
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Fusing Lexing and Parsing

ANONYMOUS AUTHOR(S)

Lexers and parsers are typically defined separately and connected by a token stream. This separate definition

is important for modularity, but harmful for performance.

We show how to fuse together separately-defined lexers and parsers, drastically improving performance

without compromising modularity. Our staged parser combinator library, flap, provides a standard parser

combinator interface, but generates specialized token-free code that runs several times faster than ocamlyacc
on a range of benchmarks.

1 INTRODUCTION
Software systems are easiest to understand when their components have clear interfaces that hide

internal details. For example, a typical compiler includes separate lexer and parser components

that communicate via a token stream.

Unfortunately, while interfaces improve clarity, they can harm performance, since hiding internal

details reduces optimization opportunities. Parsers exemplify this tension: the token stream interface

isolates parser definitions from character syntax details like whitespace, but it also carries overheads

that reduce parsing speed.

Parsers built for efficiency avoid backtracking: only the initial token of the stream is typically

needed at any time. However, even with this restriction, materializing and case-switching on tokens

comes with a cost.

Contributions. This paper presents a transformation that significantly improves the performance

of parsing by entirely eliminating tokens and fusing together lexers and parsers. Specifically, we

present lexer-parser fusion using a parser combinator library, flap (fused lexing and parsing). The

lexers and parsers are built using standard tools: Brzozowski’s derivatives [Brzozowski 1964] for

lexers (as reformulated by Owens et al. [2009]), and Krishnaswami and Yallop’s typed algebraic

parser combinators [Krishnaswami and Yallop 2019]. We review these standard tools in Section 2.

We present the following contributions:

• We proposeDeterministic GreibachNormal Form, a variant of Greibach Normal Form [Greibach

1965] for deterministic languages that captures syntactically the constraints enforced by the

types in Krishnaswami and Yallop’s typed context-free expressions (Section 3.1). We then

formalize a translation from typed context-free expressions into Deterministic Greibach Nor-

mal Form, which serves as a basis for follow-up optimizations. We prove that the translation

is well-defined and preserves the semantics of context-free expressions (Section 4).

• We present lexer-parser fusion, showing how to transform a separately-defined lexer and

a normalized parser into a single piece of code that is specialized for calling contexts,

entirely avoids materializing tokens, and case-switches only on individual characters, not

on intermediate structures (Section 5).

• We implement our techniques as a parser combinator library flap and use multi-stage

programming to generate efficient token-free code from the fused grammar (Section 6).

• We demonstrate the performance of flap, by showing that lexer-parser fusion results in

efficient code that runs several times faster than code produced by standard tools such

as ocamllex, ocamlyacc and menhir. We also assess other metrics, such as code size and

compilation time (Section 7).

Finally, Section 8 surveys related work and Section 9 sets out some directions for further devel-

opment.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

parser (§2.3) first-order typed normalized (§4)

lexer (§2.2) specialized (§3.3)

fused (§5) staged (§6.4)

A Typed, Algebraic Approach to Parsing (2019)

Regular-Expression

Derivatives Reexamined (2009)

Fusin
g Lex

ing a
nd P

arsin
g (this paper)

Fig. 1. Architecture of flap

2 BACKGROUND: LEXER AND PARSER COMBINATORS
Figure 1 presents the novel code generation architecture of flap. As the figure shows, flap’s

interface is built from standard lexer [Owens et al. 2009] and parser combinators [Krishnaswami

and Yallop 2019] drawn from existing work. This section gives an overview of those combinators.

2.1 Derivatives of regular expressions
Since lexical syntax is typically regular, lexers are typically defined using regular expressions

(regexes). One particularly elegant formulation of regex matching, introduced almost six decades

ago [Brzozowski 1964], is based on the idea of derivatives.

The derivative of a regex 𝑟 with respect to a character 𝑐 is another regex 𝜕𝑐 𝑟 that matches 𝑠

exactly when 𝑟 matches 𝑐 · 𝑠 . For example, the regex (𝑏 |𝑐)+ matches a sequence of one or more

occurrences of 𝑏 and 𝑐 in any order. For a string that begins with 𝑐 , either an empty suffix or some

further sequence of 𝑏 and 𝑐 is acceptable, and so we have:

𝜕𝑐 (𝑏 |𝑐)+ = (𝑏 |𝑐)∗

The full rules, shown in Figure 2, are defined inductively on the syntax of regexes, with cases for the

standard constructs ⊥ (which matches nothing), 𝜖 (which matches only the empty string), characters

𝑏 and 𝑐 , sequencing, alternation, and Kleene star, and for the less commonly-supported constructs

intersection and negation. We refer the reader to Owens et al. [2009] for a fuller exposition.

There is a simple relationship between derivatives and automata for regular expressions: one

way to construct an automaton is to take regular expressions 𝑟 as states, and add a transition from

𝑟𝑖 to 𝑟 𝑗 via character 𝑐 whenever 𝜕𝑐 𝑟𝑖 = 𝑟 𝑗 . For example, here is an automaton for (𝑏 |𝑐)+:

(𝑏 |𝑐)+start (𝑏 |𝑐)∗b

c

b

c

In this example, the transitions all target the same state, since 𝜕𝑏 (𝑏 |𝑐)+ = 𝜕𝑐 (𝑏 |𝑐)+ = 𝜕𝑏 (𝑏 |𝑐)∗ =
𝜕𝑐 (𝑏 |𝑐)∗ = (𝑏 |𝑐)∗. Additionally, since that state also accepts the empty string, it is marked as an

accepting state for the whole automaton.

Constructing an automaton is a common way to implement a regex matcher, and derivatives

make it straightforward to built an automaton that is deterministic and compact. This process

often involves representing the automaton as a graph or table. Alternatively, multi-stage program-

ming [Taha 1999], makes it possible to directly generate code embodying the automaton.

Regex matching is an archetypal example of staged computation [Davies and Pfenning 1996]

as found in languages like BER MetaOCaml [Kiselyov 2014]: although matching is a function of

two inputs, regex and string, since the former is typically available first, it can be used to construct

specialized code for processing the latter. In other words, while an unstaged matcher might have

the following two-argument OCaml type

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Fusing Lexing and Parsing 1:3

regular expression 𝑟 F ⊥ | 𝜖 | 𝑐 | 𝑟 · 𝑠 | (𝑟 | 𝑠) | 𝑟∗ | (𝑟 & 𝑠) | ¬𝑟
𝜕𝑐 ⊥ = ⊥
𝜕𝑐 𝜖 = ⊥
𝜕𝑐 𝑏 = ⊥

𝜕𝑐 𝑐 = 𝜖

𝜕𝑐 (𝑟 · 𝑠) = 𝜕𝑐 𝑟 · 𝑠 | 𝜈 (𝑟) · 𝜕𝑐 𝑠
𝜕𝑐 (𝑟 | 𝑠) = 𝜕𝑐 𝑟 | 𝜕𝑐 𝑠

𝜕𝑐 𝑟∗ = 𝜕𝑐 𝑟 · 𝑟∗
𝜕𝑐 (𝑟 & 𝑠) = 𝜕𝑐 𝑟 & 𝜕𝑐 𝑠

𝜕𝑐 ¬𝑟 = ¬(𝜕𝑐 𝑟)

Fig. 2. Derivatives of regular expressions (The nullability function 𝜈 (𝑟) expands to 𝜖 if 𝑟 matches 𝜖 and ⊥
otherwise).

val matchr : regex → string → bool

a staged matcher is instead a function of one argument which generates code for another function

of one argument:

val smatchr : regex → (string → bool) code

For the regex (𝑏 |𝑐)+, smatchr might generate code found in the corresponding automaton:

≪ let rec bcplus s i = (i <> length s) && (* (𝑏 |𝑐)+ *)

match s.[i] with 'b'|'c' → bcstar s (i+1)

| _ → false

and bcstar s i = (i = length s) || (* (𝑏 |𝑐)∗ *)

match s.[i] with 'b'..'c' → bcstar s (i+1)

| _ → false

in fun s → bcplus s 0 ≫
The quotation notation ≪ 𝑒 ≫ in this example indicates a typed code value; it is one of MetaOCaml’s

two fundamental constructs (along with antiquotation ˜𝑒) for staging. The function for each regex

𝑟 and string 𝑠 follows a simple pattern, returning true if 𝑟 is nullable and 𝑠 is empty, and moving to

the function for 𝜕𝑐 𝑟 if 𝑠 begins with 𝑐 .

2.2 Lexing with derivatives
Regexes built from derivatives are convenient for building lexers. A lexer is typically defined as an

ordered mapping from regular expressions to actions, where an action might return a token, raise

an error or invoke the lexer recursively to skip over some input. Figure 3a gives an example lexer

with four actions: three of which return tokens atom, lpar and rpar, and one of which skips over

whitespace.

Using MetaOCaml it is straightforward to express lexers as functions that accept lists of regex-

action pairs and return code:

type 'a action = Skip | Return of 'a code

val slex : (re * 'a action) list → (string → 'a) code

In practice, it is useful to extend these definitions with additional actions (such as Error) and addi-

tional information (such as the position of matched strings), which we omit here for succinctness.

Regex derivatives extend naturally to lexers by matching the input string against multiple regexes

in parallel. Figure 3b is the automaton for matching one token with the sexp lexer, where each

state corresponds to a vector of regexes, one for each lexer rule. The transition function 𝜕𝑐 acts

pointwise on the regex vector. Return rules correspond to labeled accepting states, and the Skip
rule resets the vector to its initial state.

As Owens et al. [2009] show, lexers based on derivatives provide a practical basis for real-world

lexing tools such as ml-ulex and the PLT Scheme scanner generator. One particularly useful feature

for implementing lexers is the support derivatives provide for negation and disjunction, which make

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

id ⇒ Return atom

space ⇒ Skip
(⇒ Return lpar

) ⇒ Return rpar

id

def

= [a-z]+

space

def

= ␣ | \n

(a) S-expression lexer

[a-z]+
␣ |\n
(
)

start

⊥
⊥
𝜖

⊥

[a-z]*
⊥
⊥
⊥

⊥
⊥
⊥
𝜖

r
p
a
r

l
p
a
r a
t
o
m

a . . . z

a . . . z

(

)

␣ \n

(b) An automaton for matching one token

Fig. 3. Example: S-expression lexer and an automaton

it straightforward to transform implicitly-ordered clauses for regexes 𝑟 and 𝑠 into order-independent

disjoint clauses for 𝑟 and ¬(𝑟)&𝑠 with the same semantics.

2.3 Parsing with typed context-free expressions
Parser combinators, introduced almost four decades ago by Wadler [1985], provide an elegant

way to define parsers using functions. A parser combinator library provides functions denoting

token-matching, sequencing, disjunction, and so on, allowing the library user to describe a parser

by combining these functions in a way that reflects the structure of the corresponding grammar.

Here are partial interfaces for constructing both regexes (type re) and parsers (type pa) in this way:

(* Regex combinators *)

type re

val chr: char → re

val (>>>): re → re → re

val star: re → re

. . .

(* token match *)

(* sequence *)

(* recursion *)

. . .

(* Parser combinators *)

type 'a pa

val tok: 'a tok → 'a pa

val (>>>): 'a pa → 'b pa → ('a * 'b) pa

val fix: ('a pa → 'a pa) → 'a pa

. . .

Both interfaces provide functions for token matching, sequencing and recursion. However, there

are some important differences: first, regexes act on characters, while parsers act on tokens (type

tok, a parameter of the library); second, parsers provide a general-purpose recursion operator fix,

while regexes offer only the more restrictive Kleene star; finally, the parser type is parameterized,

allowing parsers to construct and return suitably-typed syntax trees.

The earliest parser combinator libraries represented nondeterministic parsers, with support for

arbitrary backtracking and multiple results. Parsers defined in this way enjoyed various pleasant

properties (such as a rich equational theory), but suffered from potentially disastrous performance.

In a recent departure from the nondeterministic tradition, Krishnaswami and Yallop [2019] define

typed context-free expressions, whose types track properties such as first sets and nullability in

order to preclude nondeterminism and ensure linear-time parsing using a single token of lookahead.

Krishnaswami and Yallop’s design provides the standard set of parser combinators (as defined

above), but adds an additional type-checking step. They further apply multi-stage programming to

ensure that type-checking is completed before parsing begins, and to generate specialized parsing

code based on type information, leading to performance competitive with ocamlyacc.

Figure 4 summarizes Krishnaswami and Yallop’s type system. A type is a triple recording

nullability, the first set, and FLast (analogous to the follow set). There is one typing rule for each

combinator (e.g. sequencing𝑔1 ·𝑔2 and recursion 𝜇𝛼 : 𝜏 .𝑔); types are constructed using corresponding

combinators (e.g. 𝜏1 · 𝜏2). The two contexts Γ and Δ restrict the positions in which variables can

occur to disallow left recursion, and the side conditions separation 𝜏1 ⊛ 𝜏2 and apartness 𝜏1 # 𝜏2

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Fusing Lexing and Parsing 1:5

Context-free expression 𝑔 F 𝜖 | 𝑡 | ⊥ | 𝛼 | 𝑔1 · 𝑔2 | 𝑔1 ∨ 𝑔2 | 𝜇𝛼 : 𝜏 . 𝑔

Types 𝜏 ∈ {Null : 2; First : P(Σ); FLast : P(Σ)}

𝜏𝜖 = {Null = true; First = ∅; FLast = ∅}
𝜏𝑡 = {Null = false; First = {𝑡}; FLast = ∅}
𝜏⊥ = {Null = false; First = ∅; FLast = ∅}

𝜏1 · 𝜏2 =


Null = 𝜏1 .Null ∧ 𝜏2 .Null
First = 𝜏1 .First ∪ 𝜏1 .Null ?𝜏2 .First
FLast = 𝜏2 .FLast ∪ 𝜏2 .Null ? (𝜏2 .First ∪ 𝜏1 .FLast)

𝜏1 ∨ 𝜏2 =


Null = 𝜏1 .Null ∨ 𝜏2 .Null
First = 𝜏1 .First ∪ 𝜏2 .First
FLast = 𝜏1 .FLast ∪ 𝜏2 .FLast

𝜏1 ⊛ 𝜏2
def

= 𝜏1 .FLast ∩ 𝜏2 .First = ∅ ∧ ¬𝜏1 .Null
𝜏1 # 𝜏2

def

= (𝜏1 .First ∩ 𝜏2 .First = ∅) ∧ ¬(𝜏1 .Null ∧ 𝜏2 .Null)
𝑏 ? 𝑆

def

= if 𝑏 then 𝑆 else ∅

Γ;Δ ⊢ 𝜖 : 𝜏𝜖 Γ;Δ ⊢ 𝑡 : 𝜏𝑡

Γ;Δ ⊢ ⊥ : 𝜏⊥

𝛼 : 𝜏 ∈ Γ

Γ;Δ ⊢ 𝛼 : 𝜏

Γ;Δ, 𝛼 : 𝜏 ⊢ 𝑔 : 𝜏

Γ;Δ ⊢ 𝜇𝛼 : 𝜏 . 𝑔 : 𝜏

Γ;Δ ⊢ 𝑔1 : 𝜏1
Γ,Δ; • ⊢ 𝑔2 : 𝜏2

𝜏1 ⊛ 𝜏2

Γ;Δ ⊢ 𝑔1 · 𝑔2 : 𝜏1 · 𝜏2

Γ;Δ ⊢ 𝑔1 : 𝜏1
Γ;Δ ⊢ 𝑔2 : 𝜏2 𝜏1 # 𝜏2

Γ;Δ ⊢ 𝑔1 ∨ 𝑔2 : 𝜏1 ∨ 𝜏2

Fig. 4. Krishnaswami and Yallop’s type system for context-free expressions

on the rules for sequencing and alternation reject ambiguous grammars, ensuring respectively

that strings matched by sequenced parsers have a unique decomposition, and that the languages

matched by alternated parsers do not overlap.

As an example, consider the following well-typed s-expression (we often omit 𝜏 in 𝜇𝛼 : 𝜏 . 𝑔):

𝜇 sexp .(lpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps) · rpar) ∨ atom

The following code shows how to use Krishnaswami and Yallop’s parser combinators to define this

grammar, using a token type with lpar, rpar and atom constructors, with the explicit fixed point

represented using the Kleene star:

fix (fun sexp → (tok lpar >>> star sexp >>> tok rpar)

$ fun p →≪ Sexp (snd (fst ~p)) ≫
<|> tok atom $ fun s →≪ Atom ~s ≫)

The fix, tok, >>> and star constructors are from the parser interfaces. The example additionally

uses alternation <|> and map $, which transforms the parsing result via a user-defined function,

and MetaOCaml’s quotation and antiquotation constructs ≪ 𝑒𝑥𝑝 ≫ and ~𝑒𝑥𝑝 to build code values.

3 OVERVIEW
The algorithm for parsing with typed context-free expressions introduced by Krishnaswami and

Yallop is efficient at a high level, since it uses only a single token of lookahead and its execution

time is linear in the length of its input. However, it is less efficient at a low level, since it examines

each token multiple times: once at each alternation in the grammar, and then once again at the

token combinator.

As an example, consider again 𝜇 sexp .(lpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps) · rpar) ∨ atom. In

the sub-grammar 𝜖 ∨ sexp · sexps, neither alternative explicitly matches a token. Determining

which branch to take therefore requires analysing the types to calculate whether the next tokens

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

in the input fall into the First set of either 𝜖 or sexp · sexps. Furthermore, once the token has

been examined and the branch taken, the parsing algorithm must examine it a second time. For

example, since lpar ∈ First(sexp · sexps), the token lpar causes the parsing algorithm to switch

to the sexp · sexps branch. After the switch, parsing again uses the typing information for the

selected branch to determine which of sexp’s sub-branches to take (i.e. lpar or atom). Eventually,

the parsing algorithm encounters the lpar node in the grammar, and the token is consumed. To

address these low-level inefficiencies, Krishnaswami and Yallop applied a variety of multi-stage

programming techniques, such as CPS conversion [Bondorf 1992; Nielsen and Sørensen 1995] to

improve the results of staging, ultimately achieving performance that is competitive with ocamllex
and ocamlyacc.

In this work, we take a more systematic approach, making use of the guarantees offered by

the types to transform grammars into a normal form that is amenable to a sequence of further

optimizations. More precisely,

(1) We first propose a novel normal form, Deterministic Greibach Normal Form (DGNF), which

gathers together the places in the grammar that involve branching on tokens, allowing

tokens to be discarded immediately after inspection (Section 3.1).

(2) We then formalize a normalization algorithm that traverses a context-free expression and

returns a DGNF grammar. Normalization works well for well-typed context free expressions,

and the resulting DGNF grammar sets the basis for follow-up optimizations (Section 3.2).

(3) Based on the normal form, we present a fusion process that ultimately eliminates the need

to materialize tokens altogether. The fusion algorithm starts with a separately-defined lexer

and parser, connected together via tokens, and produces entirely token-free code, in which

the only branches involve inspecting individual characters (Section 3.3).

(4) Finally, flap uses MetaOCaml’s staging facilities to generate code for the fused grammar.

Since the normalized grammar representation is already amenable to generating optimized

code, flap does not need the sophisticated techniques used by Krishnaswami and Yallop

[2019] (Section 3.4).

As we shall see, these optimizations make parsers built from typed context-free expressions

significantly more efficient than both ocamlyacc and Krishnaswami and Yallop’s system (Section 7).

The running example. This section illustrates flap’s key ideas through a running example given

in Figure 5. Figure 5a presents the grammars that will be used throughout this paper. Figure 5b and

5c repeat our previous s-expression lexer and example grammar respectively for better readability.

From now on we use colors to distinguish different grammars. Regular expressions 𝑟 include

⊥ for nothing, 𝜖 for the empty string, characters 𝑐 , sequencing 𝑟 · 𝑠 , alternation 𝑟 | 𝑠 , Kleene star

𝑟∗, intersection 𝑟 & 𝑠 , and negation ¬𝑟 . Lexers 𝐿 are a set of regex-action pairs where each action

either returns a token or skips. Context-free expressions 𝑔 are ⊥ for the empty language, 𝜖 for

the language containing only the empty string, 𝑡 which matches the language containing only

the single-element string 𝑡 , variables 𝛼 , sequences 𝑔1 · 𝑔2, unions 𝑔1 ∨ 𝑔2, and the least fixed point

operator 𝜇𝛼 : 𝜏 .𝑔. We will introduce the normal form grammar 𝐺 and fused grammar 𝐹 later.

3.1 Deterministic Greibach Normal Form
Like Krishnaswami and Yallop’s system, flap first ensures that input grammars are well-typed

according to the rules in Figure 4. It then applies a normalization algorithm that transforms well-

typed grammars into a novel normal form that avoids the need for repeated branching.

Specifically, to ensure that grammars can be used for deterministic parsing with a single token of

lookahead, we introduce Deterministic Greibach Normal Form (DGNF), a variant of Greibach Normal

Form (GNF) [Greibach 1965]. More precisely, in GNF, all the productions of a grammar take the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Fusing Lexing and Parsing 1:7

regular expression 𝑟 F ⊥ | 𝜖 | 𝑐 | 𝑟 · 𝑠 | (𝑟 | 𝑠) | 𝑟∗ | (𝑟 & 𝑠) | ¬𝑟
lexer 𝐿 F { r ⇒ Return 𝑡 } ∪ { r ⇒ Skip }

context-free expression 𝑔 F ⊥ | 𝜖 | 𝑡 | 𝛼 | 𝑔1 · 𝑔2 | 𝑔1 ∨ 𝑔2 | 𝜇𝛼 : 𝜏 . 𝑔

normal form 𝑁 F 𝜖 | 𝑡 𝑛 | 𝛼 𝑛
normal form grammar 𝐺 F {𝑛 → 𝑁 }

fused grammar 𝐹 F {𝑛 → r 𝑛 } ∪ {𝑛 →?𝑟 }

(a) Syntax of lexers, forms, and grammars in flap

id ⇒ Return atom

space ⇒ Skip
(⇒ Return lpar

) ⇒ Return rpar

id

def

= [a-z]+

space

def

= ␣ | \n

(b) S-expression lexer (2.2)

(b)

(c) (d)

(e)

normalizing

fusing

𝜇 sexp .(lpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps) · rpar) ∨ atom

(c) A well-typed s-expression grammar (2.3)

sexp ::= lpar sexps rpar

| atom

rpar ::= rpar sexps ::= lpar sexps rpar sexps

| atom sexps

| 𝜖

(d) The above s-expression grammar in Deterministic Greibach Normal Form (3.2)

id ⇒ Return atom

space ⇒ Skip
(⇒ Return lpar

) ⇒ Return rpar

sexp ::= (sexps rpar

| id

| space sexp

id ⇒ Return atom

space ⇒ Skip
(⇒ Return lpar

) ⇒ Return rpar

rpar ::=)
| space rpar

id ⇒ Return atom

space ⇒ Skip
(⇒ Return lpar

) ⇒ Return rpar

sexps ::= (sexps rpar sexps

| id sexps

| space sexps

| ?¬
(
id | space | (

)
(e) Fusing drops lexing rules that return non-matchable tokens (top); the fused s-expr grammar (bottom) (3.3)

Fig. 5. flap: running example of an s-expression. Grammars in the example are written in BNF form.

form 𝑛 → 𝑡𝑛1𝑛2 . . . 𝑛𝑘 (𝑘 ≥ 0) where 𝑛 and 𝑛𝑖 are nonterminals and 𝑡 is a terminal. DGNF further

imposes the following syntactic constraints:

Definition 1 (Deterministic Greibach Normal Form (Syntax)). A grammar𝐺 is in Deter-

ministic Greibach normal form if all productions are of form 𝑛 → 𝑡𝑛1𝑛2 . . . 𝑛𝑘 (𝑘 ≥ 0), and moreover,

• (Determinism) for any pair of a nonterminal 𝑛 and a terminal 𝑡 , there is at most one production

beginning 𝑛 → 𝑡𝑛1𝑛2 . . . 𝑛𝑘 ;

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

• (Guarded 𝜖-productions) Additional, each nonterminal may have an optional 𝜖-production

𝑛 → 𝜖 , with the proviso that the 𝜖-production may only be used when no terminal symbol in

the non-𝜖 productions matches the input string.

Figure 5a includes the definition of normal form and normal form grammar, where normal

form 𝑁 is either an epsilon 𝜖 or a terminal followed by a list of nonterminals 𝑡 𝑛, with 𝑛 denoting

𝑛1𝑛2 . . . 𝑛𝑘 (𝑘 ≥ 0). Note that 𝑁 also includes a special internal form 𝛼 𝑛, highlighted with gray ,

which is explained in Section 3.2. The normal form grammar 𝐺 is a set of productions that map

nonterminals to normal forms.

Intuitively speaking, the constraints on the DGNF grammar are a syntactic analogue of the

constraints enforced by the types in Krishnaswami and Yallop’s typed context-free expressions. The

constraints have a simple practical motivation in parsers. That is, each 𝑛 → 𝑡𝑛1𝑛2 · · ·𝑛𝑘 production

represents one branch that matches a distinct terminal 𝑡 , and guarded 𝜖-productions represent an

else branch that is taken if none of the active productive branches matches the input.

Examples. We consider a few examples. For readability, we write the grammar in BNF form, e.g.,

𝑛 ::= a𝑛1𝑛2 | b corresponds to 𝑛 → a𝑛1𝑛2 and 𝑛 → b.

(1) 𝑛 ::= a𝑛1𝑛2
| b

𝑛1 ::= c

𝑛2 ::= d

(2) 𝑛 ::= ab𝑛1
𝑛1 ::= c

(3) 𝑛 ::= a𝑛1
| a𝑛2

𝑛1 ::= c

𝑛2 ::= d

(4) 𝑛 ::= a𝑛1𝑛2
𝑛1 ::= c

| 𝜖

𝑛2 ::= c

Here (1) is in DGNF, while (2) (3) are not. In (2), 𝑛 starts with two terminals, while in (3), 𝑛 has two

productions starting with a, violating the determinism condition.

(4) is the most subtle case. Consider matching 𝑛 with ac. First, 𝑛 expands to a𝑛1𝑛2. But should

𝑛1 then expand to c or 𝜖? In a general nondeterministic grammar, it is impossible to tell simply by

looking ahead at the next token c: we may first consider 𝑛1 → c and, finding that 𝑛2 fails to match,

backtrack to the other branch to consider 𝑛1 → 𝜖 and 𝑛2 → c and succeed. However, the proviso

in Definition 1 eliminates this choice: only 𝑛1 → c applies, and so the grammar does not match ac.

In fact, the semantics of DGNF (Section 4.2) will rule out (4) as a DGNF grammar, ensuring that

parsing is deterministic.

As the examples demonstrate, the determinism and guarded 𝜖-production conditions ensure that

there is never any ambiguity about whether a production rule applies during parsing.

3.2 Normalization
We formalize a normalization algorithm, which, given any well-typed context-free expression, turns

it into a DGNF grammar. As an example, Figure 5d presents the result in BNF form of normalizing

the s-expression grammar in Figure 5c. It is straightforward to check that the normalized grammar

represents exactly the same language as the original context-free expression.

Importantly, the normalized DGNF presentation addresses the problem of repeated branching

discussed in the beginning of Section 3. With this normalized form, parsing a sexps involves reading

the next token, and branching to the first, second or third branch depending on whether the token

is lpar, atom or something else. In the first two cases the token is consumed immediately, and

parsing moves on to the next token in the input. The last case is somewhat more costly, since the

token may be needed again immediately afterwards, and more care is needed to avoid wasted work.

Section 4 discusses the normalization algorithm, which traverses a context-free expression, and

builds grammar productions according to the expression structure. As we will see, defining the

algorithm poses significant challenges, particularly around fixed points. When normalizing 𝜇𝛼. 𝑔,

although we do not yet know the normalized grammar for 𝛼 , we must proceed with normalizing 𝑔

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Fusing Lexing and Parsing 1:9

regardless. In this case, it is necessary to “tie the knot” when the result of normalizing 𝑔 becomes

available, which requires us to introduce an intermediate non-DGNF form 𝑛 → 𝛼 𝑛, causing com-

plication and subtleties during normalization. This non-DGNF form is purely internal, and does

not appear in the normalization results of closed expressions.

Finally, great care needs to be taken to guarantee that normalization produces indeed DGNF

grammars. That requires us to ensure that the normalization captures the constraints enforced by

the types in Krishnaswami and Yallop’s system. We prove that normalization is correct, and that

normalized grammars preserve the denotational semantics of context-free expressions (Section 4).

3.3 Fusion
Next, flap applies lexer-parser fusion, one of our central contributions. Fusion acts on a lexer and

a normalized parser, connected together via tokens, and products a grammar representation that is

entirely token-free, in which the only branches involve inspecting individual characters.

Figure 5a defines the syntax of fused grammars, where the fused form 𝑓 is either a regex followed

by a list of nonterminals 𝑟 𝑛, or a single-token lookahead ?𝑟 for tokens matched by 𝑟 . The fused

grammar 𝐹 is a set of productions {𝑛 → f }.
We illustrate the key idea of fusion through Figure 5e, which fuses the s-expression lexer in

Figure 5b and the normalized parser in Figure 5d. As the first step, the fusion algorithm implicitly

specializes the lexer to each nonterminal 𝑛 in the normalized grammar, and lexing rules that return

tokens not in productions for the nonterminal 𝑛 are discarded. We take rpar as an example: the rpar

nonterminal has only a single production, which begins with the terminal rpar. We then look at

the lexing rules, and discard those rules that do not return rpar. However, the skip rule is retained,

since skipped characters can precede any token. Then, the algorithm fuses the lexing rules and the

parsing rules, by substituting the tokens in the parsing rules by regexes in the lexing rules that

return corresponding tokens. The bottom of Figure 5e presents the fused grammar for rpar, which

has two branches. The first branch fuses lexing and parsing, by having the original token rpar

replaced with the regex). The second branch is an extra production corresponding to the skip rule

in the lexer, allowing rpar to match an arbitrary number of space. Notably, after fusion rpar now

directly matches space or), without referring to the token rpar.

The bottom of Figure 5e presents the complete result of fusing the s-expression lexer and

normalized grammar. Like the case for rpar, the tokens atom, lpar and rpar in the grammar have

been replaced with the regular expressions id, (and) associated with those tokens in the lexer.

Moreover, for each nonterminal 𝑛 there is an extra production 𝑛 ::= space 𝑛, corresponding to the

skip rule in the lexer. Finally, the 𝜖-production sexps → 𝜖 has been replaced with a lookahead rule

sexp →?¬
(
id | space | (

)
, consisting of the complement of the three regular expressions that

appear at the start of the right hand side of the other productions.

Normalization allows the fusion algorithm to be defined concisely (Section 5). In particular,

the constraints on the positions of terminals make it straightforward to fuse the lexing rules into

the grammar without disrupting its structure. More importantly, the fused grammar inherits the

properties of DGNF: the productions of a nonterminal start with distinct regexes, and an optional

lookahead rule may only be used when no regexes in other productions match the input string.

In summary, fusion transforms a separately-defined lexer and a normalized parser into branches

on individual characters, entirely eliminating intermediate tokens. As Section 7 shows, fusion

significantly improves the performance of parsing. Furthermore, Section 7.3 suggests that the size

increase resulting from normalization and fusion in flap is relatively modest, and Section 7.4

reports that compilation times are sufficiently low for interactive use.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

normal form 𝑁 F 𝜖 | 𝑡 𝑛 | 𝛼 𝑛
normal form grammar 𝐺 F {𝑛 → 𝑁 }

NJ𝑔 K returns 𝑛 ⇒ 𝐺 , with a grammar 𝐺 and the start nonterminal 𝑛

Each rule allocates a fresh nonterminal 𝑛, except for rule (fix), which allocates a fresh 𝛼

(epsilon) NJ 𝜖 K = 𝑛 ⇒ {𝑛 → 𝜖 }
(token) NJ 𝑡 K = 𝑛 ⇒ {𝑛 → 𝑡 }
(bot) NJ⊥ K = 𝑛 ⇒ ∅
(seq) NJ𝑔1 · 𝑔2 K = 𝑛 ⇒ {𝑛 → 𝑁 1 𝑛2 | 𝑛1 → 𝑁 1 ∈ 𝐺1 } ∪𝐺1 ∪𝐺2

where NJ𝑔1 K = 𝑛1 ⇒ 𝐺1 ∧ NJ𝑔2 K = 𝑛2 ⇒ 𝐺2

(alt) NJ𝑔1 ∨ 𝑔2 K = 𝑛 ⇒ {𝑛 → 𝑁 1 | 𝑛1 → 𝑁 1 ∈ 𝐺1 } ∪ {𝑛 → 𝑁 2 | 𝑛2 → 𝑁 2 ∈ 𝐺2 } ∪𝐺1 ∪𝐺2

where NJ𝑔1 K = 𝑛1 ⇒ 𝐺1 ∧ NJ𝑔2 K = 𝑛2 ⇒ 𝐺2

(fix) NJ 𝜇𝛼. 𝑔 K = 𝛼 ⇒ { 𝛼 → 𝑁 | 𝑛 → 𝑁 ∈ 𝐺 } (1)
∪ {𝑛′ → 𝑁 𝑛′ | 𝑛′ → 𝛼 𝑛′ ∈ 𝐺 ∧ 𝑛 → 𝑁 ∈ 𝐺 } (2)
∪ 𝐺\𝑛′→𝛼 𝑛′ (3)

where NJ𝑔 K = 𝑛 ⇒ 𝐺

𝐺\𝑛′→𝛼 𝑛′ is 𝐺 with all 𝑛′ → 𝛼 𝑛′ removed for any 𝑛′ and 𝑛′

(var) NJ𝛼 K = 𝑛 ⇒ {𝑛 → 𝛼 }

Fig. 6. Normalization of well-typed context-free expressions.

3.4 Staging
In the last step, flap uses MetaOCaml’s staging facilities to generate code for the fused gram-

mar. The normalized grammar representation used in flap makes this process comparatively

straightforward; it does not involve sophisticated optimization techniques such as the binding-time

improvements applied by Krishnaswami and Yallop [2019]. Furthermore, flap does not rely on

compiler optimizations to further simplify the code it generates; instead, it directly generates

efficient code, containing no indirect calls, no higher-order functions and no allocation, except

where these elements are inserted by the user of flap in semantic actions.

Specifically, the staging step in flap generates one function for each parser state (i.e. for each

pair of a nonterminal and a regex vector), following a parsing algorithm with fused grammars,

but eliminating information that is statically known, such as the nullability and derivatives of the

regexes associated with each state.

Section 6 presents the algorithm underlying flap’s staged parsing implementation, and Sec-

tion 6.5 describes the implementation itself in more detail.

4 NORMALIZING CONTEXT-FREE EXPRESSIONS
This section presents a normalization algorithm that transforms context-free expressions into

grammars in Deterministic Greibach Normal Form (DGNF). The normalization sets the basis for

follow-up optimizations of fusion and staging.

4.1 Normalization to DGNF
Figure 6 defines a normalization algorithm for typed context-free expressions. We repeat here the

syntax of normal forms and normal form grammars. As discussed in Section 3.2, normal forms

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Fusing Lexing and Parsing 1:11

include a non-DGNF internal form 𝛼 𝑛 used when normalizing fixpoints, where 𝛼 is interpreted as

a special kind of nonterminals. Since 𝛼 is a nonterminal, 𝛼 itself may appear as part of a 𝑡 𝑛 (e.g.,

𝑡 𝛼). Because of this internal form, normal forms 𝑁 are actually not in DGNF. But as we will show

later, 𝛼 𝑛 is an intermediate form which will be entirely eliminated in the final result, eventually

turning the grammar into DGNF.

The key to normalization is the function NJ𝑔 K that normalizes a context-free expression 𝑔,

yielding a normalized grammar 𝐺 and a distinguished start nonterminal 𝑛 of the grammar.

There are seven cases for the seven context-free expression constructors. Each case involves

allocating a fresh nonterminal (𝑛 or 𝛼) to use as the start symbol. The cases with sub-expressions

(𝑔1 · 𝑔2, 𝑔1 ∨ 𝑔2 and 𝜇𝛼. 𝑔) are defined compositionally in terms of the normalization of those

sub-expressions. Since normalization simply merges together all the production sets resulting from

sub-expressions, the situation frequently arises where some productions are not reachable from the

start symbol; the definition here ignores this issue, since it is easy to trim unreachable productions

in the implementation.

Rules (epsilon), (token), and (bot) are straightforward. For each of 𝜖 and c, normalization produces a

grammar with a single production whose right-hand side is 𝜖 or c respectively. For ⊥, normalization

produces an empty grammar, with a start symbol and no productions.

Rule (seq) is defined compositionally in terms of the normalization of their sub-expressions. For

sequencing 𝑔1 · 𝑔2, normalizing 𝑔1 and 𝑔2 produces the start symbol 𝑛1 and 𝑛2, respectively. Now

what we want is 𝑛 → 𝑛1 𝑛2. That is:

(seq1) NJ𝑔1 · 𝑔2 K = 𝑛 ⇒ {𝑛 → 𝑛1 𝑛2} ∪𝐺1 ∪𝐺2 where NJ𝑔 K = 𝑛 ⇒ 𝐺

However, while this is semantically correct, 𝑛 → 𝑛1 𝑛2 is not in normal form. Therefore, normaliza-

tion in rule (seq) copies each production𝑁 1 of𝑛1 and appends to each the start symbol𝑛2, producing

𝑁 1 𝑛2. To see why that is correct, consider if 𝑁 1 is of form 𝑡 𝑛 or 𝛼 𝑛. Then 𝑁 1 𝑛2, i.e., 𝑡 𝑛 𝑛2 or

𝛼 𝑛 𝑛2, is indeed of normal form. However, we need to prevent 𝑁 1 from being 𝜖 , or otherwise 𝜖 𝑛2
would be ill-formed. The case for sequencing is one of several places where the correctness of

normalization depends on the types. In particular, if 𝑔1 · 𝑔2 is well-typed, then 𝑁 1 cannot be 𝜖 .

Specifically, the typing rule for sequencing (Figure 4) depends on the separation relation 𝜏1 ⊛ 𝜏2,
which guarantees that the Null of 𝑔1 is false. With that guarantee, we show that 𝑁 1 cannot be 𝜖

(Lemma 4.2), ensuring that the result of the normalization function is in normal form.

Rule (alt) for alternation 𝑔1 ∨ 𝑔2 is similar. In this case, normalization merges the productions

for the start symbols 𝑛1 of 𝑔1 and 𝑛2 of 𝑔2 into the productions for the new start symbol 𝑛. During

typing (Figure 4), the apartness relation 𝜏1 # 𝜏2 ensures that the First sets of 𝑔1 and 𝑔2 do not

intersect, and that at most one of 𝑔1 and 𝑔2 is nullable. This guarantees that the result is well-formed.

The final two rules (fix) and (var) deal with the binding fixed point operator 𝜇𝛼. 𝑔 and with

bound variables 𝛼 . In rule (fix), we assume we can always alpha-rename a fixed point so 𝛼 is unique.

Normalization for the fixed point operator 𝜇𝛼. 𝑔 takes place in two stages. First, the body 𝑔 is

normalized. The normalization result suggests that the grammar of the body 𝑔 has a start symbol 𝑛.

Then, according to the semantics of fixed point, we should proceed to tie the knot by producing

𝛼 → 𝑛 and return 𝛼 as the start symbol. That is:

(fix1) NJ 𝜇𝛼. 𝑔 K = 𝛼 ⇒ {𝛼 → 𝑛} ∪𝐺 where NJ𝑔 K = 𝑛 ⇒ 𝐺

However, the rule 𝛼 → 𝑛 is not in normal form. Therefore, instead of directly returning 𝛼 → 𝑛, we

proceed to copy the productions for 𝑛 into the rules for 𝛼 :

(fix2) NJ 𝜇𝛼. 𝑔 K = 𝛼 ⇒ {𝛼 → 𝑁 | 𝑛 → 𝑁 ∈ 𝐺} ∪𝐺 where NJ𝑔 K = 𝑛 ⇒ 𝐺

But there is some extra work before we return the result. In particular, productions in𝐺 might start

with 𝛼 (e.g., 𝑛′ → 𝛼 𝑛′). While such form is allowed by the syntax of 𝑁 , our ultimate goal is to turn

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

NJlparK = · · ·
· · ·

NJ𝜇 sexps . 𝜖 ∨ sexp · sexps K = sexps ⇒ { sexps → 𝜖, sexps → sexp sexps }
NJlpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps)K = 𝑛1 ⇒ { 𝑛1 → lpar sexps , sexps → 𝜖, sexps → sexp sexps } NJrparK = · · ·

NJlpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps) · rparK = 𝑛2 ⇒ { 𝑛2 → lpar sexps rpar , sexps → 𝜖, sexps → sexp sexps, rpar → rpar } NJatomK = · · ·
NJ(lpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps) · rpar) ∨ atomK = 𝑛3 ⇒ { 𝑛3 → lpar sexps rpar , 𝑛3 → atom , sexps → 𝜖, sexps → sexp sexps, rpar → rpar }

NJ𝑔K = sexp ⇒ { sexp → lpar sexps rpar , sexp → atom , sexps → 𝜖, sexps → lpar sexps rpar sexps , sexps → atom sexps , rpar → rpar }

Fig. 7. Normalizing s-expression 𝑔 = 𝜇 sexp .(lpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps) · rpar) ∨ atom

the productions into DGNF, where every nonterminal either starts with a terminal or is 𝜖 . Now

that we learn the rules of 𝛼 , we can look up and substitute in 𝐺 all productions that start with 𝛼 .

For example, if 𝛼 → b and 𝑛′ → 𝛼 𝑛, then after substitution we have 𝑛′ → b 𝑛. Note that we still

allow 𝛼 , as a special kind of nonterminal, to appear inside 𝐺 if it is not the start of a production.

That is, 𝛼 in 𝑛′ → 𝑡 𝛼 won’t get substituted. It would actually be wrong to perform the substitution:

if 𝛼 → b, then after substitution 𝑛′ → 𝑡b is not in DGNF.

Rule (fix) in Figure 6 presents the final form of normalizing a fixed point. The normalization first

copies the productions for 𝑛 into the rules for 𝛼 (1), then substitutes in 𝐺 all productions that start

with 𝛼 (2), and finally adds back all productions in 𝐺 that do not start with 𝛼 (3). As we will see,

rule (fix) effectively guarantees that normalizing closed context-free expressions produces DGNF.

Lastly, in rule (var), we create a fresh start symbol 𝑛 with a singleton production 𝑛 → 𝛼 . Combin-

ing rule (fix) with rule (var), normalization essentially treats 𝛼 as a placeholder for the productions

denoted by the fixed point. As soon as we know what 𝛼 should be, we substitute 𝛼 with its pro-

ductions if necessary (as in rule (fix)). It may be tempting here to return 𝛼 ⇒ ∅ with 𝛼 as a start

symbol and no productions. That would be wrong, as 𝛼 ⇒ ∅ means an empty grammar, causing

problems when, for example, rule (alt) copies productions.

Example. Figure 7 presents the simplified derivation of normalizing

𝑔 = 𝜇 sexp .(lpar · (𝜇 sexps . 𝜖 ∨ sexp · sexps) · rpar) ∨ atom

where we highlight grammar changes in light gray, and omit some details via · · · for space reasons

and also since normalizing tokens is straightforward. We include the complete derivation tree in the

appendix. Of particular interest is the last step, which normalizes a fixed point. In this case, sexp is

used as the variable bound by the fixed point, and we have a production sexps → sexp sexps which is

not DGNF. First, sexp copies all productions from𝑛4. Then, since the production sexps → sexp sexps

starts with sexp, the production expands to two productions where sexp is replaced by its two

normal forms respectively, making the resulting grammar in DGNF.

4.2 Semantics of DGNF
Our Definition 1 of DGNF presented in Section 3.1 gives a high-level description of a DGNF grammar.

To prove that our normalization actually results in DGNF grammars, we first define the meaning of

DGNF in terms of our formalization.

We start with the expansion relation:

Definition 2 (Expansion (𝐺 ⊢{)). Given a grammar 𝐺 , we define the expansion relation by (1)

(Base) 𝐺 ⊢ 𝑛 { 𝑛; (2) (Step) if 𝐺 ⊢ 𝑛 { 𝑡 𝑛′𝑛, and (𝑛′ → 𝑁 ′ ∈ 𝐺), we have 𝐺 ⊢ 𝑛 { 𝑡 𝑁 ′𝑛. We

write 𝐺 ⊢ 𝑛 { 𝑤 when 𝑛 expands to a complete word𝑤 .

The expansion relation essentially captures what a nonterminal can expand to. For example, if

𝑛 → b 𝑛1 ∈ 𝐺 and 𝑛1 → c ∈ 𝐺 , then we have 𝐺 ⊢ 𝑛 { bc. We enforce a left-to-right expansion

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Fusing Lexing and Parsing 1:13

order for clarity and to stay close to the parsing behavior, but that is not necessary: it is easy to

imagine an arbitrary order expansion, but any order leads to the same set of words.

With the notion of expansion, we define what it means for a grammar to be in DGNF precisely.

The definition below follows the syntax given in Definition 1:

Definition 3 (Deterministic Greibach Normal Form (Semantics)). A grammar 𝐺 is in

Deterministic Greibach normal form if all productions are of form 𝑛 → 𝑡𝑛1𝑛2 . . . 𝑛𝑘 (𝑘 ≥ 0), and
moreover,

• (Determinism) for any pair of a nonterminal 𝑛 and a terminal 𝑡 , if there are two distinct

productions (𝑛 → 𝑡1 𝑛1) ∈ 𝐺 and (𝑛 → 𝑡2 𝑛2) ∈ 𝐺 , we have 𝑡1 ≠ 𝑡2;

• (Guarded 𝜖-productions) If 𝐺 ⊢ 𝑛 { 𝑡 𝑛1 𝑛2 𝑛, if (𝑛1 → 𝜖) ∈ 𝐺 , then for any 𝑡 either

(𝑛1 → 𝑡 𝑛1) ∉ 𝐺 or (𝑛2 → 𝑡 𝑛2) ∉ 𝐺 .

The Determinism condition is straightforward, while the Guarded 𝜖-productions condition needs

more explanation. In Definition 1, we mentioned that the 𝜖-production may only be used when no

terminal symbol in other productions matches the input string. Consider that the next character to

match is c. The case when both the 𝜖-production 𝑛1 → 𝜖 and a production 𝑛1 → c can match raises

when 𝑛1’s follow-up nonterminal 𝑛2 can also match c, making it possible to use the 𝜖-production

while 𝑛1 → c also matches. Definition 3 captures such cases, requiring that 𝑛1 and 𝑛2 cannot match

the same terminal if 𝑛1 has an 𝜖-production, and thus rules out example (4) in Section 3.1.

Now we can formally define the important property of DGNF that makes it practically useful.

Theorem 4.1 (Deterministic Parsing). If 𝐺 is a DGNF grammar, then for any expansion 𝐺 ⊢
𝑛 { 𝑤 , there is a unique derivation for such expansion.

4.3 Well-definedness and correctness
The normalization process serves as the basis for the parsing algorithm, and thus establishing its

correctness is crucial for flap. In this section, we prove three key properties of normalization: first,

normalization always succeeds for well-typed expressions (Section 4.3.1); then, normalization result

will eventually get rid of the internal form 𝛼 𝑛 (Section 4.3.2); and finally, the result of normalization

is a DGNF grammar (Section 4.3.3).

4.3.1 Normalization is well-defined. As we have briefly discussed in Section 4.1, correctness of

normalization depends on types. For example, when normalizing sequencing 𝑔1 · 𝑔2, rule (seq)

returns 𝑁 1 𝑛2 with 𝑛1 → 𝑁 1 from 𝑔1, and 𝑛2 from 𝑔2. In order for 𝑁 1 𝑛2 to be well-formed, we must

ensure that 𝑁 1 is not 𝜖 , or otherwise 𝜖 𝑛2 is ill-formed.

To this end, we make use of the typing information during normalization. In the case of sequenc-

ing, since 𝑔1 · 𝑔2 is well-typed, the separation relation (𝜏1 ⊛ 𝜏2 in Figure 4) ensures 𝑔1 is not nullable.

We then prove that if an expression is not nullable, its normalization cannot have an 𝜖 production.

Lemma 4.2 (Productions of Null). Given Γ;Δ ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns 𝑛 ⇒ 𝐺 , 𝜏 .Null = true

if and only if (1) 𝑛 → 𝜖 ∈ 𝐺 ; or (2) 𝑛 → 𝛼 ∈ 𝐺 where (𝛼 : 𝜏 ′) ∈ Γ and 𝜏 ′.Null = true.

In other words, if 𝜏 .Null = false, then 𝑛 → 𝜖 ∉ 𝐺 .

With Lemma 4.2 and similar reasoning about typing during normalization, we prove that nor-

malization is well-defined for well-typed expressions.

Theorem 4.3 (Well-definedness). If Γ;Δ ⊢ 𝑔 : 𝜏 , then NJ𝑔 K returns 𝑛 ⇒ 𝐺 for some 𝐺 and 𝑛.

4.3.2 Normalizing closed expressions produces no 𝛼 𝑛 form. Theorem 4.3 says that if an expression

is well-typed, then normalization returns a grammar successfully. However, this grammar may not

be in DGNF. For example, the grammar may include 𝑛 → 𝛼 𝑛, which is not a valid DGNF form.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

Therefore, in order for the normalization result to be in DGNF, we need to prove that all 𝑛 → 𝛼 𝑛

productions are removed from the normalization result.

In this part, we prove that the normalization result cannot contain any 𝛼 𝑛 production for a

closed well-typed expression. To do so, we need to reason about the occurrences of 𝛼 . The following

lemma says that all 𝛼 returned as the head of a production must be in the typing context.

Lemma 4.4 (Internal normal form). Given Γ;Δ ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns 𝑛 ⇒ 𝐺 ,

• if (𝑛 → 𝛼 𝑛) ∈ 𝐺 , then we have 𝛼 ∈ dom (Γ);
• if (𝑛′ → 𝛼 𝑛) ∈ 𝐺 for any 𝑛′, then we have 𝛼 ∈ fv (𝑔), and thus 𝛼 ∈ dom (Γ,Δ).

Note that the first result applies only to the start symbol 𝑛, and its proof replies on the typing rule

where 𝛼 is well-typed only if 𝛼 ∈ Γ (Figure 4). The second result applies to any 𝑛′, and is proved

making use of the first result. Specifically, the proof goes by induction on Γ;Δ ⊢ 𝑔 : 𝜏 , and the most

interesting case is when normalizing 𝜇𝛼. 𝑔, where we need to prove that the productions of the

start symbol of 𝑔 cannot start with 𝛼 , or otherwise normalizing 𝜇𝛼. 𝑔 would copy all productions

from 𝑔 for 𝛼 which would result to, e.g., 𝛼 → 𝛼 that fails the lemma. Fortunately, that is exactly

what the first result tells us: when typing 𝜇𝛼. 𝑔, we add 𝛼 in Δ (Figure 4), and thus normalizing 𝑔

cannot have 𝛼 at the head of a production for its start symbol.

Our goal then follows as a corollary of Lemma 4.4, which says that normalizing any closed

well-typed expression only produces the desired normal form.

Corollary 4.5 (Normal form). Given •; • ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns _ ⇒ 𝐺 , then for all

(𝑛 → 𝑁) ∈ 𝐺 , 𝑁 is 𝜖 or 𝑡 𝑛 for some 𝑡 and 𝑛.

4.3.3 Normalization returns DGNF grammars. Finally, we prove that normalization returns DGNF

grammars. That requires productions to satisfy the conditions given in Definition 3.

We start with Determinism: all 𝑛 → 𝑡 𝑛 for the same 𝑛 to start with different 𝑡 . To prove that, we

again make use of the typing information. The following lemma says that a production can start

with 𝑡 if and only if it belongs to the First set of the type.

Lemma 4.6 (Terminals in First). Given Γ;Δ ⊢ 𝑔 : 𝜏 andNJ𝑔 K returns𝑛 ⇒ 𝐺 , we have 𝑡 ∈ 𝜏 .First
if and only if (1) (𝑛 → 𝑡 𝑛) ∈ 𝐺 ; or (2) (𝑛 → 𝛼 𝑛) ∈ 𝐺 where (𝛼 : 𝜏 ′) ∈ Γ and 𝑡 ∈ 𝜏 .First.
This lemma is particularly important when proving the case for normalizing 𝑔1 ∨ 𝑔2, where the

typing condition 𝜏1 # 𝜏2 ensures that 𝑔1 and 𝑔2 have disjoint First, which in turn ensures that rule

(alt) only copies distinct head terminals from 𝑔1 and 𝑔2.

The proof for guarded 𝜖-productions is more involved, which essentially requires us to show

that during expansion 𝐺 ⊢ 𝑛 { 𝑡 𝑛1 𝑛2 𝑛, the First of 𝑛1 is disjoint with the First of 𝑛2 (if 𝑛1 is

nullable). The proof replies on showing that “expansion preserves typing”. Think about that from

the well-typed context free expressions’ point of view: if (𝑔1 ∨ 𝑔2) · 𝑔3 is well-typed, then 𝑔1 · 𝑔3
(and 𝑔2 ·𝑔3) must also be well-typed, and going from (𝑔1 ∨𝑔2) ·𝑔3 to 𝑔1 ·𝑔3 is one step of branching,

similar to one step of expansion. We refer the reader to the appendix for more details.

With all the conditions proved, we conclude our goal.

Theorem 4.7 (NJ𝑔 K produces DGNF). If •; • ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns _ ⇒ 𝐺 , then 𝐺 is DGNF.

4.4 Normalization Soundness
Normalization transforms a context-free expression into a DGNF grammar. As the final piece of

metatheory for normalization, we would like to establish that normalization is sound with respect

to the denotational semantics of well-typed context-free expressions defined in Krishnaswami and

Yallop [2019]. The denotational semantics J𝑔K𝛾 interprets 𝑔 as a language (i.e., the set of all strings

𝑤 matched by 𝑔), where 𝛾 gives interpretation of free variables in 𝑔.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Fusing Lexing and Parsing 1:15

J𝑔K𝛾 interprets 𝑔 as a language given the interpretation of the free variables in 𝛾

J𝜖K𝛾 = {𝜖} J𝑔1 · 𝑔2K𝛾 = {𝑤 ·𝑤 ′ | 𝑤 ∈ J𝑔1K𝛾 ∧𝑤 ′ ∈ J𝑔2K𝛾 }
J𝑡K𝛾 = {𝑡} J𝛼K𝛾 = 𝛾 (𝑎)
J⊥K𝛾 = ∅ J𝜇𝛼. 𝑔K𝛾 = fix(𝜆L.J𝑔K(𝛾,L/𝛼))
J𝑔1 ∨ 𝑔2K𝛾 = J𝑔1K𝛾 ∪ J𝑔2K𝛾

fix(𝑓) = ⋃
𝑖∈NL𝑖

where

L0 = ∅
L𝑛+1 = 𝑓 (L𝑛)

Most definitions are straightforward. The semantics interpret 𝜖 as the singleton set containing the

empty set, 𝑡 as the singleton set that matches a one-character string 𝑡 , ⊥ as an empty language,

and 𝑔1 ∨𝑔2 as unions of sets. The interpretation of 𝑔1 ∨𝑔2 appends a string from 𝑔1 to a string from

𝑔2. Variables 𝛼 have their interpretation from the environment 𝛾 , and 𝜇𝛼. 𝑔 is interpreted as the

least fixed point of 𝑔 with respect to 𝛼 .

To prove that our normalization is sound, we show that the normalized DGNF denotes exactly

the same language as the denotation semantics of an expression. Recall that we have defined the

expansion relation in Definition 2, where 𝐺 ⊢ 𝑛 { 𝑤 denotes that 𝑛 expands to a complete string

𝑤 , where all non-terminals have been expanded. We prove the normalized grammar can expand to

a string if and only if the string is included in the denotational semantics of the expression. The

proof is done by first induction on the length of𝑤 and then on the structure of 𝑔.

Theorem 4.8 (Soundness). Given •; • ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns 𝑛 ⇒ 𝐺 , we have 𝑤 ∈ J𝑔K• if
and only if 𝐺 ⊢ 𝑛 { 𝑤 for any𝑤 .

4.5 Implementation
The compositionality of the normalization algorithm simplifies the implementation of normalization

in flap. Since the normalization of each term is defined in terms of the normal forms of its subterms,

flap can represent terms in normal form. For example, if 𝑔 and 𝑔′ are flap parsers in normal form,

then 𝑔 >>> 𝑔′ is also a parser in normal form, built from 𝑔 and 𝑔′ using the rules in Figure 6.

The simplicity of the normalization algorithm is reflected in the implementation of flap. Addi-

tionally, the most intricate part of the algorithm — dealing with fixed points — is also the subtlest

part of the implementation. The implementation follows the formal algorithm closely, inserting

placeholders (𝛼s) that are tracked using an environment and resolved later. This kind of “backpatch-

ing” mirrors the way in which recursion is commonly implemented in eager functional languages

such as OCaml [Reynaud et al. 2021]; if flap were instead implemented in a lazy language then it

would be possible to implement fixed point normalization with significantly less fuss.

5 FUSION
This section shows how flap, starting with a separately-defined lexer and normalized parser, makes

use of the syntactic restrictions of DGNF to implement lexer-parser fusion, eliminating tokens from

generated code altogether.

5.1 Canonicalizing lexer
We assume a more restrictive definition of lexers than the interface in Section 2 provides. In

particular, we assume that rules are disjoint on the left (i.e. there is no string that is matched by

more than one regular expression in a set of rules), and disjoint on the right (i.e. there is exactly one

Skip rule, and no token appears in more than one Return rule). Using negation and intersection, it

is easy to transform a lexer that does not obey these constraints into an equivalent lexer that does,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

fused grammar 𝐹 F {𝑛 → r 𝑛 } ∪ {𝑛 →?𝑟 }
F J𝐿,𝐺 K = F1 ∪ F2 ∪ F3

where F1 = {𝑛 → r 𝑛 | r ⇒ Return 𝑡 ∈ 𝐿 ∧ 𝑛 → 𝑡 𝑛 ∈ 𝐺 } (inline the lexer)

F2 = {𝑛 → r 𝑛 | r ⇒ Skip ∈ 𝐿 ∧ 𝑛 ∈ 𝐺 } (whitespace)

F3 = {𝑛 →?¬r | 𝑛 → 𝜖 ∈ 𝐺 ∧ r =
∨{ r | 𝑛 → r 𝑛 ∈ F1 ∪ F2 }} (epsilon productions)

Fig. 8. Lexer-parser fusion

so there is no need to restrict the interface exposed to the user. With the lexer thus canonicalized

and the parser translated into DGNF, it is straightforward to define fusion.

5.2 The fusion algorithm
Figure 8 formally defines the fusion algorithm.

The fusing function F J𝐿,𝐺 K operates on a canonicalized lexer 𝐿 and a normalized grammar 𝐺 ,

yielding a fused grammar 𝐹 . The fused result consists of three parts.

First, we replace each production 𝑛 → 𝑡 𝑛 with a new production 𝑛 → r 𝑛, retrieving the regex 𝑟

that is associated with the token 𝑡 in the lexer 𝐿 (F1). This is where the fusion function implicitly

specializes the lexer to each nonterminal in the normalized grammar, and discards lexing rules

that return tokens not in productions for the nonterminal. Canonicalizing the lexer to enforce

disjointness simplifies this discarding of rules.

Then, we add an additional production 𝑛 → r 𝑛 for the skip regex 𝑟 (which may be ⊥) for each

nonterminal, allowing each nonterminal to match an arbitrary number of the skip regex (F2).

Finally, for nonterminals with an epsilon production, the discarded regexes, along with the

skip regex, are incorporated into a lookahead regex (F3). That is, we add a lookahead production

𝑛 →?¬r for the regex that is the complement of the regexes that appear in other productions for 𝑛.

Fusion with normalized grammars is strikingly simple; it would be significantly more involved

to directly fuse the context-free expressions with the lexing rules. Furthermore, as with normal-

ized grammars, an expansion relation for fused grammars would carry the guarantee that every

expansion has a unique derivation.

6 IMPLEMENTATION OF PARSING
This section describes the lexing and parsing algorithms, shows how to stage the parsing algorithm

to improve performance, and explains details of the implementation of the algorithms in flap.

6.1 The lexing algorithm
Figure 9 presents the lexing algorithm. The algorithm has the longest-match semantics conventional

for lexers: each token returned corresponds to the lexing rule that matches the longest possible

prefix of the input string. This behaviour is implemented by repeatedly updating the best match

seen so far until none of the lexing rules matches the input string.

L𝑒𝑥 is the top-level lexing algorithm that takes the lexing rules 𝐿 and an input string 𝑠 , with two

key utility functions L and M. For simplicity, we assume utility functions can freely access the 𝐿

argument to L𝑒𝑥 . At a high level, L reads a single token from a prefix of a string, pairs the token

action with the remainder of the string, and passes it to M. M constructs a sequence of tokens,

updating the sequence according to the action passed from L.

The L function takes four arguments: 𝐿′ is a set of lexing rules; 𝑘 is a token action representing

the best match so far; 𝑟𝑠 is the remainder string for the best match; 𝑠 is the input string. For empty

input strings the best match information 𝑘 and 𝑟𝑠 is passed to M. For non-empty input strings

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Fusing Lexing and Parsing 1:17

L𝑒𝑥 (𝐿, 𝑠) = L(𝐿,no, [], 𝑠)

L(𝐿′, 𝑘, 𝑟𝑠, []) = M(𝑘, 𝑟𝑠)
L(𝐿′, 𝑘, 𝑟𝑠, 𝑐 ::𝑐𝑠) = if 𝐿′𝑐

?

= ∅ then M(𝑘, 𝑟𝑠)
else case 𝐾 of ∅ ↦→ L(𝐿′𝑐 , 𝑘, 𝑟𝑠, 𝑐𝑠)

{𝑘 ′} ↦→ L(𝐿′𝑐 , 𝑘 ′, 𝑐𝑠, 𝑐𝑠)
where 𝐿′𝑐 = {𝜕𝑐 (𝑟) ⇒ 𝑘 | 𝑟 ⇒ 𝑘 ∈ 𝐿′ ∧ 𝜕𝑐 (𝑟) ≠ ⊥}

𝐾 = {𝑘 | 𝑟 ⇒ 𝑘 ∈ 𝐿′𝑐 ∧ 𝜈 (𝑟)}

M(no, 𝑟𝑠) = fail

M(Skip, []) = []
M(Skip, 𝑐::𝑐𝑠) = L(𝐿,no, [], 𝑐::𝑐𝑠)
M(Return 𝑡, []) = [𝑡]
M(Return 𝑡, 𝑐::𝑐𝑠) = 𝑡 :: L(𝐿,no, [], 𝑐 :: 𝑐𝑠)

Fig. 9. Lexing algorithm

P𝑎𝑟𝑠𝑒 (𝑛 ⇒ 𝐺, 𝑠) = P(𝑛, 𝑠)

P(𝑛, []) = if 𝑛 → 𝜖 ∈ 𝐺 then [] else fail

P(𝑛, 𝑡 ::𝑡𝑠) = if 𝑛 → 𝑡𝑛 ∈ 𝐺 then Q(𝑛, 𝑡𝑠)
else if 𝑛 → 𝜖 ∈ 𝐺 then 𝑡 ::𝑡𝑠 else fail

Q([], 𝑡𝑠) = 𝑡𝑠

Q(𝑛::𝑛𝑠, 𝑡𝑠) = Q(𝑛𝑠,P(𝑛, 𝑡𝑠))

Fig. 10. Parsing algorithm for DGNF grammars

FP𝑎𝑟𝑠𝑒 (𝑛 ⇒ 𝐹, 𝑠) = G([𝑛], 𝑠)

F (𝐹𝑛, 𝑘, 𝑟𝑠, 𝑠) =
case 𝑠 of [] ↦→ 𝑆𝑡𝑒𝑝 (𝑘, 𝑟𝑠)

𝑐::𝑐𝑠 ↦→ if 𝐹 ′𝑛
?

= ∅ then 𝑆𝑡𝑒𝑝 (𝑘, 𝑟𝑠)
else case 𝐾 of ∅ ↦→ F (𝐹 ′𝑛, 𝑘, 𝑟𝑠, 𝑐𝑠)

{𝑛𝑠} ↦→ F (𝐹 ′𝑛, on 𝑛𝑠, 𝑐𝑠, 𝑐𝑠)
where 𝐹 ′𝑛 = {⟨𝜕𝑐 (𝑟), 𝑘⟩ | ⟨𝑟, 𝑘⟩ ∈ 𝐹𝑛 ∧ 𝜕𝑐 (𝑟) ≠ ⊥}

𝐾 = {𝑘 | ⟨𝑟, 𝑘⟩ ∈ 𝐹 ′𝑛 ∧ 𝜈 (𝑟)}

G([], 𝑠) = 𝑠

G(𝑛::𝑛𝑠, 𝑠) = G(𝑛𝑠, F (𝐹𝑛, 𝑘, 𝑠, 𝑠))
where 𝐹𝑛 = {⟨𝑟, 𝑛⟩ | 𝑛 → 𝑟𝑛 ∈ 𝐹 }

𝑘 = if 𝑛 →?𝑟 ∈ 𝐹 then back else no

𝑆𝑡𝑒𝑝 (back, 𝑠) = 𝑠

𝑆𝑡𝑒𝑝 (on 𝑛𝑠, 𝑠) = G(𝑛𝑠, 𝑠)
𝑆𝑡𝑒𝑝 (no, 𝑠) = fail

Fig. 11. Parsing algorithm for fused grammars

SP𝑎𝑟𝑠𝑒𝑛⇒𝐹 (𝑠) = T ([𝑛], 𝑠)

S𝐹𝑛,𝑘 (𝑟𝑠, 𝑠) =

case 𝑠 of [] ↦→ 𝑆𝑡𝑒𝑝 (𝑘, 𝑟𝑠)

𝑐𝑖 ::𝑐𝑠 ↦→ if 𝐹 ′
𝑛,𝑖

?

= ∅ then 𝑆𝑡𝑒𝑝 (𝑘, 𝑟𝑠)

else case 𝐾𝑖 of ∅ ↦→ S𝐹 ′
𝑛,𝑖

,𝑘 (𝑟𝑠, 𝑐𝑠)

{𝑛𝑠} ↦→ S𝐹 ′
𝑛,𝑖

,on 𝑛𝑠 (𝑐𝑠, 𝑐𝑠)
𝑐 𝑗 ::𝑐𝑠 ↦→ . . .

where 𝐹 ′
𝑛,𝑖

= {⟨𝜕𝑐𝑖 (𝑟), 𝑘⟩ | ⟨𝑟, 𝑘⟩ ∈ 𝐹𝑛 ∧ 𝜕𝑐𝑖 (𝑟) ≠ ⊥}
𝐾𝑖 = {𝑘 | ⟨𝑟, 𝑘⟩ ∈ 𝐹 ′

𝑛,𝑖
∧ 𝜈 (𝑟)}

T ([], 𝑠) = 𝑠

T (𝑛::𝑛𝑠, 𝑠) = T (𝑛𝑠, S𝐹𝑛,𝑘 (𝑠, 𝑠))
where 𝐹𝑛 = {⟨𝑟, 𝑛⟩ | 𝑛 → 𝑟𝑛 ∈ 𝐹 }

𝑘 = if 𝑛 →?𝑟 ∈ 𝐹 then back else no

𝑆𝑡𝑒𝑝 (back, 𝑠) = 𝑠

𝑆𝑡𝑒𝑝 (on 𝑛𝑠, 𝑠) = T (𝑛𝑠, 𝑠)
𝑆𝑡𝑒𝑝 (no, 𝑠) = fail

Fig. 12. Staged parsing algorithm

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

𝑐::𝑐𝑠 , the result depends on 𝐿′𝑐 , the set of lexing rules updated to use the non-empty derivatives

with respect to 𝑐 (Figure 2) of the string. If 𝐿′ is empty, lexing cannot proceed any further, and so

L transfers control to M, passing the best match information. Otherwise, the result depends on

the rule 𝑟 ⇒ 𝑎 that matches the string up to this point including 𝑐 (i.e. the rule that accepts 𝜖 after

consuming 𝑐). If there is no such rule, then lexing continues with 𝑘 . If there is such a rule, it is

unique (since lexing rules are disjoint (Section 2.2)), and it represents a new longest-match 𝑘 ′, and

lexing continues with 𝑘 ′ and the remainder for the best match 𝑐𝑠 .

The M function takes two arguments 𝑘 , a token action and 𝑟𝑠 , a remainder string. There are five

cases, one for the sentinel no action, two for Skip actions, and two for Return actions. The sentinel

no indicates that lexing has failed. For Skip, lexing continues if the remainder 𝑟𝑠 is non-empty. For

Return 𝑡 , 𝑡 is added to the output sequence, and lexing continues if the remainder 𝑟𝑠 is non-empty.

In the cases where lexing continues, it commences by supplying no for the best-match-so-far, so

that reading the next token only succeeds if L matches a non-empty prefix of the remaining input.

6.2 The DGNF parsing algorithm
Figure 10 presents the parsing algorithm for grammars in Deterministic Greibach Normal Form.

Deterministic parsing makes the algorithm simple, since there is no need for backtracking.

P𝑎𝑟𝑠𝑒 is the top-level parsing algorithm which takes the parsing grammar 𝑛 ⇒ 𝐺 and a sequence

of tokens 𝑠 . There are two key functions: P parses using a single nonterminal 𝑛, and Q parses using

a sequence of nonterminals 𝑛𝑠 . Again, we assume P and Q can freely access 𝐺 .

P takes the nonterminal 𝑛 and a sequence of tokens and returns the remainder of the sequence

after parsing. For empty sequences parsing succeeds only if the grammar has a rule 𝑛 → 𝜖 . For

non-empty sequences 𝑡 ::𝑡𝑠 , if the grammar has a rule 𝑛 → 𝑡𝑛, P consumes 𝑡 and parses 𝑡𝑠 with Q.

Otherwise, parsing succeeds (consuming nothing) only if the grammar has a rule 𝑛 → 𝜖 .

Q takes a sequence of nonterminals 𝑛𝑠 and a sequence of tokens 𝑡𝑠 and parses successive prefixes

of 𝑠 with each nonterminal in 𝑛𝑠 .

6.3 The parsing algorithm for fused grammars
In practice, flap does not need separately-defined lexing and DGNF parsing algorithms, since it

fuses lexing and parsing. We presented those algorithms to allow a direct comparison with the

parsing algorithm for fused grammars.

Figure 11 shows an algorithm for parsing with fused grammars. The algorithm combines the

features of the lexing algorithm (Figure 9) and the parsing algorithm (Figure 10): like the lexing

algorithm it maintains a set of derivatives and an action and remainder string for the current best

match; like the parsing algorithm, it keeps track of the current non-terminal.

FP𝑎𝑟𝑠𝑒 takes the fused grammar 𝑛 ⇒ 𝐹 and an input string 𝑠 , with two key functions: F parses

using a single nonterminal 𝑛, and G parses using a sequence of nonterminals 𝑛𝑠 using 𝐹 .

F takes four arguments: 𝐹𝑛 , a set of pairs representing non-epsilon productions for𝑛; 𝑘 , an action;

𝑟𝑠 , a remainder string; and 𝑠 , an input string. For empty input strings the best match information 𝑘

and 𝑟𝑠 is passed to G (via the auxiliary function 𝑆𝑡𝑒𝑝). For non-empty input strings 𝑐::𝑐𝑠 , the result

depends on 𝐹 ′𝑛 , the production pairs for 𝑛 updated to use the non-empty derivatives with respect to

𝑐 (Figure 2) of the string. If 𝐹 ′𝑛 is empty, parsing cannot proceed any further, and so F transfers

control to G (via 𝑆𝑡𝑒𝑝), passing the best match information. Otherwise, the result depends on the

production pair ⟨𝑟, 𝑛⟩ for which 𝑟 matches the string up to this point including 𝑐 (i.e. the rule that

accepts 𝜖 after consuming 𝑐). If there is no such rule, then parsing continues with 𝑘 . If there is such

a rule, it is unique (since the regular expressions for a particular nonterminal are disjoint), and it

represents a new longest-match 𝑛𝑠 , and parsing continues, updating the best match information to

on 𝑛𝑠 . Here on 𝑛𝑠 represents one of three continuation types, and indicates that parsing should

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Fusing Lexing and Parsing 1:19

continue using the nonterminal sequence 𝑛𝑠; the others are back, indicating that parsing with 𝑛

should succeed, consuming no input, and no, indicating that parsing with 𝑛 should fail. The 𝑆𝑡𝑒𝑝

function matches these three cases, and takes an action appropriate to each continuation.

The G function takes a sequence of nonterminals 𝑛𝑠 and a sequence of characters 𝑠 and parses

successive prefixes of 𝑠 with each nonterminal in 𝑛𝑠 by calling F . The value of F ’s 𝑘 argument

depends on whether there is an epsilon rule for 𝑛 in the fused grammar: if so, then a parsing failure

with 𝑛 should backtrack, consuming no input; if not, then parsing returns fail.

We draw attention to two salient features of the fused parsing algorithm: first, it consists of

elements from the lexing and parsing algorithms of Sections 6.1 and 6.2; second, it does not

materialize the tokens produced by the lexing algorithm, instead operating directly on the character

string. The final algorithm in the next section makes this even more apparent.

6.4 The staged parsing algorithm
The parsing algorithm for fused grammars described in Section 6.3 is impractically inefficient. For

each character of the input, the algorithm computes derivatives and checks emptiness and nullability

for sets of regular expressions. However, since the regular expressions and other information about

the grammar are known in advance of parsing, the inefficient algorithm can be staged [Taha 1999]

to produce an efficient algorithm. The idea of staging is to identify those parts of the algorithm

that do depend only on static information — i.e. on the grammar — and execute them first, leaving

only the parts that depend on dynamic information — i.e. on the input string — for later. The result

of staging, as illustrated below, is to transform the unstaged parser into a parser generator that

produces as output a parser specialized to the input grammar.

unstaged

parser

grammar

input string

parser

generator

specialized

parser

grammar

input string

Figure 12 shows a staged version of the fused parsing algorithm. The structure of the algorithm

is very close to the fused grammar parsing algorithm of Section 6.3: S corresponds to F and T
corresponds to G. However, there are three key differences.

First, those parts of the algorithm that depend on the input string are marked as dynamic,

indicated with red highlighting . These dynamic elements are not executed immediately; instead

they become part of the generated specialized parser produced by the first stage of execution.

Second, in the function S, 𝐹𝑛 and 𝑘 have become indexes rather than arguments. Consequently,

rather than being passed to the function at run-time, those arguments serve to distinguish generated

functions: each instantiation of 𝐹𝑛 and 𝑘 generate a distinct function S in the specialized parser.

Finally, the case match in S is expanded to include a distinct case for each character 𝑐𝑖 , 𝑐 𝑗 , etc.

This expansion resolves a tension in the distinction between static and dynamic data: the static

computation of derivatives 𝜕𝑐 (𝑟) in the first stage depends on the value of 𝑐 , which is only available

dynamically. In the expanded case match the value of 𝑐𝑖 is known on the right-hand side of the

corresponding case, making it possible to compute derivatives valid within that program context.

This scrutiny of a statically-unknown expression using a case match over its statically-known set

of possible values is known as “The Trick” in the partial evaluation literature [Danvy et al. 1996].

The evaluation of the staged parsing algorithm is largely standard: the unhighlighted (static)

expressions are executed first, producing the highlighted (dynamic) expressions as output. Each

call to a dynamic indexed function S𝐹𝑛,𝑘 triggers the generation of a dynamic function whose body

consists of the result of executing the right-hand side of S𝐹𝑛,𝑘 in Figure 12. To ensure that the

generation process terminates, the generation of these indexed functions is memoized: there is at

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

most one generated function S𝐹𝑛,𝑘 for any particular 𝐹𝑛 and 𝑘 . The result of the algorithm is a set

of mutually recursive functions that operate only on strings, not on components of the grammar:

𝑆𝑛→𝑟𝑛,...,back (𝑟, 𝑠) = case 𝑠 of [] ↦→ 𝑠

'a' :: 𝑐𝑠 ↦→ 𝑆𝑛→𝑟𝑎𝑛,back (𝑟, 𝑐𝑠)
'b' :: 𝑐𝑠 ↦→ 𝑆𝑛→𝑟𝑎𝑛,on 𝑛𝑠 (𝑐𝑠, 𝑐𝑠)
. . .

𝑆𝑛→𝑟𝑛,...,on 𝑛𝑠 (𝑟, 𝑠) = . . .

6.5 Implementing the staged parsing algorithm
The flap library generates code for the fused grammar using MetaOCaml’s staging facilities

together with Yallop and Kiselyov’s [2019] letrec insertion library for creating the indexed mutually-

recursive functions produced by the staged parsing algorithm (Section 6.4).

There are three key differences between the pseudocode algorithm in Figure 12 and flap’s

implementation. First, while the pseudocode presents a recognizer that either consumes input or

fails, flap supports semantic actions — i.e. constructing and returning ASTs or other values when

parsing succeeds — as described in Section 2.3.

Second, while the input to the pseudocode is a linked list of characters, flap operates on OCaml’s

more efficient flat array representation of strings, using indexes to keep track of string positions as

parsing proceeds. Relatedly, flap also optimizes the test for the end of input by taking advantage of

the fact that OCaml’s strings are null-terminated, to ease interoperability with C. This representation

allows the check for end of input to be incorporated into the branch on the next character in the

generated code: a null character '\000' indicates a possible end of input, which can subsequently

be confirmed by checking the string length.

Third, while the pseudocode generates a case in each branch for each possible character in the

input, flap generates a much smaller number of cases by grouping characters with equivalent

behaviour into classes. Branching on these character classes rather than treating characters indi-

vidually leads to a substantial reduction in code size. Owens et al. [2009] describe the construction

of these classes in described in detail.

Here is an excerpt of the code generated by flap for the s-expression parser:

and parse5 r i len s = match s.[i] with

| ' '|'\n' → parse6 r (i + 1) len s

| '(' → parse9 r (i + 1) len s

| 'a'..'z' → parse3 r (i + 1) len s

| '\000' → if i = len then [] else failwith "unexpected"

| _ → []

This excerpt shows the code generated for a single indexed function S𝐹𝑛,𝑘 . There are four argu-

ments, representing the beginning of the current token r (to support backtracking in the lookahead

transition), the current index i, the input length len, and the input string s.

The subscripts 5, 6, etc. attached to the parse functions correspond to the indexes 𝐹𝑛, 𝑘 in the

pseudocode algorithm; the letrec insertion library assigns a fresh subscript to each distinct index.

The character range pattern 'a'..'z' illustrates the character class optimization described above.

Without that optimization, each of the characters from 'a' to 'z' would have a separate case in

the match expression.

The check i = len determines whether the character '\000' represents the end of input or a

null character in the input string.

The value [] corresponds to a semantic action: it is the empty list returned when an empty

sequence of s-expressions is parsed. It appears twice in the generated code, since (as Figure 12

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Fusing Lexing and Parsing 1:21

shows), parsing for a particular nonterminal can end in two ways: when it encounters the end of

input, and when it encounters a non-matching character.

7 EVALUATION
This section evaluates the performance of flap, and shows that lexer-parser fusion drastically

improves performance. Many parser combinator libraries suffer from poor performance, but the

experiments described here show that combinator parsing does not need to be slow.

Three key techniques account for flap’s speed. First, Krishnaswami and Yallop’s type system en-

sures that the time taken for parsing is linear in the length of the input, a substantial advantage over

libraries that require backtracking. Second, staging eliminates the overhead arising from parsing ab-

stractions, generating parsing code that is specialized to a particular grammar. Finally, lexer-parser

fusion eliminates the overhead arising from defining lexers and parsers separately: in particular, it

avoids the materialization of tokens, and eliminates all branching except for approximately one

branch on each character in the input.

Krishnaswami and Yallop showed that the first two of these techniques can be used to build a

parser combinator library that outperforms code generated by ocamlyacc. We focus here on the

question of how much additional performance benefit arises from lexer-parser fusion.

7.1 Benchmarks
We build on the benchmark suite published by Krishnaswami and Yallop [2019], adding implemen-

tations of each benchmark for flap, for the parser generator menhir [Pottier and Régis-Gianas

[n.d.]], and for the ParTS deterministic parsing library [Casinghino and Roux 2020], and extending

the suite with an additional benchmark for parsing CSV files.

For each benchmark we compare up to six implementations. We make no comparison with

unstaged parser combinators, which Krishnaswami and Yallop found to be significantly slower

than their staged implementation, and between 4.5 and 125 times slower than ocamlyacc.

(a) an implementation generated by ocamllex and ocamlyacc
(b) an implementation generated by ocamllex and menhir in table-generation mode

(c) an implementation generated by ocamllex and menhir in code-generation (tableless) mode

(d) an implementation created using flap
(e) the staged parser implementation from Krishnaswami and Yallop [2019]

(f) an implementation using ParTS, where one is available

(a)–(c) use identically structured grammars and lexers in each benchmark, since menhir accepts

ocamlyacc files as input. (d)–(f) also use identically structured grammars in each benchmark,

since they all use the standard parser combinator interface (Section 2.3). However, (d)–(f) use

differently-structured lexers: (e) and (f), taken respectively from Krishnaswami and Yallop [2019]

and Casinghino and Roux [2020], reuse the deterministic parser combinators for lexing, while flap
uses the more conventional lexing interface described in Section 2.2.

The benchmarks are as follows:

(1) (pgn) Chess game descriptions in Portable Game Notation format. The semantic actions extract

the result of each game. The input is a corpus of 6759 Grand Master games.

(2) (ppm) Image files in Netpbm format. The semantic actions validate the non-syntactic constraints

of the format, such as colour range and pixel count.

(3) (sexp) S-expressions with alphanumeric atoms. The semantic actions of the parser count the

number of atoms in each s-expression.

(4) (csv) A parser for the Comma-Separated Value format. The grammar conforms quite closely to

RFC 4180 [Shafranovich 2005], but makes the terminating CRLF mandatory and does not treat

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://en.wikipedia.org/wiki/Portable_Game_Notation
https://en.wikipedia.org/wiki/Netpbm_format

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

jsonsexp
arith

pgn ppm csv
0

500

1,000

2
2
7

7
5

3
26
4

1
7 7
1

2
3
5

8
2

3
47
8

2
0 7
7

3
2
1

1
1
9

5
21
1
8

5
5

1
2
8

1
,2
9
9

2
1
4

6
8

2
7
3

1
0
5

2
7
0

1
8
2

9
4

3
28
4

2
9

1
2
9

1
1
3

T
h

r
o

u
g

h
p

u
t

(
M

B
/
s
)

ocamlyacc menhir+table

menhir+code fused

staged ParTS

jsonsexp
arith

pgn ppm csv
−1

0

1

2

L
o

g
2

t
h

r
o

u
g
h

p
u

t

r
a
t
i
o

(
v
s

o
c
a
m

l
y

a
c
c
)

Fig. 13. Parser throughput: ocamlyacc, menhir, flap, staged combinators and ParTS

0 2,000 4,000

0

20

40

60

input size (games)

r
u

n
t
i
m

e
(
m

s
)

pgn

0 20,00040,000

0

10

20

30

input size (pixels)

ppm

0.5 1 1.5 2

0

10

20

30

input size (MB)

sexp

0 200 400

0

2

4

6

input size (kb)

csv

ocamlyacc

staged

fused

Fig. 14. Linear-time parsing

50 100 150

0

0.5

1

input size (messages)

r
u

n
t
i
m

e
(
m

s
)

json

0.5 1 1.5 2

0

20

40

60

input size (MB)

arith

headers specially. The semantic actions check that each row contains the same number of fields.

There is no implementation using Krishnaswami and Yallop’s combinators for this benchmark,

because more than a single character of lookahead is needed to distinguish escaped (i.e. repeated)

double-quotes "" from unescaped quotes ", and so the lexer cannot be implemented with typed

context-free expressions without substantial changes to its structure. The lexer interface used

in flap (Section 2.2) does not suffer from this limitation.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Fusing Lexing and Parsing 1:23

Input Normalized Fused Output
Grammar Lexer rules Context-free exps Nonterms Productions Productions Functions

pgn 13 95 38 53 91 206

ppm 6 10 5 6 16 55

sexp 4 11 3 6 9 11

csv 3 14 5 7 7 20

json 12 42 9 33 42 97

arith 14 143 28 55 83 209

Table 1. Sizes of inputs, intermediate representations, and generated code

Benchmark Compilation time (ms)
sexp 0.331

pgn 212

ppm 3.60

json 28.5

csv 0.499

arith 460

Table 2. Compilation time (type-checking, normalization, fusion, code generation)

(5) (json) A parser for JavaScript Object Notation (JSON). The semantic actions count the number

of objects represented in the input. Following Krishnaswami and Yallop, we use the simple

JSON grammar given by Jonnalagedda et al. [2014].

(6) (arith) A miniature programming language with constructs for arithmetic, comparison, let-

binding and branching. The semantic actions evaluate the parsed expression.

7.2 Running time
Figure 13 shows the absolute and relative throughput of the six implementations using the six

benchmark grammars. For the benchmarks that are taken from [Krishnaswami and Yallop 2019]

we use the test corpora from the same source. For the CSV benchmark we have generated a set of

files of various sizes and dimensions, using a random variety of textual and numeric data.

The benchmarks were compiled with BER MetaOCaml N111 with flambda optimizations enabled

and run on a single Intel i9-12900K core with 8GB memory running Ubuntu Linux, using the

Core_bench micro-benchmarking library [Hardin and James 2013].

As the graph shows, our experiments confirm the results reported by Krishnaswami and Yallop:

the staged implementation of typed context-free expressions generally outperforms ocamlyacc.

The addition of lexer-parser fusion makes flap considerably faster than both typed CFEs and

ocamlyacc, reaching around 1.3GB/s (a little under 2.5 cycles per byte) on the json benchmark.

Linear-time parsing. Finally, as Figure 14 illustrates, on Krishnaswami and Yallop’s benchmark

suite, parsers built with flap, like parsers built with Krishnaswami and Yallop’s combinators,

execute in time linear in the length of their input.

7.3 Code size
A second important measure of usefulness for parsing: if parsing tools are to be usable in practice,

it is essential that they do not generate unreasonably large code.

There are several reasons to be apprehensive about the size of code generated by flap. First,

conversion to Greibach Normal Form is well known to substantially increase the size of grammars;

for example, in the procedure given by Blum and Koch [1999] the result of converting a grammar

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

𝐺 has size 𝑂 (|𝐺 |3). Second, the fusion process is inherently duplicative, repeatedly copying the

lexer rules into the various grammar productions. Finally, experience in the multi-stage program-

ming community shows that it is easy to inadvertently generate extremely large programs, since

antiquotation makes it easy to duplicate terms.

However, measurements largely dispel these concerns. Table 1 gives the size of the representations

of the benchmark parsers at various stages in flap’s pipeline. The leftmost pair of columns of

figures shows the size of the input parsers, measured as the number of lexer rules (including

both Return and Skip rules) and the number of context-free expression nodes, as described in

Section 2. The pair of columns to the right shows the number of nonterminals and productions after

the grammar is converted to Deterministic GNF using the procedure in Section 4. As the figures

show, the normalization algorithm for typed context-free expressions does not produce the drastic

increases in size that occurs in the more general form of conversion to GNF. The next column to

the right shows the size of the grammar after fusion (Section 5). Fusion does not alter the number

of nonterminals, but it can add productions: for example, the Skip rules in the s-expression lexer

add additional productions to each nonterminal. Finally, the rightmost column shows the number

of function bindings in the code generated by flap. Comparing this generated function count with

the number of context-free expressions in the input reveals a fairly unalarming relationship: with

one exception (pgn), the ratio between the two barely exceeds 2.

Sharing. The entries for pgn and arith hint at opportunities for further improvement. In both

cases, the number of context-free expressions that make up the grammar (95 and 143) is surprisingly

high, since both languages are fairly simple. Inspecting the implementations of the grammars reveals

the cause: in several places, the combinators that construct the grammar duplicate subexpressions.

For example, here is the implementation of a Kleene plus operator used in pgn:

let oneormore e = (e >>> star e) . . .

Normalization turns these two occurrences of e into multiple entries in the normalized form, and

ultimately to multiple functions in the generated code.

The core problem is that the parser combinator interface (Section 2.3) provides no way to express

sharing of subgrammars. Since duplication of this sort is common, it is likely that extending flap
with facilities to express and maintain sharing could substantially reduce generated code size.

7.4 Compilation time
A final measure of practicality is the time taken to perform the fusion transformation. Slow

compilation times can have a significant effect on usability; as Nielsen [1993] notes, software that

takes more than one second to respond can cause a user to lose concentration, harming interactivity.

Table 2 shows the compilation time for the six benchmark grammars. In each case, the total

time taken to type-check and normalize the grammar, fuse the grammar and lexer and generate

optimized code is less than half a second.

8 RELATEDWORK
Deterministic Greibach Normal Form. There are several longstanding results related to determin-

istic variants of Greibach Normal Form. For example, Geller et al. [1976] show that every strict

deterministic language can be given a strict deterministic grammar in Greibach Normal Form, and

Nijholt [1979] gives a translation into Greibach Normal Form that preserves strict deterministicness.

The distinctive contributions of this paper are the new normal form that is well suited to fusion,

and the compositional normalization procedure from typed context-free expressions, allowing

deterministic GNF to be used in the implementation of parser combinators.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Fusing Lexing and Parsing 1:25

Combining lexers and parsers. The work most closely related to ours, by Casinghino and Roux

[2020] investigates the application of traditional stream fusion techniques to parser combinators in

the ParTS system. We have included their two published benchmarks in the evaluation of Section 7

and found that, as they report, when the flambda suite of compiler optimizations is applied to

their code, its performance is similar to the results achieved by Krishnaswami and Yallop [2019]. A

significant difference between their work and ours is that they approach fusion as a traditional

optimization problem, in which transformations are applied to code that satisfies certain heuristics,

and are not applied in more complex cases. In contrast, we treat lexer-parser fusion as a sequence

of total transformations that is guaranteed to convert every input (i.e. every parser) into a form that

enjoys pleasant performance properties. More concretely, Figure 13 shows significant performance

differences between ParTS and flap, with ParTS achieving one half and a tenth of the throughputs

of flap on the sexp and json benchmarks.

Another line of work, on Scannerless GLR parsing [Economopoulos et al. 2009; van den Brand et al.

2002], also aims to eliminate the boundary between lexers and parsers, both in the interface and

the implementation. The principal aim is to provide a principled way to handle lexical ambiguity,

in contrast to our focus on performance.

Context-aware scanning, introduced by Van Wyk and Schwerdfeger [2007] is another variant

on the parser-scanner interface focused on disambiguation; it passes contextual information from

the parser to the scanner about the set of valid tokens at a particular point, in a similar way to the

lexer specialization in Section 3.3 of this paper. However, Van Wyk and Schwerdfeger’s framework

goes further, and allows the automatic selection of a lexer (not just a subset of lexing rules) based

on the parsing context.

Fusion. The notion of fusion, in the sense of merging computations to eliminate intermediate

structures, has been applied in several domains, including query engines [Shaikhha et al. 2018],

GPU kernels [Filipovic et al. 2015] and tree traversals [Sakka et al. 2019].

Perhaps the most widespread is stream fusion, which appears to have originated with Wadler’s

deforestation [Wadler 1990], and has since been successfully applied as both a traditional com-

piler optimization [Coutts et al. 2007] and as a staged library [Kiselyov et al. 2017] that provides

guarantees similar to those we give here for parsers.

Parser optimization. Finally, in contrast to the constant-time speedups resulting from lexer-

parser fusion, we note an intriguing piece of work by Klyuchnikov [2010] that applies two-level-

supercompilation to parser optimization, leading to asymptotic improvements.

9 FUTUREWORK
There are a number of promising avenues for future work. First, extending flap’s rather minimal

lexer and parser interfaces to support common needs such as left-recursive grammars, lexers and

parsers with multiple entry points, mechanisms for maintaining state during parsing, and more

expressive lexer semantic action could make the library substantially more usable in practice.

Second, building on the proofs of normalization correctness in Section 4 to cover the whole of

flap, we plan to formally establish that the code generated by Section 5 faithfully represents the

semantics of the combinators in Section 2.

Third, applying the ideas in this paper to more powerful parsing algorithms such as LR(1) and

LALR(1), and incorporating them into traditional standalone parser generator (rather than a staged

library) could make lexer-parser fusion available to many more software developers.

Finally, it may be that fusion can be extended to longer pipelines than the lexer-parser interface

that we investigate here. Might it be possible to fuse together (e.g.) decompression, unicode decoding,

lexing and parsing into a single computation that does not materialize intermediate values?

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Anon.

REFERENCES
Norbert Blum and Robert Koch. 1999. Greibach Normal Form Transformation Revisited. Information and Computation 150,

1 (1999), 112–118. https://doi.org/10.1006/inco.1998.2772

Anders Bondorf. 1992. Improving Binding Times Without Explicit CPS-conversion. In Proceedings of the 1992 ACM

Conference on LISP and Functional Programming (San Francisco, California, USA) (LFP ’92). ACM, New York, NY, USA,

1–10. https://doi.org/10.1145/141471.141483

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964), 481–494. https://doi.org/10.1145/

321239.321249

Chris Casinghino and Cody Roux. 2020. ParTS: Final Report. HR001120C0016 - Final Report.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream fusion: from lists to streams to nothing at all. In

Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP 2007, Freiburg, Germany,

October 1-3, 2007, Ralf Hinze and Norman Ramsey (Eds.). ACM, 315–326. https://doi.org/10.1145/1291151.1291199

Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. 1996. Eta-Expansion Does The Trick. ACM Trans. Program. Lang.

Syst. 18, 6 (1996), 730–751. https://doi.org/10.1145/236114.236119

Rowan Davies and Frank Pfenning. 1996. A Modal Analysis of Staged Computation. In Proceedings of the 23rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg Beach, Florida, USA) (POPL ’96).

Association for Computing Machinery, New York, NY, USA, 258–270. https://doi.org/10.1145/237721.237788

Giorgios Economopoulos, Paul Klint, and Jurgen J. Vinju. 2009. Faster Scannerless GLR Parsing. In Compiler Construction,

18th International Conference, CC 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5501), Oege de Moor and

Michael I. Schwartzbach (Eds.). Springer, 126–141. https://doi.org/10.1007/978-3-642-00722-4_10

Jiri Filipovic, Matus Madzin, Jan Fousek, and Ludek Matyska. 2015. Optimizing CUDA code by kernel fusion: application on

BLAS. J. Supercomput. 71, 10 (2015), 3934–3957. https://doi.org/10.1007/s11227-015-1483-z

Matthew M. Geller, Michael A. Harrison, and Ivan M. Havel. 1976. Normal forms of deterministic grammars. Discret. Math.

16, 4 (1976), 313–321. https://doi.org/10.1016/S0012-365X(76)80004-0

Sheila A. Greibach. 1965. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars. J. ACM 12, 1 (Jan.

1965), 42–52. https://doi.org/10.1145/321250.321254

Christopher S. Hardin and Roshan P. James. 2013. Core_bench: Micro-Benchmarking for OCaml. OCaml Workshop.

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Odersky. 2014. Staged Parser Combinators

for Efficient Data Processing. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming

Systems Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, NY, USA, 637–653. https:

//doi.org/10.1145/2660193.2660241

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml - System Description. In FLOPS 2014 (LNCS,

Vol. 8475), Michael Codish and Eijiro Sumii (Eds.). Springer, 86–102. https://doi.org/10.1007/978-3-319-07151-0_6

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2017. Stream fusion, to completeness. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 285–299. https://doi.org/10.1145/3009837

Ilya Klyuchnikov. 2010. Towards effective two-level supercompilation. Preprint 81. Keldysh Institute of Applied Mathematics,

Moscow.

Neelakantan R. Krishnaswami and Jeremy Yallop. 2019. A typed, algebraic approach to parsing, See [McKinley and Fisher

2019], 379–393. https://doi.org/10.1145/3314221.3314625

Kathryn S. McKinley and Kathleen Fisher (Eds.). 2019. Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. ACM. https://doi.org/10.1145/3314221

Jakob Nielsen. 1993. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Kristian Nielsen and Morten Heine Sørensen. 1995. Call-By-Name CPS-Translation As a Binding-Time Improvement. In

Proceedings of the Second International Symposium on Static Analysis (SAS ’95). Springer-Verlag, London, UK, UK, 296–313.

http://dl.acm.org/citation.cfm?id=647163.717677

Anton Nijholt. 1979. Strict Deterministic Grammars and Greibach Normal Form. J. Inf. Process. Cybern. 15, 8/9 (1979),

395–401.

Scott Owens, John H. Reppy, and Aaron Turon. 2009. Regular-expression derivatives re-examined. J. Funct. Program. 19, 2

(2009), 173–190. https://doi.org/10.1017/S0956796808007090

François Pottier and Yann Régis-Gianas. [n.d.]. The Menhir parser generator. http://gallium.inria.fr/~fpottier/menhir/.

Alban Reynaud, Gabriel Scherer, and Jeremy Yallop. 2021. A practical mode system for recursive definitions. Proc. ACM

Program. Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434326

Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, and Milind Kulkarni. 2019. Sound, fine-grained traversal fusion

for heterogeneous trees, See [McKinley and Fisher 2019], 830–844. https://doi.org/10.1145/3314221.3314626

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1006/inco.1998.2772
https://doi.org/10.1145/141471.141483
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/236114.236119
https://doi.org/10.1145/237721.237788
https://doi.org/10.1007/978-3-642-00722-4_10
https://doi.org/10.1007/s11227-015-1483-z
https://doi.org/10.1016/S0012-365X(76)80004-0
https://doi.org/10.1145/321250.321254
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1145/3314221
http://dl.acm.org/citation.cfm?id=647163.717677
https://doi.org/10.1017/S0956796808007090
http://gallium.inria.fr/~fpottier/menhir/
https://doi.org/10.1145/3434326
https://doi.org/10.1145/3314221.3314626

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Fusing Lexing and Parsing 1:27

Yakov Shafranovich. 2005. Common Format and MIME Type for Comma-Separated Values (CSV) Files. RFC 4180. https:

//doi.org/10.17487/RFC4180

Amir Shaikhha, Mohammad Dashti, and Christoph Koch. 2018. Push versus pull-based loop fusion in query engines. J.

Funct. Program. 28 (2018), e10. https://doi.org/10.1017/S0956796818000102

Walid Taha. 1999. Multi-Stage Programming: Its Theory and Applications. Technical Report.

Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser. 2002. Disambiguation Filters for Scannerless

Generalized LR Parsers. In Compiler Construction, 11th International Conference, CC 2002, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings (Lecture Notes

in Computer Science, Vol. 2304), R. Nigel Horspool (Ed.). Springer, 143–158. https://doi.org/10.1007/3-540-45937-5_12

Eric R. Van Wyk and August C. Schwerdfeger. 2007. Context-aware Scanning for Parsing Extensible Languages. In Proceedings

of the 6th International Conference on Generative Programming and Component Engineering (Salzburg, Austria) (GPCE ’07).

ACM, New York, NY, USA, 63–72. https://doi.org/10.1145/1289971.1289983

Philip Wadler. 1985. How to Replace Failure by a List of Successes. In Proc. of a Conference on Functional Programming

Languages and Computer Architecture (Nancy, France). Springer-Verlag, Berlin, Heidelberg, 113–128.

Philip Wadler. 1990. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science 73, 2 (1990),

231–248. https://doi.org/10.1016/0304-3975(90)90147-A

Jeremy Yallop and Oleg Kiselyov. 2019. Generating Mutually Recursive Definitions. In Proceedings of the 2019 ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation (Cascais, Portugal) (PEPM 2019). ACM, New York, NY, USA,

75–81. https://doi.org/10.1145/3294032.3294078

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.17487/RFC4180
https://doi.org/10.17487/RFC4180
https://doi.org/10.1017/S0956796818000102
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1145/1289971.1289983
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/3294032.3294078

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

Fusing Lexing and Parsing 1:29

A
C
O
M
PL

ET
E
D
ER

IV
AT

IO
N

T
h

i
s

s
e
c
t
i
o

n
p

r
e
s
e
n

t
s

t
h

e
c
o

m
p

l
e
t
e

d
e
r
i
v
a
t
i
o

n
f
o

r
n

o
r
m

a
l
i
z
i
n

g

𝑔
=
𝜇

s
e
x
p
.(l

p
a
r
·(
𝜇

s
e
x
p

s
.𝜖

∨
s
e
x
p

·
s
e
x
p

s
)·

r
p
a
r
)∨

a
t
o
m

W
e

a
u

t
o

m
a
t
i
c
a
l
l
y

r
e
m

o
v
e

u
n

r
e
a
c
h

a
b
l
e

p
r
o

d
u

c
t
i
o

n
s

i
n

t
h

e
r
e
s
u

l
t
.

N
Jl
p
a
r
K
=
𝑛
6
⇒

{𝑛
6
→

l
p
a
r
}

N
J𝜖

K
=
𝑛
1
⇒

{𝑛
1
→

𝜖
}

N
J

s
e
x
p

K
=
𝑛
2
⇒

{𝑛
2
→

s
e
x
p
}

N
J

s
e
x
p

s
K
=
𝑛
3
⇒

{𝑛
3
→

s
e
x
p

s
}

N
J

s
e
x
p

·
s
e
x
p

s
K
=
𝑛
4
⇒

{𝑛
4
→

s
e
x
p
𝑛
3
,𝑛

3
→

s
e
x
p

s
}

N
J𝜖

∨
s
e
x
p

·
s
e
x
p

s
K
=
𝑛
5
⇒

{𝑛
5
→

𝜖
,𝑛

5
→

s
e
x
p
𝑛
3
,𝑛

3
→

s
e
x
p

s
}

N
J𝜇

s
e
x
p

s
.𝜖

∨
s
e
x
p

·
s
e
x
p

s
K
=

s
e
x
p

s
⇒

{s
e
x
p

s
→

𝜖
,s

e
x
p

s
→

s
e
x
p
𝑛
3
,𝑛

3
→

𝜖
,𝑛

3
→

s
e
x
p
𝑛
3
}

· · · · · · · · · ·
N

Jl
p
a
r
·(
𝜇

s
e
x
p

s
.𝜖

∨
s
e
x
p

·
s
e
x
p

s
)K

=
𝑛
7
⇒

{𝑛
7
→

l
p
a
r

s
e
x
p

s
,s

e
x
p

s
→

𝜖
,s

e
x
p

s
→

s
e
x
p
𝑛
3
,𝑛

3
→

𝜖
,𝑛

3
→

s
e
x
p
𝑛
3
}

· · · · · · · · · ·
N

Jr
p
a
r
K
=

r
p

a
r
⇒

{r
p

a
r
→

r
p
a
r
}

N
Jl
p
a
r
·(
𝜇

s
e
x
p

s
.𝜖

∨
s
e
x
p

·
s
e
x
p

s
)·

r
p
a
r
K
=
𝑛
8
⇒

{𝑛
8
→

l
p
a
r

s
e
x
p

s
r
p

a
r
,s

e
x
p

s
→

𝜖
,s

e
x
p

s
→

s
e
x
p
𝑛
3
,𝑛

3
→

𝜖
,𝑛

3
→

s
e
x
p
𝑛
3
,r

p
a
r
→

r
p
a
r
}

N
Ja
t
o
m

K
=
𝑛
9
⇒

{𝑛
9
→

a
t
o
m
}

N
J(
l
p
a
r
·(
𝜇

s
e
x
p

s
.𝜖

∨
s
e
x
p

·
s
e
x
p

s
)·

r
p
a
r
)∨

a
t
o
m

K
=
𝑛
1
0
⇒

{𝑛
1
0
→

l
p
a
r

s
e
x
p

s
r
p

a
r
,𝑛

1
0
→

a
t
o
m
,s

e
x
p

s
→

𝜖
,s

e
x
p

s
→

s
e
x
p
𝑛
3
,𝑛

3
→

𝜖
,𝑛

3
→

s
e
x
p
𝑛
3
,r

p
a
r
→

r
p
a
r
}

N
J𝑔

K
=

s
e
x
p
⇒

{s
e
x
p
→

l
p
a
r

s
e
x
p

s
r
p

a
r
,s

e
x
p
→

a
t
o
m
,s

e
x
p

s
→

𝜖
,s

e
x
p

s
→

l
p
a
r

s
e
x
p

s
r
p

a
r
𝑛
3
,s

e
x
p

s
→

a
t
o
m
𝑛
3
,𝑛

3
→

𝜖
,𝑛

3
→

l
p
a
r

s
e
x
p

s
r
p

a
r
𝑛
3
,𝑛

3
→

a
t
o
m
𝑛
3
,r

p
a
r
→

r
p
a
r
}

C
o

m
p

a
r
i
n

g
t
h

e
s
i
m

p
l
i
fi

e
d

d
e
r
i
v
a
t
i
o

n
i
n

S
e
c
t
i
o

n
4
.1

w
i
t
h

t
h

e
c
o

m
p

l
e
t
e

d
e
r
i
v
a
t
i
o

n
,
w

e
n

o
t
e

t
h

e
f
o

l
l
o
w

i
n

g
s
i
m

p
l
i
fi

c
a
t
i
o

n
:
fi

r
s
t
,
w

e
o

m
i
t

t
h

e

d
e
r
i
v
a
t
i
o

n
o

f
t
o

k
e
n

s
;
s
e
c
o

n
d

,
w

h
e
n

n
o

r
m

a
l
i
z
i
n

g
s
e
x
p

s
w

e
p

r
o

d
u

c
e

a
n

o
n

t
e
r
m

i
n

a
l
𝑛
3

w
i
t
h

a
p

r
o

d
u

c
t
i
o

n
𝑛
3
→

s
e
x
p

s
.
T

h
a
t

m
e
a
n

s
𝑛
3

i
s

e
q

u
i
v
a
l
e
n

t

t
o

s
e
x
p

s
.
H

o
w

e
v
e
r
,
t
h

i
s
𝑛
3

i
s

r
e
t
a
i
n

e
d

i
n

t
h

e
fi

n
a
l

r
e
s
u

l
t
,
m

a
k

i
n

g
t
h

e
fi

n
a
l

g
r
a
m

m
a
r

a
b
i
g

l
a
r
g
e
r
.
I
t
’
s

e
a
s
y

t
o

c
h

e
c
k

t
h

a
t

t
h

e
g
r
a
m

m
a
r

i
s

e
q

u
i
v
a
l
e
n

t

t
o

t
h

e
o

n
e

g
i
v
e
n

i
n

t
h

e
p

a
p

e
r
.

I
t

i
s

e
a
s
y

t
o

c
o

n
s
i
d

e
r

a
n

o
p

t
i
m

i
z
a
t
i
o

n
p

r
o

c
e
s
s

t
h

a
t

g
e
t
s

r
i
d

o
f
𝑛
3

i
n

t
h

e
m

i
d

d
l
e

o
f

t
h

e
d

e
r
i
v
a
t
i
o

n
.
F
o

r
e
x
a
m

p
l
e
,
f
o

r
t
h

e
r
e
s
u

l
t

f
o

r
𝑛
5
,
i
n

s
t
e
a
d

o
f

𝑛
5
⇒
𝑛
5
→
𝜖
,𝑛

5
→

s
e
x
p
𝑛
3
,𝑛

3
→

s
e
x
p

s

W
e

c
a
n

h
a
v
e

𝑛
5
⇒
𝑛
5
→
𝜖
,𝑛

5
→

s
e
x
p

s
e
x
p

s

T
h

e
n

t
h

e
n

o
r
m

a
l
i
z
a
t
i
o

n
r
e
s
u

l
t

w
o

u
l
d

b
e

e
x
a
c
t
l
y

t
h

e
s
a
m

e
a
s

t
h

e
o

n
e

i
n

t
h

e
p

a
p

e
r
.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1:30 Anon.

B DETERMINISTIC PARSING
Theorem 4.1 (Deterministic Parsing). If 𝐺 is a DGNF grammar, then for any expansion 𝐺 ⊢

𝑛 { 𝑤 , there is a unique derivation for such expansion.

Proof. By straightforward induction on 𝐺 ⊢ 𝑛 { 𝑤 .

□

C WELL-TYPED NORMALIZATION
This section presents well-typed normalization, which shows how normalization captures the type

information, and then proves its properties that are important for later proofs.

First, we note that during normalization (Figure 6), we create one fresh nonterminal exactly for

one context-free expression. Therefore, we can attach to each nonterminal its type information.

That is, instead of 𝑛, we have 𝑛𝜏 , where 𝜏 indicates the type of 𝑛. We also write 𝛼𝜏 where 𝜏 is the

type of 𝛼 as in 𝜇𝛼 : 𝜏 . 𝑔.

Refining the normalization, we have:

NJ𝑔 K returns 𝑛𝜏 ⇒ 𝐺 , with a grammar 𝐺 and the start nonterminal 𝑛 of type 𝜏 (with 𝑛 fresh)

(epsilon) NJ 𝜖 K = 𝑛𝜏𝜖 ⇒ {𝑛𝜏𝜖 → 𝜖 }
(token) NJ 𝑡 K = 𝑛𝜏𝑐 ⇒ {𝑛𝜏𝑐 → 𝑡 }
(bot) NJ⊥ K = 𝑛𝜏⊥ ⇒ ∅

(seq) NJ𝑔1 · 𝑔2 K = 𝑛𝜏1 ·𝜏2 ⇒ {𝑛𝜏1 ·𝜏2 → 𝑁 1 𝑛2𝜏2 | 𝑛1𝜏1 → 𝑁 1 ∈ 𝐺1} ∪𝐺1 ∪𝐺2

where NJ𝑔1 K = 𝑛1𝜏1 ⇒ 𝐺1 ∧ NJ𝑔2 K = 𝑛2𝜏2 ⇒ 𝐺2

(alt) NJ𝑔1 ∨ 𝑔2 K = 𝑛𝜏1∨𝜏2 ⇒ {𝑛𝜏1∨𝜏2 → 𝑁 1 | 𝑛1𝜏1 → 𝑁 1 ∈ 𝐺1} ∪ {𝑛𝜏1∨𝜏2 → 𝑁 2 | 𝑛2𝜏2 → 𝑁 2 ∈ 𝐺2}
∪ 𝐺1 ∪𝐺2

where NJ𝑔1 K = 𝑛1𝜏1 ⇒ 𝐺1 ∧ NJ𝑔2 K = 𝑛2𝜏2 ⇒ 𝐺2

(fix) NJ 𝜇𝛼 : 𝜏 . 𝑔 K = 𝛼𝜏 ⇒ {𝛼𝜏 → 𝑁 | 𝑛𝜏 → 𝑁 ∈ 𝐺} ∪{𝑛′𝜏 ′ → 𝑁 𝑛′ | 𝑛′𝜏 ′ → 𝛼𝜏 𝑛
′ ∈ 𝐺 ∧ 𝑛𝜏 → 𝑁 ∈ 𝐺}

∪𝐺\𝑛′𝜏′→𝛼𝜏 𝑛′

where NJ𝑔 K = 𝑛𝜏 ⇒ 𝐺

𝐺\𝑛′𝜏′→𝛼𝜏 𝑛′ is 𝐺 with all 𝑛′𝜏′ → 𝛼𝜏 𝑛
′

removed for any 𝑛′, 𝜏 ′ and 𝑛′

(var) NJ𝛼𝜏 K = 𝑛𝜏 ⇒ {𝑛𝜏 → 𝛼𝜏 }

We also add to typing that

Γ;Δ ⊢ 𝑛𝜏 : 𝜏

With that, we can type-check any 𝑁 according to the typing rules, by treating 𝑡 as constants, 𝑛𝜏 as

nonterminal of type 𝜏 , and lists as sequences (e.g., 𝑛1𝜏1 𝑛2𝜏2 as 𝑛1𝜏1 · 𝑛2𝜏2).
Now we can prove properties about the well-typed normalization. While those lemmas are

proved in the typed normalization, they naturally hold for the untyped normalization as the two

are the same process.

Lemma C.1. Given Γ;Δ ⊢ 𝑔 : 𝜏 , and NJ𝑔 K returns 𝑛𝜏′ ⇒ 𝐺 , then 𝜏 = 𝜏 ′.

Proof. By a straightforward induction on Γ;Δ ⊢ 𝑔 : 𝜏 . □

Lemma C.2. Given Γ;Δ ⊢ 𝑔 : 𝜏 ′, and NJ𝑔 K returns _ ⇒ 𝐺 , then for any 𝑛𝜏 ∈ 𝐺 , if 𝑁 1, ..., 𝑁 i are

all productions of 𝑛. we have

• 𝜏 = 𝜏1 ∨ 𝜏2 ∨ · · · ∨ 𝜏i, where
• (𝑛𝜏 → 𝑁 1 ∈ 𝐺 ∧ Γ;Δ ⊢ 𝑁 1 : 𝜏1) and (𝑛𝜏 → 𝑁 2 ∈ 𝐺 ∧ Γ;Δ ⊢ 𝑁 2 : 𝜏2) and · · · and

(𝑛𝜏 → 𝑁 i ∈ 𝐺 ∧ Γ;Δ ⊢ 𝑁 i : 𝜏i); and

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

Fusing Lexing and Parsing 1:31

• 𝜏1 # 𝜏2 · · · # 𝜏i, i.e., all 𝜏1, 𝜏2, · · · , 𝜏i are apart from each other.

Proof. By induction on Γ;Δ ⊢ 𝑔 : 𝜏 .

• The cases for 𝜖 , 𝑡 , ⊥ and 𝛼 follow trivially.

• The case for 𝑔1 · 𝑔2.
NJ𝑔1 · 𝑔2 K = 𝑛𝜏1 ·𝜏2 ⇒ {𝑛𝜏1 ·𝜏2 → 𝑁 1 𝑛2𝜏2 | 𝑛1𝜏1 → 𝑁 1 ∈ 𝐺1} ∪𝐺1 ∪𝐺2

NJ𝑔1 K = 𝑛1𝜏1 ⇒ 𝐺1 ∧ NJ𝑔2 K = 𝑛2𝜏2 ⇒ 𝐺2

By I.H., we know that for each 𝑁 1, we have Γ;Δ ⊢ 𝑁 1 : 𝜏
′
1

for some 𝜏 ′
1
, and 𝜏1 is the ∨ of all

𝜏 ′
1
, and all 𝜏 ′

1
is apart (#) from each other.

According to well-typedness, we know that 𝜏1 ⊛ 𝜏2, which says that 𝜏1.FLast∩𝜏2.First = ∅,

and ¬𝜏1.Null.
Since 𝜏1 is the ∨ of all 𝜏 ′

1
, we know 𝜏 ′

1
.Null = false, and 𝜏 ′

1
.FLast ∩ 𝜏2.First = ∅, and thus

𝜏 ′
1
⊛ 𝜏2.

So Γ;Δ ⊢ 𝑁 1 𝑛2𝜏2 : 𝜏
′
1
· 𝜏2

Moreover, since 𝜏 ′
1
.Null = false, we have 𝜏 ′

1
· 𝜏2.First = 𝜏 ′

1
.First and 𝜏 ′

1
· 𝜏2.Null = false.

Given that all 𝜏 ′
1

apart from each other, we can derive that all 𝜏 ′
1
· 𝜏2 apart from each other.

• The case for

NJ𝑔1 ∨ 𝑔2 K = 𝑛𝜏1∨𝜏2 ⇒ {𝑛𝜏1∨𝜏2 → 𝑁 1 | 𝑛1𝜏1 → 𝑁 1 ∈ 𝐺1} ∪ {𝑛𝜏1∨𝜏2 → 𝑁 2 | 𝑛2𝜏2 → 𝑁 2 ∈ 𝐺2}
∪ 𝐺1 ∪𝐺2

NJ𝑔1 K = 𝑛1𝜏1 ⇒ 𝐺1 ∧ NJ𝑔2 K = 𝑛2𝜏2 ⇒ 𝐺2

By I.H., we know that for each 𝑁 1, we have Γ;Δ ⊢ 𝑁 1 : 𝜏
′
1

for some 𝜏 ′
1
, and 𝜏1 is the ∨ of all

𝜏 ′
1
, and all 𝜏 ′

1
is apart (#) from each other. Moreover, for each 𝑁 2, we have Γ;Δ ⊢ 𝑁 2 : 𝜏

′
2

for

some 𝜏 ′
2
, and 𝜏2 is the ∨ of all 𝜏 ′

2
, and all 𝜏 ′

2
is apart (#) from each other.

It’s easy to see that 𝜏1 ∨ 𝜏2 is the ∨ of all 𝜏 ′
1

and 𝜏 ′
2
.

According to well-typedness, we know that 𝜏1 # 𝜏2. That is 𝜏1 .First ∩ 𝜏2 .First = ∅, and

¬(𝜏1.Null ∧ 𝜏2.Null). From the former, we can derive that 𝜏 ′
1
.First ∩ 𝜏 ′

2
.First = ∅. From

the latter, we know that at least one of 𝜏1 and 𝜏2 has Null = false, so at least one of 𝜏 ′
1

and

𝜏 ′
2

has Null = false. With that, we have 𝜏 ′
1
𝜏 ′

2
. Thus, all 𝜏 ′

1
and 𝜏 ′

2
apart from each other.

• The case for 𝜇𝛼 : 𝜏 . 𝑔

NJ 𝜇𝛼 : 𝜏 . 𝑔 K = 𝛼𝜏 ⇒ {𝛼𝜏 → 𝑁 | 𝑛𝜏 → 𝑁 ∈ 𝐺} ∪{𝑛′𝜏 ′ → 𝑁 𝑛′ | 𝑛′𝜏′ → 𝛼𝜏 𝑛
′ ∈ 𝐺 ∧ 𝑛𝜏 → 𝑁 ∈ 𝐺}

∪𝐺\𝑛′𝜏′→𝛼𝜏 𝑛′

NJ𝑔 K = 𝑛𝜏 ⇒ 𝐺

𝐺\𝑛′𝜏′→𝛼𝜏 𝑛′ is 𝐺 with all 𝑛′𝜏 ′ → 𝛼𝜏 𝑛
′

removed for any 𝑛′, 𝜏 ′ and 𝑛′

By I.H., we know that for each 𝑁 , we have Γ;Δ ⊢ 𝑁 : 𝜏 ′′ for some 𝜏 ′′, and 𝜏 is the ∨ of all

𝜏 ′′, and all 𝜏 ′′ is apart (#) from each other.

The goal for 𝛼𝜏 follows from 𝑛𝜏 . The remaining is to show that the goal holds for each 𝑛′𝜏 ′
that has a production that starts with 𝛼𝜏 . Essentially what happens is that one production

𝑛′𝜏 ′ → 𝛼𝜏 𝑛
′

is replaced by multiple productions 𝑛′𝜏 ′ → 𝑁 𝑛′ for each 𝑛𝜏 → 𝑁 ∈ 𝐺 where

Γ;Δ ⊢ 𝑁 : 𝜏 ′′.
First, we need to show that 𝑁 𝑛′ is well-typed. We already know each individual terminal or

nonterminal in 𝑁 𝑛′ is well-typed, so the only requirement is the ⊛ condition during type-

checking. Given that 𝛼𝜏 𝑛
′

is well-typed, we know that 𝜏 .Null = false, so 𝜏 ′′.Null = false.

Moreover, 𝜏 ′′.FLast ⊆ 𝜏 .FLast. With that, and the fact that 𝛼𝜏 𝑛
′

is well-typed, we can

derive that the ⊛ condition is always satisfied when type-checking 𝑁 𝑛′. Therefore, 𝑁 𝑛′ is

well-typed.

Because 𝜏 is the ∨ of all 𝜏 ′′, it’s easy to show that the type of 𝛼𝜏 𝑛
′

is the ∨ of the types of

all 𝑁 𝑛′. Therefore, the type of 𝑛′ is the same as before. Also, all types of the productions of

𝑛′ are still apart with each other.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1:32 Anon.

□

D NORMALIZATION IS WELL-DEFINED (PROOF)
Lemma 4.2 (Productions of Null). Given Γ;Δ ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns 𝑛 ⇒ 𝐺 , 𝜏 .Null = true

if and only if (1) 𝑛 → 𝜖 ∈ 𝐺 ; or (2) 𝑛 → 𝛼 ∈ 𝐺 where (𝛼 : 𝜏 ′) ∈ Γ and 𝜏 ′.Null = true.

Proof. Left to right According to Lemma C.2, we must have one 𝑛𝜏 → 𝑁 ∈ 𝐺 , where Γ;Δ ⊢
𝑁 : 𝜏 , and 𝜏 .Null = true. We case analyze the shape of 𝑁 :

• If 𝑁 = 𝜖 , then we have proved (1).

• If 𝑁 = 𝑡 𝑛, then it’s impossible that 𝜏 .Null = true.

• If 𝑁 = 𝛼 𝑛. Since 𝛼 𝑛 is well-typed, if 𝑛 is not empty, then the type must have Null = false.

Therefore 𝑛 must be empty, and 𝛼 has its type Null = true. So we have proved (2).

Right to left Following Lemma C.2, the type 𝜏 is the ∨ of all types. If either 𝑛 → 𝜖 of 𝛼 has type

Null = true, we know that 𝜏 .Null = true.

□

Theorem 4.3 (Well-definedness). If Γ;Δ ⊢ 𝑔 : 𝜏 , then NJ𝑔 K returns 𝑛 ⇒ 𝐺 for some 𝐺 and 𝑛.

Proof. By induction on 𝑔. Most cases are straightforward. The only interesting cases are when

𝑔 = 𝑔1 · 𝑔2 or 𝑔 = 𝜇𝛼. 𝑔′.

• 𝑔 = 𝑔1 · 𝑔2. We have:

NJ𝑔1 · 𝑔2 K = 𝑛 ⇒ {𝑛 → 𝑁 1 𝑛2 | 𝑛1 → 𝑁 1 ∈ 𝐺1} ∪𝐺1 ∪𝐺2

NJ𝑔1 K = 𝑛1 ⇒ 𝐺1 ∧ NJ𝑔2 K = 𝑛2 ⇒ 𝐺2

As 𝑔1 · 𝑔2 is well-typed, we know that the type of 𝑔1 has Null = false. By Lemma 4.2, 𝑁 1 is

not 𝜖 , ensuring that 𝑁 1 𝑛2 is a valid form.

• 𝑔 = 𝜇𝛼. 𝑔′. We have:

Γ;Δ, 𝛼 : 𝜏 ⊢ 𝑔 : 𝜏

NJ 𝜇𝛼. 𝑔 K = 𝛼 ⇒ {𝛼 → 𝑁 | 𝑛 → 𝑁 ∈ 𝐺} ∪{𝑛′ → 𝑁 𝑛′ | 𝑛′ → 𝛼 𝑛′ ∈ 𝐺 ∧ 𝑛 → 𝑁 ∈ 𝐺} ∪𝐺\𝑛′→𝛼 𝑛′

NJ𝑔 K = 𝑛 ⇒ 𝐺

𝐺\𝑛′→𝛼 𝑛′ is 𝐺 with all 𝑛′ → 𝛼 𝑛′ removed for any 𝑛′ and 𝑛′

We need to show that 𝑁 𝑛′ is valid, requiring either 𝑁 to not be 𝜖 , or 𝑛′ to be empty.

Since 𝛼 𝑛′ is well-typed (Lemma C.2), we know that either 𝑛′ is empty, or 𝛼 must have

Null = false. In the first case we are done. In the second case, following Lemma 4.2, we

know 𝑁 cannot be 𝜖 .

□

E NORMALIZATION RETURNS DGNF GRAMMARS (PROOF)
E.1 Normalizing closed expressions produces no 𝛼 𝑛 form
Lemma 4.4 (Internal normal form). Given Γ;Δ ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns 𝑛 ⇒ 𝐺 ,

• if (𝑛 → 𝛼 𝑛) ∈ 𝐺 , then we have 𝛼 ∈ dom (Γ);
• if (𝑛′ → 𝛼 𝑛) ∈ 𝐺 for any 𝑛′, then we have 𝛼 ∈ fv (𝑔), and thus 𝛼 ∈ dom (Γ,Δ).

Proof. Part 1 By induction on Γ;Δ ⊢ 𝑔 : 𝜏 , most cases are straightforward. We discuss the

following three cases:

• 𝑔 = 𝛼 . As 𝑔 is well-typed, it must be 𝛼 ∈ dom (Γ). The goal follows directly.

• 𝑔 = 𝑔1 · 𝑔2. The goal follows by the I.H. on 𝑔1.

• 𝑔 = 𝜇𝛼. 𝑔′. As the well-typedness of 𝑔′ adds 𝛼 to Δ, the goal follows directly by the I.H. on

𝑔′.

Part 2 By induction on Γ;Δ ⊢ 𝑔 : 𝜏 . The only interesting case is when 𝑔 = 𝜇𝛼. 𝑔′. We have

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

Fusing Lexing and Parsing 1:33

Γ;Δ, 𝛼 : 𝜏 ⊢ 𝑔 : 𝜏

NJ 𝜇𝛼. 𝑔 K = 𝛼 ⇒ {𝛼 → 𝑁 | 𝑛 → 𝑁 ∈ 𝐺}
(1)

∪{𝑛′ → 𝑁 𝑛′ | 𝑛′ → 𝛼 𝑛′ ∈ 𝐺 ∧ 𝑛 → 𝑁 ∈ 𝐺}
(2)

∪𝐺\𝑛′→𝛼 𝑛′

(3)
NJ𝑔 K = 𝑛 ⇒ 𝐺

𝐺\𝑛′→𝛼 𝑛′ is 𝐺 with all 𝑛′ → 𝛼 𝑛′ removed for any 𝑛′ and 𝑛′

By I.H., we know that for all (𝑛′′ → 𝑏𝑒𝑡𝑎 𝑛) ∈ 𝐺\𝑛′→𝛼 𝑛′ , 𝛽 ∈ fv (𝑔).
For 𝑁 , if it is 𝑏𝑒𝑡𝑎 𝑛, then either 𝛽 ∈ fv (𝜇𝛼. 𝑔), or 𝛽 = 𝛼 . By Part 1, we know that 𝛽 ∈ dom (Γ),

so 𝛽 ≠ 𝛼 . So it can only be 𝛽 ∈ fv (𝜇𝛼. 𝑔). And the goal follows.

□

Corollary 4.5 (Normal form). Given •; • ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns _ ⇒ 𝐺 , then for all

(𝑛 → 𝑁) ∈ 𝐺 , 𝑁 is 𝜖 or 𝑡 𝑛 for some 𝑡 and 𝑛.

Proof. Follows directly from Lemma 4.4. □

E.2 A nonterminal’s non-𝜖 productions start with distinct terminals.
Lemma 4.6 (Terminals in First). Given Γ;Δ ⊢ 𝑔 : 𝜏 andNJ𝑔 K returns𝑛 ⇒ 𝐺 , we have 𝑡 ∈ 𝜏 .First

if and only if (1) (𝑛 → 𝑡 𝑛) ∈ 𝐺 ; or (2) (𝑛 → 𝛼 𝑛) ∈ 𝐺 where (𝛼 : 𝜏 ′) ∈ Γ and 𝑡 ∈ 𝜏 .First.

Proof. Left to right According to Lemma C.2, we must have one 𝑛𝜏 → 𝑁 ∈ 𝐺 , where Γ;Δ ⊢
𝑁 : 𝜏 , and 𝑡 ∈ 𝜏 .First. We case analyze the shape of 𝑁 :

• If 𝑁 = 𝜖 , then it’s impossible.

• If 𝑁 = 𝑡 𝑛, then we have proved (1).

• If 𝑁 = 𝛼 𝑛. Since 𝛼 𝑛 is well-typed, the First of the type of 𝛼 𝑛 is equivalent to the First of

the type of 𝛼 . So we have proved (2).

Right to left Following Lemma C.2, the type 𝜏 is the ∨ of all types. If either 𝑛 → 𝑡 𝑛 of 𝛼 has

type 𝑡 ∈ First, we know that 𝑡 ∈ 𝜏 .First.

□

Lemma E.1 (Productions with distinct terminals). If Γ;Δ ⊢ 𝑔 : 𝜏 , and NJ𝑔 K returns _ ⇒ 𝐺 ,

then for any two productions (𝑛 → 𝑡1 𝑛1) ∈ 𝐺 and (𝑛 → 𝑡2 𝑛2) ∈ 𝐺 , we have 𝑡1 ≠ 𝑡2.

Proof. Suppose there are 𝑛 → 𝑡 𝑛1 and 𝑛 → 𝑡 𝑛2.

By Lemma C.2, we know that the types of 𝑡 𝑛1 and 𝑡 𝑛2 must be apart. Therefore they have

disjoint First.

By Lemma 4.6, we know that both 𝑡 𝑛1 and 𝑡 𝑛2 have 𝑡 ∈ First. However, since their types have

disjoint First, this is impossible. So contradiction.

□

E.3 The 𝜖-production may only be used when other productions do not apply.
We defined the notion of containment of types as follows. The key of the definition is rule st-base,

which says that a grammar 𝑔1 is a subtype grammar of 𝑔2, if 𝑔1 is of type 𝜏1, 𝑔2 is of type 𝜏2, and

𝜏1 = 𝜏2 ∨ 𝜏 for some 𝜏 . Notably, we have Γ;Δ ⊢ 𝑔 ≲ 𝑔 for any well-typed grammar Γ;Δ ⊢ 𝑔 : 𝜏 , as

we have 𝜏 = 𝜏 ∨ {Null = false; First = ∅; FLast = ∅}.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1:34 Anon.

Γ;Δ ⊢ 𝑔1 ≲ 𝑔2 (containment of types)

st-base

Γ;Δ ⊢ 𝑔1 : 𝜏1 Γ;Δ ⊢ 𝑔2 : 𝜏2 𝜏1 = 𝜏2 ∨ 𝜏
Γ;Δ ⊢ 𝑔1 ≲ 𝑔2

st-trans

Γ;Δ ⊢ 𝑔1 ≲ 𝑔2 Γ;Δ ⊢ 𝑔2 ≲ 𝑔3
Γ;Δ ⊢ 𝑔1 ≲ 𝑔3

st-con

Γ;Δ ⊢ 𝑔1 ≲ 𝑔′1 Γ;Δ ⊢ 𝑔2 ≲ 𝑔′2
Γ;Δ ⊢ 𝑔1 · 𝑔2 ≲ 𝑔′1 · 𝑔′2

st-union

Γ;Δ ⊢ 𝑔1 ≲ 𝑔′1 Γ;Δ ⊢ 𝑔2 ≲ 𝑔′2
Γ;Δ ⊢ 𝑔1 ∨ 𝑔2 ≲ 𝑔′1 ∨ 𝑔′2

Lemma E.2. If Γ;Δ ⊢ 𝑔1 : 𝜏1, and Γ;Δ ⊢ 𝑔1 ≲ 𝑔2, then Γ;Δ ⊢ 𝑔2 : 𝜏2, and 𝜏1 = 𝜏2 ∨ 𝜏 for some 𝜏 .

Proof. By induction on Γ;Δ ⊢ 𝑔1 ≲ 𝑔2.
• rule st-base follows trivially.

• Case
st-trans

Γ;Δ ⊢ 𝑔1 ≲ 𝑔2 Γ;Δ ⊢ 𝑔2 ≲ 𝑔3
Γ;Δ ⊢ 𝑔1 ≲ 𝑔3

We have 𝑔1 of type 𝜏1.

By I.H., 𝑔2 of type 𝜏2, and 𝜏1 = 𝜏2 ∨ 𝜏 .

By the second I.H., 𝑔3 of type 𝜏3, and 𝜏2 = 𝜏3 ∨ 𝜏 ′.
Therefore, 𝜏1 = 𝜏3 ∨ (𝜏 ∨ 𝜏 ′).

• Case
st-con

Γ;Δ ⊢ 𝑔1 ≲ 𝑔′1 Γ;Δ ⊢ 𝑔2 ≲ 𝑔′2
Γ;Δ ⊢ 𝑔1 · 𝑔2 ≲ 𝑔′1 · 𝑔′2

We have 𝑔1 · 𝑔2 of type 𝜏1 · 𝜏2 with 𝑔1 of type 𝜏1 and 𝑔2 of type 𝜏2 and 𝜏1 ⊛ 𝜏2.
By I.H., 𝑔′

1
of type 𝜏 ′

1
, and 𝜏1 = 𝜏

′
1
∨ 𝜏 .

By the second I.H., 𝑔′
2

of type 𝜏 ′
2
, and 𝜏2 = 𝜏

′
2
∨ 𝜏 ′.

Now we want to show 𝑔′
1
· 𝑔′

2
is of type 𝜏 ′

1
· 𝜏 ′

2
. For that, we need to prove 𝜏 ′

1
⊛ 𝜏 ′

2
.

That means we need to prove 𝜏 ′
1
.FLast ∩ 𝜏 ′

2
.First = ∅ ∧ ¬𝜏 ′

1
.Null

We already know 𝜏1 ⊛ 𝜏2, which means 𝜏1.FLast ∩ 𝜏2 .First = ∅ ∧ ¬𝜏1 .Null
Since 𝜏1 = 𝜏

′
1
∨ 𝜏 and 𝜏2 = 𝜏

′
2
∨ 𝜏 ′, we can derive 𝜏 ′

1
.FLast ∩ 𝜏 ′

2
.First = ∅ ∧ ¬𝜏 ′

1
.Null

Therefore, 𝜏 ′
1
⊛ 𝜏 ′

2
, and 𝑔′

1
· 𝑔′

2
is of type 𝜏 ′

1
· 𝜏 ′

2
.

Now the goal is to relate 𝜏1 · 𝜏2 with 𝜏 ′
1
· 𝜏 ′

2
.

𝜏1 · 𝜏2 =


Null = 𝜏1.Null ∧ 𝜏2 .Null
First = 𝜏1.First ∪ 𝜏1.Null ?𝜏2 .First
FLast = 𝜏2.FLast ∪ 𝜏2.Null ? (𝜏2.First ∪ 𝜏1 .FLast)

given ¬𝜏1 .Null

𝜏1 · 𝜏2 =


Null = false

First = 𝜏1.First

FLast = 𝜏2.FLast ∪ 𝜏2.Null ? (𝜏2.First ∪ 𝜏1 .FLast)
Similarly,

𝜏 ′
1
· 𝜏 ′

2
=


Null = false

First = 𝜏 ′
1
.First

FLast = 𝜏 ′
2
.FLast ∪ 𝜏 ′

2
.Null ? (𝜏 ′

2
.First ∪ 𝜏 ′

1
.FLast)

We have 𝜏1 = 𝜏
′
1
∨ 𝜏 and 𝜏2 = 𝜏

′
2
∨ 𝜏 ′. Therefore, with ¬𝜏2.Null implying ¬𝜏 ′

2
.Null,

𝜏1 · 𝜏2 = (𝜏 ′
1
· 𝜏 ′

2
) ∨


Null = false

First = 𝜏 .First

FLast = 𝜏 ′.FLast ∪ 𝜏2.Null ? (𝜏2.First ∪ 𝜏1.FLast)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

Fusing Lexing and Parsing 1:35

• Case
st-union

Γ;Δ ⊢ 𝑔1 ≲ 𝑔′1 Γ;Δ ⊢ 𝑔2 ≲ 𝑔′2
Γ;Δ ⊢ 𝑔1 ∨ 𝑔2 ≲ 𝑔′1 ∨ 𝑔′2

We have 𝑔1 ∨ 𝑔2 of type 𝜏1 ∨ 𝜏2 with 𝑔1 of type 𝜏1 and 𝑔2 of type 𝜏2 and 𝜏1 # 𝜏2.

By I.H., 𝑔′
1

of type 𝜏 ′
1
, and 𝜏1 = 𝜏

′
1
∨ 𝜏 .

By the second I.H., 𝑔′
2

of type 𝜏 ′
2
, and 𝜏2 = 𝜏

′
2
∨ 𝜏 ′.

Now we want to show 𝑔′
1
∨ 𝑔′

2
is of type 𝜏 ′

1
∨ 𝜏 ′

2
. For that, we need to prove 𝜏 ′

1
𝜏 ′

2
.

That means we need to prove (𝜏 ′
1
.First ∩ 𝜏 ′

2
.First = ∅) ∧ ¬(𝜏 ′

1
.Null ∧ 𝜏 ′

2
.Null)

We already know 𝜏1 # 𝜏2, which means (𝜏1.First ∩ 𝜏2.First = ∅) ∧ ¬(𝜏1.Null ∧ 𝜏2 .Null)
Since 𝜏1 = 𝜏

′
1
∨ 𝜏 and 𝜏2 = 𝜏

′
2
∨ 𝜏 ′, we can derive (𝜏 ′

1
.First ∩ 𝜏 ′

2
.First = ∅) ∧ ¬(𝜏 ′

1
.Null ∧

𝜏 ′
2
.Null)

Therefore, 𝜏 ′
1
𝜏 ′

2
, and 𝑔′

1
∨ 𝑔′

2
is of type 𝜏 ′

1
∨ 𝜏 ′

2
.

Finally, we have 𝜏1 ∨ 𝜏2 = (𝜏 ′
1
∨ 𝜏 ′

2
) ∨ (𝜏 ∨ 𝜏 ′).

□

Lemma E.3 (Expansion preserves typing). Given Γ;Δ ⊢ 𝑔 : 𝜏 , NJ𝑔 K returns _ ⇒ 𝐺 , if 𝐺 ⊢
𝑛𝜏 { 𝑡 𝑛′𝑛, then Γ;Δ ⊢ 𝑡 𝑛′𝑛 : 𝜏1, and 𝜏 = 𝜏1 ∨ 𝜏 ′ for some 𝜏 ′.

Proof. By induction on 𝐺 ⊢ 𝑛𝜏 { 𝑡 𝑛′𝑛.

• In the base case, 𝐺 ⊢ 𝑛𝜏 { 𝑛𝜏 . The goal follows trivially.

• In the inductive case, we have 𝐺 ⊢ 𝑛𝜏 { 𝑡 𝑛′𝑛, 𝑛′ → 𝑁 ∈ 𝐺 and so 𝐺 ⊢ 𝑛 { 𝑡 𝑁 𝑛,

By I.H., we have Γ;Δ ⊢ 𝑡 𝑛′𝑛 : 𝜏1, and 𝜏 = 𝜏1 ∨ 𝜏 ′.
According to Lemma C.2, we know that Γ;Δ ⊢ 𝑛′ ≲ 𝑁 by rule st-base.

Therefore, Γ;Δ ⊢ 𝑡 𝑛′𝑛 ≲ 𝑡 𝑁 𝑛 by rule st-con.

By Lemma E.2, Γ;Δ ⊢ 𝑡 𝑁 𝑛 : 𝜏2, and 𝜏1 = 𝜏2 ∨ 𝜏 ′′.
Therefore, 𝜏 = 𝜏2 ∨ (𝜏 ′ ∨ 𝜏 ′′).

□

Lemma E.4 (Guarded 𝜖-production). Given Γ;Δ ⊢ 𝑔 : 𝜏 , NJ𝑔 K returns 𝑛 ⇒ 𝐺 , and 𝐺 ⊢ 𝑛 {∗

· · ·𝑛1𝑛2 · · · , if (𝑛1 → 𝜖) ∈ 𝐺 , then either (𝑛1 → 𝑡 𝑛1) ∉ 𝐺 or (𝑛2 → 𝑡 𝑛2) ∉ 𝐺 for any 𝑡 , 𝑛1, 𝑛2.

Proof. We have:

· · ·𝑛1𝑛2 · · · is well-typed By Lemma E.3

The type of · · ·𝑛1 is 𝜏 · 𝜏1, the type of 𝑛1 is 𝜏1, and the type of 𝑛2 is 𝜏2 Suppose

𝜏 · 𝜏1 ⊛ 𝜏2 By typing

𝜏 · 𝜏1 .FLast ∩ 𝜏2.First = ∅ By ⊛
𝜏 · 𝜏1 .FLast = 𝜏1 .FLast ∪ 𝜏1.Null ? (𝜏1.First ∪ 𝜏 .FLast) By definition

𝑛1 → 𝜖 ∈ 𝐺 Given

𝑛1.Null = true Lemma 4.2

𝜏 · 𝜏1 .FLast = 𝜏1 .FLast ∪ (𝜏1.First ∪ 𝜏 .FLast) Follows

𝜏1.First ∩ 𝜏2.First = ∅ Follows

𝑛1 → 𝑡 𝑛1 ∈ 𝐺 ∧ 𝑛2 → 𝑡 𝑛2 ∈ 𝐺 Assume

𝑡 ∈ 𝜏1.First ∧ 𝑡 ∈ 𝜏2.First Lemma 4.6

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1:36 Anon.

Contradiction with 𝜏1.First ∩ 𝜏2 .First = ∅
□

E.4 Final result
Theorem 4.7 (NJ𝑔 K produces DGNF). If •; • ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns _ ⇒ 𝐺 , then 𝐺 is DGNF.

Proof. Follows from Corollary 4.5, Lemma E.1, and Lemma E.4. □

F SOUNDNESS (PROOF)
F.1 An alternative normalization
To make proofs easier, we consider the definition NN , which has the same definition as N except

for the case of 𝜇𝛼. 𝑔, where we do not substitute 𝛼 :

NN(𝜇𝛼 : 𝜏 . 𝑔) = 𝛼 ⇒ {𝛼 → 𝑁 | 𝑛 → 𝑁 ∈ 𝐺} ∪𝐺
where NN(𝑔) = 𝑛 ⇒ 𝐺

While NN does not return a DGNF grammar, it is easy to see that N and NN defines the same

language:

Lemma F.1. If NJ𝑔 K return 𝑛1 ⇒ 𝐺1, and NN(𝑔) return 𝑛2 ⇒ 𝐺2, then for all𝑤 , 𝐺1 ⊢ 𝑛1 {∗ 𝑤 if

and only if 𝐺2 ⊢ 𝑛2 {∗ 𝑤 .

Proof. By straightforward induction on 𝑔. □

F.2 Subexpression
The subexpression relation essentially defines a subset relation between the grammars denoted by

context-free expressions.

𝑔1 ⊑ 𝑔2 (Subexpression)

sg-refl

𝑔 ⊑ 𝑔

sg-trans

𝑔1 ⊑ 𝑔2 𝑔2 ⊑ 𝑔3
𝑔1 ⊑ 𝑔3

sg-con-l

𝑔1 ⊑ 𝑔1 · 𝑔2

sg-con-r

𝑔2 ⊑ 𝑔1 · 𝑔2

sg-union-l

𝑔1 ⊑ 𝑔1 ∨ 𝑔2

sg-union-r

𝑔2 ⊑ 𝑔1 ∨ 𝑔2

sg-mu

𝑔 ⊑ 𝜇𝛼. 𝑔

We can show that what subexpression means in terms of the alternative normalization.

Lemma F.2. If 𝑔1 ⊑ 𝑔2, and NN(𝑔1) returns 𝑛1 ⇒ 𝐺1, and NN(𝑔2) returns 𝑛2 ⇒ 𝐺2, then for all

𝑛 ∈ dom (𝐺1), (𝑛 → 𝑁) ∈ 𝐺1 if and only if (𝑛 → 𝑁) ∈ 𝐺2.

Proof. By straightforward induction on 𝑔1 ⊑ 𝑔2. □

F.3 Proof of soundness
In the following lemma statement, we denote a natural number as n, and the length of a word𝑤

as |𝑤 |. The relations 𝛾 ⊨ Γ and 𝛿 ⊨ Δ mean that 𝛾 and 𝛿 give interpretations (i.e., languages L) of

variables in Γ and Δ respectively.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

Fusing Lexing and Parsing 1:37

• ⊨ •
𝛿 ⊨ Δ L ⊨ 𝜏

𝛿, L/𝛼 ⊨ Δ, 𝛼 : 𝜏

L ⊨ 𝜏 ≜ Null(𝐿𝐿) ⇒ 𝜏 .Null ∧ First(L) ⊆ 𝜏 .First ∧ FLast(L) ⊆ 𝜏 .FLast

Lemma F.3. Given Γ;Δ ⊢ 𝑔 : 𝜏 , and 𝛾 ⊨ Γ, and 𝛿 ⊨ Δ, and NN(𝑔) returns 𝑛 ⇒ 𝐺 , if

(1) 𝑔 ⊑ 𝑔′, where •; • ⊢ 𝑔′ : 𝜏 ′ and NN(𝑔′) returns 𝑛′ ⇒ 𝐺 ′
; and

(2) ∀𝛼 ∈ dom (𝛾), ∀|𝑤1 | ≤ n,𝑤1 ∈ 𝛾 (𝛼) if and only if 𝐺 ′ ⊢ 𝛼 {∗ 𝑤1; and

(3) ∀𝛼 ∈ dom (𝛿), ∀|𝑤2 | < n,𝑤2 ∈ 𝛿 (𝛼) if and only if 𝐺 ′ ⊢ 𝛼 {∗ 𝑤2,

then ∀𝑤 ≤ n,𝑤 ∈ J𝑔K(𝛾,𝛿) if and only if and 𝐺 ′ ⊢ 𝑛 {∗ 𝑤 .

Proof. By first induction on n. The base case of 0 is trivial. In the inductive case, we have that

the lemma holds for |𝑤 | < n, and we want to prove it for |𝑤 | ≤ n.

Now we perform induction on 𝑔.

• The cases for 𝑔 = 𝑡 , 𝑔 = 𝜖 , and 𝑔 = ⊥ are straightforward.

• 𝑔 = 𝛼 . Then NN(𝛼) = 𝑛 ⇒ 𝑛 → 𝛼 . By Lemma F.2, we know (𝑛 → 𝛼) ∈ 𝐺 ′
, and there is no

other production for 𝑛 in 𝐺 ′
.

Since 𝑔 is well-typed, it must be 𝛼 ∈ dom (Γ), and thus 𝛼 ∈ dom (𝛾). Then J𝑔K(𝛾,𝛿) = 𝛾 (𝛼).
As given, we know that ∀|𝑤 | ≤ n,𝑤 ∈ 𝛾 (𝛼) if and only if 𝐺 ′ ⊢ 𝛼 {∗ 𝑤 .

Since we know (𝑛 → 𝛼) ∈ 𝐺 ′
, we have ∀|𝑤 | ≤ n,𝑤 ∈ 𝛾 (𝛼) if and only if 𝐺 ′ ⊢ 𝑛 {∗ 𝑤 .

• 𝑔 = 𝑔1 ∨ 𝑔2. Then J𝑔1 ∨ 𝑔2K(𝛾,𝛿) = J𝑔1K(𝛾,𝛿) ∪ J𝑔2K(𝛾,𝛿)
We have

{𝑛 → 𝑁 1 | 𝑛1 → 𝑁 1 ∈ 𝐺1} ∪ {𝑛 → 𝑁 2 | 𝑛2 → 𝑁 2 ∈ 𝐺2} ∪𝐺1 ∪𝐺2

NN(𝑔1) = 𝑛1 ⇒ 𝐺1

NN(𝑔2) = 𝑛2 ⇒ 𝐺2

The goal follows from I.H. on 𝑔1 and 𝑔2.

• 𝑔 = 𝑔1 · 𝑔2. Then J𝑔1 · 𝑔2K(𝛾,𝛿) = {𝑤1 ·𝑤2 | 𝑤1 ∈ J𝑔1K(𝛾,𝛿) ∧𝑤2 ∈ J𝑔2K(𝛾,𝛿) }.
According to NN , we have

{𝑛 → 𝑁 1 𝑛2 | 𝑛1 → 𝑁 1 ∈ 𝐺1} ∪𝐺1 ∪𝐺2

NN(𝑔1) = 𝑛1 ⇒ 𝐺1

NN(𝑔2) = 𝑛2 ⇒ 𝐺2

According to typing, we have

Γ;Δ ⊢ 𝑔1 : 𝜏1
Γ,Δ; • ⊢ 𝑔2 : 𝜏2

By I.H. on 𝑔1, we have

∀|𝑤1 | ≤ n,𝑤1 ∈ J𝑔1K(𝛾,𝛿) if and only if 𝐺 ′ ⊢ 𝑛1 {∗ 𝑤1.

By I.H. on 𝑔2, we have the following. Here we use < instead of ≤ as its typing context Γ,Δ
includes Δ that only has interpretations for |𝑤2 | < n.

∀|𝑤2 | < n,𝑤2 ∈ J𝑔2K(𝛾,𝛿) if and only if 𝐺 ′ ⊢ 𝑛2 {∗ 𝑤2.

We first prove the conclusion from left to right. Given𝑤 ≤ n, and𝑤 ∈ J𝑔1 · 𝑔2K(𝛾,𝛿) , it must

be 𝑤 = 𝑤1 · 𝑤2 and 𝑤1 ∈ J𝑔1K(𝛾,𝛿) and 𝑤2 ∈ J𝑔2K(𝛾,𝛿) . As 𝑔1 · 𝑔2 is well-typed, we know

𝜏1.Null = false, so 𝑤1 cannot be empty, and thus 𝑤2 must have length < n. So following

I.H., and that 𝑛 represents the same language as 𝑛1 𝑛2, we have 𝐺 ′ ⊢ 𝑛 {∗ 𝑤1 ·𝑤2.

Now we move to the conclusion from right to left. Given 𝐺 ′ ⊢ 𝑛 {∗ 𝑤 , it must be

𝑤 = 𝑤1 ·𝑤2, and𝐺 ′ ⊢ 𝑛1 {∗ 𝑤1, and𝐺 ′ ⊢ 𝑛2 {∗ 𝑤2. As 𝑔1 · 𝑔2 is well-typed, we know that

𝜏1.Null = false, so by Lemma 4.2,𝑤1 cannot be empty, and thus𝑤2 must have length < n.

So following I.H., we have𝑤1 ∈ J𝑔1K(𝛾,𝛿) , and𝑤2 ∈ J𝑔2K(𝛾,𝛿) , and thus𝑤 ∈ J𝑔1 · 𝑔2K(𝛾,𝛿) .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1:38 Anon.

• 𝑔 = 𝜇𝛼. 𝑔1. Then J𝜇𝛼. 𝑔1K(𝛾,𝛿) = J𝑔1K(𝛾,𝛿,J𝜇𝛼. 𝑔1K(𝛾,𝛿) /𝛼) .
We have

NN(𝜇𝛼 : 𝜏 . 𝑔1) = 𝛼 ⇒ {𝛼 → 𝑁 | 𝑛 → 𝑁 ∈ 𝐺} ∪𝐺
NN(𝑔1) = 𝑛 ⇒ 𝐺

According to typing, we have Γ;Δ, 𝛼 : 𝜏 ⊢ 𝑔1 : 𝜏 .

According to the I.H. on n, we have

∀𝑤 ′ < n,𝑤 ′ ∈ J𝜇𝛼. 𝑔1K(𝛾,𝛿) if and only if and 𝐺 ′ ⊢ 𝛼 {∗ 𝑤 ′
.

We have (𝛾, 𝛿, J𝜇𝛼. 𝑔1K(𝛾,𝛿)/𝛼) (𝛼) = J𝜇𝛼. 𝑔1K(𝛾,𝛿) .
That means we have

∀𝛽 ∈ dom (𝛿, J𝜇𝛼. 𝑔1K(𝛾,𝛿)/𝛼),
∀|𝑤 ′ | < n,𝑤 ′ ∈ (𝛿, J𝜇𝛼. 𝑔1K(𝛾,𝛿)/𝛼) (𝛽) if and only if 𝐺 ′ ⊢ 𝑏𝑒𝑡𝑎 {∗ 𝑤 ′

.

Now by I.H. on 𝑔1,

∀𝑤 ≤ n,𝑤 ∈ J𝑔1K(𝛾,𝛿,J𝜇𝛼. 𝑔1K(𝛾,𝛿) /𝛼) if and only if 𝐺 ′ ⊢ 𝑛 {∗ 𝑤

equivalent to

∀𝑤 ≤ n,𝑤 ∈ J𝜇𝛼. 𝑔1K(𝛾,𝛿) if and only if 𝐺 ′ ⊢ 𝑛 {∗ 𝑤 .

We have 𝛼 → 𝑁 ∈ NN(𝜇𝛼. 𝑔1), where 𝑛 → 𝑁 ∈ NN(𝜇𝛼. 𝑔1). By Lemma F.2, we have

𝛼 → 𝑁 ∈ 𝐺 ′
and there is no other productions for 𝛼 .

Therefore,

∀𝑤 ≤ n,𝑤 ∈ J𝜇𝛼. 𝑔1K(𝛾,𝛿) if and only if 𝐺 ′ ⊢ 𝛼 { 𝑤 .

□

Theorem 4.8 (Soundness). Given •; • ⊢ 𝑔 : 𝜏 and NJ𝑔 K returns 𝑛 ⇒ 𝐺 , we have 𝑤 ∈ J𝑔K• if
and only if 𝐺 ⊢ 𝑛 { 𝑤 for any𝑤 .

Proof. Follows by Lemma F.3, making use of Lemma F.1. □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Background: lexer and parser combinators
	2.1 Derivatives of regular expressions
	2.2 Lexing with derivatives
	2.3 Parsing with typed context-free expressions

	3 Overview
	3.1 Deterministic Greibach Normal Form
	3.2 Normalization
	3.3 Fusion
	3.4 Staging

	4 Normalizing context-free expressions
	4.1 Normalization to DGNF
	4.2 Semantics of DGNF
	4.3 Well-definedness and correctness
	4.4 Normalization Soundness
	4.5 Implementation

	5 Fusion
	5.1 Canonicalizing lexer
	5.2 The fusion algorithm

	6 Implementation of parsing
	6.1 The lexing algorithm
	6.2 The DGNF parsing algorithm
	6.3 The parsing algorithm for fused grammars
	6.4 The staged parsing algorithm
	6.5 Implementing the staged parsing algorithm

	7 Evaluation
	7.1 Benchmarks
	7.2 Running time
	7.3 Code size
	7.4 Compilation time

	8 Related work
	9 Future work
	References
	A Complete Derivation
	B Deterministic Parsing
	C Well-typed Normalization
	D Normalization is well-defined (proof)
	E Normalization returns DGNF grammars (proof)
	E.1 Normalizing closed expressions produces no nfcolor n form
	E.2 A nonterminal's non- productions start with distinct terminals.
	E.3 The -production may only be used when other productions do not apply.
	E.4 Final result

	F Soundness (proof)
	F.1 An alternative normalization
	F.2 Subexpression
	F.3 Proof of soundness

