(\tau_1 \cdot \tau_2 \) with \(g_1 \) of type \(\tau_1 \) and \(g_2 \) of type \(\tau_2 \) and \(\tau_1 \odot \tau_2 \).

 By I.H., \(g'_1 \) of type \(\tau'_1 \), and \(\tau_1 = \tau'_1 \lor \tau \).

 By the second I.H., \(g'_2 \) of type \(\tau'_2 \), and \(\tau_2 = \tau'_2 \lor \tau' \).

 Now we want to show \(g'_1 \cdot g'_2 \) is of type \(\tau'_1 \cdot \tau'_2 \). For that, we need to prove \(\tau'_1 \odot \tau'_2 \).

 That means we need to prove \(\tau'_1 \cdot \tau'_2 \).

 We already know \(\tau_1 \odot \tau_2 \), which means \(\tau_1 \cdot \tau_2 \).

 Since \(\tau_1 = \tau'_1 \lor \tau \) and \(\tau_2 = \tau'_2 \lor \tau' \), we can derive \(\tau'_1 \cdot \tau'_2 \).

 Therefore, \(\tau'_1 \odot \tau'_2 \), and \(g'_1 \cdot g'_2 \) is of type \(\tau'_1 \cdot \tau'_2 \).

 Now the goal is to relate \(\tau_1 \cdot \tau_2 \) with \(\tau'_1 \cdot \tau'_2 \).

\[\tau_1 \cdot \tau_2 = \begin{cases}
\text{NULL} & = \tau_1 \cdot \text{NULL} \land \tau_2 \cdot \text{NULL} \\
\text{FIRST} & = \tau_1 \cdot \text{FIRST} \lor \tau_2 \cdot \text{NULL} \lor \tau_2 \cdot \text{FIRST} \\
\text{LAST} & = \tau_2 \cdot \text{LAST} \lor \tau_2 \cdot \text{NULL} \lor (\tau_2 \cdot \text{FIRST} \lor \tau_1 \cdot \text{LAST})
\end{cases} \]

\[\neg \tau_1 \cdot \text{NULL} \]

\[\tau_1 \cdot \tau_2 = \begin{cases}
\text{NULL} & = \text{false} \\
\text{FIRST} & = \tau_1 \cdot \text{FIRST} \\
\text{LAST} & = \tau_2 \cdot \text{LAST} \lor \tau_2 \cdot \text{NULL} \lor (\tau_2 \cdot \text{FIRST} \lor \tau_1 \cdot \text{LAST})
\end{cases} \]

Similarly,

\[\tau'_1 \cdot \tau'_2 = \begin{cases}
\text{NULL} & = \text{false} \\
\text{FIRST} & = \tau'_1 \cdot \text{FIRST} \\
\text{LAST} & = \tau'_2 \cdot \text{LAST} \lor \tau'_2 \cdot \text{NULL} \lor (\tau'_2 \cdot \text{FIRST} \lor \tau'_1 \cdot \text{LAST})
\end{cases} \]

We have \(\tau_1 = \tau'_1 \lor \tau \) and \(\tau_2 = \tau'_2 \lor \tau' \). Therefore, with \(\neg \tau_2 \cdot \text{NULL} \) implying \(\neg \tau'_2 \cdot \text{NULL} \),

\[\tau_1 \cdot \tau_2 = \begin{cases}
\text{FIRST} & = \tau \cdot \text{FIRST} \\
\text{LAST} & = \tau' \cdot \text{LAST} \lor \tau_2 \cdot \text{NULL} \lor (\tau_2 \cdot \text{FIRST} \lor \tau_1 \cdot \text{LAST})
\end{cases} \]
We have $g_1 \vee g_2$ of type $\tau_1 \vee \tau_2$ with g_1 of type τ_1 and g_2 of type τ_2 and $\tau_1 \neq \tau_2$.

By I.H., g_1' of type τ_1', and $\tau_1 = \tau_1' \vee \tau$.

By the second I.H., g_2' of type τ_2', and $\tau_2 = \tau_2' \vee \tau'$.

Now we want to show $g_1' \vee g_2'$ is of type $\tau_1' \vee \tau_2'$. For that, we need to prove $\tau_1' \neq \tau_2'$.

That means we need to prove $(\tau_1'.\text{FIRST} \cap \tau_2'.\text{FIRST} = \emptyset) \land \neg(\tau_1'.\text{NULL} \land \tau_2'.\text{NULL})$

We already know $\tau_1 \neq \tau_2$, which means $(\tau_1.\text{FIRST} \cap \tau_2.\text{FIRST} = \emptyset) \land \neg(\tau_1.\text{NULL} \land \tau_2.\text{NULL})$

Since $\tau_1 = \tau_1' \vee \tau$ and $\tau_2 = \tau_2' \vee \tau'$, we can derive $(\tau_1'.\text{FIRST} \cap \tau_2'.\text{FIRST} = \emptyset) \land \neg(\tau_1'.\text{NULL} \land \tau_2'.\text{NULL})$

Therefore, $\tau_1' \neq \tau_2'$, and $g_1' \vee g_2'$ is of type $\tau_1' \vee \tau_2'$.

Finally, we have $\tau_1 \vee \tau_2 = (\tau_1' \vee \tau_2') \vee (\tau \vee \tau')$.

\[\square \]

Lemma E.3 (Expansion preserves typing). Given $\Gamma; \Delta \vdash g : \tau$, $N[g]$ returns _ _ $\Rightarrow G$, if $G \vdash n_\tau \sim \tilde{t} n' \bar{n}$, then $\Gamma; \Delta \vdash \tilde{t} n' \bar{n} : \tau_1$, and $\tau = \tau_1 \vee \tau'$ for some τ'.

Proof. By induction on $G \vdash n_\tau \sim \tilde{t} n' \bar{n}$.

- In the base case, $G \vdash n_\tau \sim n_\tau$. The goal follows trivially.
- In the inductive case, we have $G \vdash n_\tau \sim \tilde{t} n' \bar{n}$, $n' \rightarrow N \in G$ and so $G \vdash n \sim \tilde{t} N \bar{n}$,
 By I.H., we have $\Gamma; \Delta \vdash \tilde{t} n' \bar{n} : \tau_1$, and $\tau = \tau_1 \vee \tau'$.

According to Lemma C.2, we know that $\Gamma; \Delta \vdash n' \leq N$ by rule st-base.

Therefore, $\Gamma; \Delta \vdash \tilde{t} N \bar{n}$ by rule st-con.

By Lemma E.2, $\Gamma; \Delta \vdash \tilde{t} N \bar{n} : \tau_2$, and $\tau_1 = \tau_2 \vee \tau''$.

Therefore, $\tau = \tau_2 \vee (\tau' \vee \tau'')$.

\[\square \]

Lemma E.4 (Guarded ε-production). Given $\Gamma; \Delta \vdash g : \tau$, $N[g]$ returns $n \Rightarrow G$, and $G \vdash n \Rightarrow^*$

\[\cdots n_1 n_2 \cdots, \text{if } (n_1 \rightarrow \epsilon) \in G, \text{then either } (n_1 \rightarrow t \bar{n}_1) \notin G \text{ or } (n_2 \rightarrow t \bar{n}_2) \notin G \text{ for any } t, \bar{n}_1, \bar{n}_2. \]

Proof. We have:

- $\cdots n_1 n_2 \cdots$ is well-typed
- The type of $\cdots n_1$ is $\tau \cdot \tau_1$, the type of n_1 is τ_1, and the type of n_2 is τ_2
 By Lemma E.3
 Suppose
 By typing
 By @
 By definition
 Given
 Lemma 4.2
 Follows
 Follows
 Assume
 Lemma 4.6

\[\text{By typing} \]
\[\text{By @} \]
\[\text{By definition} \]
\[\text{Given} \]
\[\text{Lemma 4.2} \]
\[\text{Follows} \]
\[\text{Follows} \]
\[\text{Assume} \]
\[\text{Lemma 4.6} \]
E.4 Final result

Theorem 4.7 \((\mathcal{N}[g] \) produces DGNF). If \(\bullet : \bullet \vdash g : \tau \) and \(\mathcal{N}[g] \) returns \(_ \Rightarrow G\), then \(G\) is DGNF.

Proof. Follows from Corollary 4.5, Lemma E.1, and Lemma E.4.

F SOUNDNESS (PROOF)

F.1 An alternative normalization

To make proofs easier, we consider the definition \(\mathcal{N}\), which has the same definition as \(\mathcal{N}\) except for the case of \(\mu \alpha \cdot g\), where we do not substitute \(\alpha\):

\[
\mathcal{N}(\mu \alpha : \tau \cdot g) = \alpha \Rightarrow \{\alpha \rightarrow N \mid n \rightarrow N \in G\} \cup G
\]

where \(\mathcal{N}(g) = n \Rightarrow G\)

While \(\mathcal{N}\) does not return a DGNF grammar, it is easy to see that \(\mathcal{N}\) and \(\mathcal{N}\) defines the same language:

Lemma F.1. If \(\mathcal{N}[g] \) return \(n_1 \Rightarrow G_1\), and \(\mathcal{N}(g) \) return \(n_2 \Rightarrow G_2\), then for all \(w\), \(G_1 \vdash n_1 \Rightarrow^{\ast} w\) if and only if \(G_2 \vdash n_2 \Rightarrow^{\ast} w\).

Proof. By straightforward induction on \(g\).

F.2 Subexpression

The subexpression relation essentially defines a subset relation between the grammars denoted by context-free expressions.

\(g_1 \sqsubseteq g_2\) \hspace{1cm} \text{(Subexpression)}

We can show that what subexpression means in terms of the alternative normalization.

Lemma F.2. If \(g_1 \sqsubseteq g_2\), and \(\mathcal{N}(g_1) \) returns \(n_1 \Rightarrow G_1\), and \(\mathcal{N}(g_2) \) returns \(n_2 \Rightarrow G_2\), then for all \(n \in \text{dom}(G_1), (n \rightarrow N) \in G_1\) if and only if \((n \rightarrow N) \in G_2\).

Proof. By straightforward induction on \(g_1 \sqsubseteq g_2\).

F.3 Proof of soundness

In the following lemma statement, we denote a natural number as \(n\), and the length of a word \(w\) as \(|w|\). The relations \(\gamma \vdash \Gamma\) and \(\delta \vdash \Delta\) mean that \(\gamma \) and \(\delta \) give interpretations (i.e., languages \(L\)) of variables in \(\Gamma\) and \(\Delta\) respectively.
Lemma F.3. Given $\Gamma; \Delta \vdash t : \tau$, and $\gamma \vdash \Gamma$, and $\delta \vdash \Delta$, and $\mathcal{N}(g)$ returns $n \Rightarrow G$, if

1. $g \subseteq g'$, where $\bullet \vdash g' : \tau'$ and $\mathcal{N}(g')$ returns $n' \Rightarrow G'$; and
2. $\forall \alpha \in \text{dom}(\gamma), \forall |w_1| \leq n, w_1 \in \gamma(\alpha)$ if and only if $G' \vdash \alpha \rightsquigarrow^* w_1$; and
3. $\forall \alpha \in \text{dom}(\delta), \forall |w_2| < n, w_2 \in \delta(\alpha)$ if and only if $G' \vdash \alpha \rightsquigarrow^* w_2$,

then $\forall w \leq n, w \in \{g\}_{(y,\delta)}$ if and only if and $G' \vdash n \rightsquigarrow^* w$.

Proof. By first induction on n. The base case of 0 is trivial. In the inductive case, we have that the lemma holds for $|w| < n$, and we want to prove it for $|w| \leq n$.

Now we perform induction on g.

- The cases for $g = t$, $g = \epsilon$, and $g = \bot$ are straightforward.
- $g = \alpha$. Then $\mathcal{N}(\alpha) = n \Rightarrow n \rightarrow \alpha$. By Lemma F.2, we know $(n \rightarrow \alpha) \in G'$, and there is no other production for n in G'.

Since g is well-typed, it must be $\alpha \in \text{dom}(\Gamma)$, and thus $\alpha \in \text{dom}(\gamma)$. Then $\{g\}_{(y,\delta)} = \gamma(\alpha)$. As given, we know that $\forall |w| \leq n, w \in \gamma(\alpha)$ if and only if if $G' \vdash \alpha \rightsquigarrow^* w$.

Since we know $(n \rightarrow \alpha) \in G'$, we have $\forall |w| \leq n, w \in \gamma(\alpha)$ if and only if and only if $G' \vdash n \rightsquigarrow^* w$.

- $g = g_1 \lor g_2$. Then $[g_1 \lor g_2]_{(y,\delta)} = [g_1]_{(y,\delta)} \cup [g_2]_{(y,\delta)}$. According to \mathcal{N}, we have that $\forall |w_1| \leq n, w_1 \in \{g_1\}_{(y,\delta)}$ if and only if $G' \vdash n_1 \rightsquigarrow^* w_1$.

By I.H. on g_1, we have $\forall |w_1| \leq n, w_1 \in \{g_1\}_{(y,\delta)}$ if and only if $G' \vdash n_1 \rightsquigarrow^* w_1$.

By I.H. on g_2, we have the following. Here we use $<$ instead of \leq as its typing context Γ, Δ includes Δ that only has interpretations for $|w_2| < n$.

$\forall |w_2| < n, w_2 \in \{g_2\}_{(y,\delta)}$ if and only if $G' \vdash n_2 \rightsquigarrow^* w_2$.

We first prove the conclusion from left to right. Given $w \leq n$, and $w \in \{g_1 \lor g_2\}_{(y,\delta)}$, it must be $w = w_1 \cdot w_2$ and $w_1 \in \{g_1\}_{(y,\delta)}$ and $w_2 \in \{g_2\}_{(y,\delta)}$. As $g_1 \cdot g_2$ is well-typed, we know $\tau_1.\text{Null} = \text{false}$, so w_1 cannot be empty, and thus w_2 must have length $< n$. So following I.H., and that n denotes the same language as $n_1 n_2$, we have $G' \vdash n \rightsquigarrow^* w_1 \cdot w_2$.

Now we move to the conclusion from right to left. Given $G' \vdash n \rightsquigarrow^* w$, it must be $w = w_1 \cdot w_2$ and $G' \vdash n_1 \rightsquigarrow^* w_1$, and $G' \vdash n_2 \rightsquigarrow^* w_2$. As $g_1 \cdot g_2$ is well-typed, we know that $\tau_1.\text{Null} = \text{false}$, so by Lemma 4.2, w_1 cannot be empty, and thus w_2 must have length $< n$. So following I.H., we have $w_1 \in \{g_1\}_{(y,\delta)}$ and $w_2 \in \{g_2\}_{(y,\delta)}$, and thus $w \in \{g_1 \lor g_2\}_{(y,\delta)}$.

\[\frac{\Delta \vdash t : \tau}{\delta, \Gamma \vdash \Delta, \alpha : \tau} \]

L = τ \Downarrow NULL(\(LL\)) \Rightarrow τ. NULL \wedge FIRST(\(L\)) \subseteq τ. FIRST \wedge FLAST(\(L\)) \subseteq τ.FLAST
• \(g = \mu \alpha . g_1 \). Then \([\mu \alpha . g_1]_{(y,\delta)} = [g_1]_{(y,\delta, [\mu \alpha . g_1]_{(y,\delta)} / \alpha)}\).

We have
\[
\mathcal{N}(\mu \alpha : \tau . g_1) = \alpha \Rightarrow \{ \alpha \to N \mid n \to N \in G \} \cup G
\]
\[
\mathcal{N}(g_1) = n \Rightarrow G
\]

According to typing, we have \(\Gamma; \Delta, \alpha : \tau \vdash g_1 : \tau\).

According to the I.H. on \(n\), we have
\[
\forall w' < n, w' \in [\mu \alpha . g_1]_{(y,\delta)} \text{ if and only if and } G' + \alpha \leadsto^* w'.
\]

We have \((y, \delta, [\mu \alpha . g_1]_{(y,\delta)} / \alpha) = [\mu \alpha . g_1]_{(y,\delta)}\).

That means we have
\[
\forall \beta \in \text{ dom } (\delta, [\mu \alpha . g_1]_{(y,\delta)} / \alpha),
\]
\[
\forall |w'| < n, w' \in (\delta, [\mu \alpha . g_1]_{(y,\delta)} / \alpha)(\beta) \text{ if and only if } G' + \text{ beta } \leadsto^* w'.
\]

Now by I.H. on \(g_1\),
\[
\forall w \leq n, w \in [g_1]_{(y,\delta, [\mu \alpha . g_1]_{(y,\delta)} / \alpha)} \text{ if and only if } G' + n \leadsto^* w
\]
equivalent to
\[
\forall w \leq n, w \in [\mu \alpha . g_1]_{(y,\delta)} \text{ if and only if } G' + n \leadsto^* w.
\]

We have \(\alpha \to N \in \mathcal{N}(\mu \alpha . g_1)\), where \(n \to N \in \mathcal{N}(\mu \alpha . g_1)\). By Lemma F.2, we have
\[
\alpha \to N \in G' \text{ and there is no other productions for } \alpha.
\]

Therefore,
\[
\forall w \leq n, w \in [\mu \alpha . g_1]_{(y,\delta)} \text{ if and only if } G' + \alpha \leadsto w.
\]

\(\square\)

Theorem 4.8 (Soundness). Given \(\bullet \bullet \vdash g : \tau \) and \(\mathcal{N}[g]\) returns \(n \Rightarrow G\), we have \(w \in [g]_\bullet\) if and only if \(G \vdash n \leadsto w\) for any \(w\).

Proof. Follows by Lemma F.3, making use of Lemma F.1.

\(\square\)