
Frex: dependently typed algebraic simplification

GUILLAUME ALLAIS, University of Strathclyde, UK

EDWIN BRADY, University of St. Andrews, UK

NATHAN CORBYN, University of Oxford, UK

OHAD KAMMAR, University of Edinburgh, UK

JEREMY YALLOP, University of Cambridge, UK

We present a new design for an algebraic simplification library structured around concepts from universal

algebra: theories, models, homomorphisms, and universal properties of free algebras and free extensions of

algebras. The library’s dependently typed interface guarantees that both built-in and user-defined simplification

modules are terminating, sound, and complete with respect to a well-specified class of equations. We have

implemented the design in the Idris 2 and Agda dependently typed programming languages and shown that it

supports modular extension to new theories, proof extraction and certification, goal extraction via reflection,

and interactive development.
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1 Introduction

Algebraic simplification involves using algebraic laws to normalise expressions with unknowns.

For example, the commutative monoid axioms—associativity, neutrality, and commutativity—over

integers with addition serve to simplify the left hand expression to the right hand expression below:

−6 + (𝑥 + 3) + (𝑦 + 𝑥)
simplify

↦−−−−−−→ − 3 + 2𝑥 + 𝑦
Many application domains make use of this kind of simplification. For example, a program

optimiser, such as a compiler or partial evaluator, can be conveniently structured as an algebraic

simplifier that converts each expression to a canonical form followed by a code generator that deals

only with canonical expressions, guaranteeing uniform treatment of many syntactically distinct

programs. The present work focuses on another application domain: interactive theorem provers

and programming languages based on dependent type theory. In these systems, users often need to

prove to a type checker that terms are equivalent, but constructing the proofs often involves rote

algebraic simplification steps that users resent producing manually.

To free users from the need to construct rote algebraic proofs, dependently typed languages

and their ecosystems often include simplifiers for common algebraic structures such as monoids,

semi-rings, and rings. With these simplifiers, users need only establish the structures’ axioms, such

as neutrality, associativity and commutativity, and can then call the simplifiers to discharge rote

simplification steps. Implementation strategies for simplifiers vary, from using tactics to simplify
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algebraic terms in typing goals [e.g. Barras et al. 2021] to using proof-by-reflection to construct

propositions to discharge equations [e.g. Kidney 2019]. Some simplifiers group together several

algebraic structures [e.g. Barras et al. 2021], and others generalise several distinct structures to one

structure [Grégoire and Mahboubi 2005], but the state-of-the-art are standalone simplifiers that,

through heuristics and long-term development, can deal with common cases.

1.1 Representation Theorems

Universal algebra has a long tradition concerning algebraic simplification under the collective name

‘representation theorems’. Each such representation theorem characterises canonical representatives

of algebraic expressions in terms of (typically inductive) constructions such as reduced-words and

formal polynomials. Such characterisations often reuse existing representation theorems of simpler

algebraic structures or familiar algebraic structures such as the integers or the natural numbers.

The present work makes use of two kinds of representation theorems. For a free algebra (abbre-

viated fral), a representation theorem amounts to an algebraic structure that chooses a canonical

representation for expressions using only the algebraic laws. For a free extension (abbreviated frex),
a representation theorem chooses a canonical representative using the algebraic laws while also

evaluating concrete elements. Free algebras and free extensions are related: each free extension is

also a free algebra of a theory specialised to a concrete algebra by adding evaluation axioms.

For example, for commutative monoids the fral representation theorem states that the free

commutative monoid over 𝑛 variables is represented by the set of 𝑛-tuples of naturals N𝑛 . We can

use this fral representation to perform simplification by evaluating a term in the fral and then

reifying it back as a term:

−6+ (𝑥 +3) + (𝑦+𝑥)
evaluate(𝑥0+(𝑥2+𝑥1 )+(𝑥3+𝑥2 ) )↦−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 2, 1)

reify(𝑥0 ↦→−6,𝑥1 ↦→3,𝑥2 ↦→𝑥,𝑥3 ↦→𝑦)
↦−−−−−−−−−−−−−−−−−−−−−−−−−→ −6+3+2𝑥 +𝑦

The fral is unaware of the distinction between the variables we extend by (𝑥 and𝑦) and the concrete

elements of the algebra (−6 and 3 here), and so fral simplification treats both −6 and 3 as abstract

and distinct indeterminates.

In contrast, the frex representation theorem for commutative monoids states that the free

extension of a commutative monoid over 𝐶 by 𝑛 variables is represented by the set 𝐶 × N𝑛 , where
the element (𝑐, 𝑎1, . . . , 𝑎𝑛) represents the expression 𝑐 + 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 . Simplifying a term using

the frex representation involves evaluating a term in the frex and then reifying it back as a term:

−6 + (𝑥 + 3) + (𝑦 + 𝑥) evaluateZ↦−−−−−−−→ (−3, 2, 1)
reify

↦−−−→ − 3 + 2𝑥 + 𝑦

The frex representation distinguishes variables from concrete elements, gathering the latter together

and evaluating them using the operations of the concrete commutative monoid in use.

This technique of normalizing terms by evaluating and then reifying also applies to more

sophisticated notions of algebra that include the equational theories of 𝜆-calculi, and is familiar in

those settings as normalization-by-evaluation. Its first systematic applications were in the formal

study of various simply typed calculi [Altenkirch et al. 2001, 1995; Čubrić et al. 1998] and category

theoretic constructions [Beylin and Dybjer 1996]. It has served as a conversion-checking technique

during the type-checking of dependently typed calculi from their inception [Martin-Löf 1975],

gaining adoption after the seminal works of Abel et al. [2007a,b], even for sophisticated calculi [Abel

et al. 2017; Hu et al. 2023; Sterling and Angiuli 2021].

This manuscript describes an extensible dependently typed library for algebraic simplifiers

based on fral and frex representation theorems, drawing inspiration from previous work that uses

free extensions for partial evaluation [Yallop et al. 2018]. Current implementations of algebraic

simplifiers, even in dependently typed settings, are restricted to implementing the computational
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representation—i.e. the data-structures needed for the normal form together with the normalisation-

by-evaluation algorithm—alongside a formalisation of the soundness proofs. This work investigates

what can be gained by the more radical approach of encoding, in addition, the full meta-theory of

these representation theorems, including generic representations of theories, their algebras and

algebra homomorphisms, and the universal properties of the fral and the frex. For simplicity of

development and exposition we apply this generic machinery to a handful of familiar monoid vari-

eties. Moreover, we ensure all of these concepts remain computational by avoiding the temptation

of postulating axioms that could hinder reduction of closed terms. This last task is challenging

to satisfy while retaining interactive performance, as formalising universal properties tends to

produce large terms that slow type-checkers [Gross et al. 2014].

1.2 Paper Outline and Contributions

Sections 2 and 3 present background material: a review of the mathematical foundation for the

Frex library (Section 2), and a brief Idris2 tutorial that reviews setoid-based equational reasoning

(Section 3).

Sections 4 and 5 present our central contribution, a fundamentally new approach to building alge-

braic simplifiers. The standard existing approach is to write an ad-hoc simplifier for some particular

algebraic structure such as rings. Our approach is radically different: we teach the implementation

the basic concepts of universal algebra — signatures, theories and models, homomorphisms, and

universal properties (Section 4) — then build a completely generic solver based on free algebras

and free extensions that can be instantiated with a particular algebra to discharge concrete proof

obligations (Section 5). This new approach is inherently modular and extensible, and delivers

solvers that are sound and complete by construction. We have implemented our design in two

dependently typed languages, Agda Fragment
1
and Idris2 Frex

2

Section 6 explains the completeness guarantees of the library, and covers proof extraction,

simplification, pretty-printing and certification. (Sections 5 and 6 are technically involved and are

aimed at library designers, and may be skimmed at first reading.)

Section 7 considers a natural question: can one use reflection to invoke Frex automatically? The

answer is a qualified ‘yes’, requiring much library-developer effort, but leading to real advantages

in Agda and limited advantages in Idris2.

Section 8 reports some supplementary evaluation of Frex. The key properties of our design

are guaranteed by the type theories of the languages in which we realise it: it delivers sound and

complete solvers in a completely generic way, with support for proof extraction, certification, etc.

However, the practical questions of usability and viability for interactive development cannot be

established by theorems and so we have also carried out some experiments. These experiments

focus on the varieties of monoids that also serve as our running example, and establish that the

generic solver is comfortably fast enough for interactive use, and can be extended with new algebras

in a modular way and without enormous effort.

Section 9 discusses system design issues that we encountered with Frex, and Sections 10 and 11

conclude with related and further work.

Appendixes A–D, which are included in the full version of the paper submitted as supplementary

material, have more information about Frex’s codebase, example code extraction, and involutive

monoids.

1
Available here: https://github.com/frex-project/agda-fragment.

2
Available here: https://github.com/frex-project/idris-frex.
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We also include as supplementary material our implementation, Frex, which consists of 9,500

lines of Idris2 code. The paper includes only those excerpts of code necessary to convey the key

ideas, and we refer the reader to the implementation for full details.

2 Mathematical Overview

Universal algebra concerns the generic description of, and relationship between, algebraic structures.
We summarise briefly the concepts underlying the Frex library.

2.1 Presentations of Algebraic Structures

A finitary signature Σ = (Op Σ, arity) consists of a set Op Σ of operators, also known as operation
symbols, and an assignment arity : Op Σ → Nat of a natural number to each operator called its

arity. For example, the additive signature often used for commutative monoids has two operators:

OpAdditive := {(+), 0}, with arities 2 and 0, respectively. It is standard to use a more succinct

notation that groups operators and their arities, as in OpMultiplicative := {(·) : 2, 1 : 0}, the multi-

plicative signature used for ordinary monoids.

Signatures determine an algebraic language, and an algebra is its semantic model. An algebra
A = (U A, A ⎜−⨆︁) for a signature Σ consists of a set U A called the carrier and an assignment of an 𝑛-ary
operation over this carrier for every 𝑛-ary operator 𝑓 : 𝑛 in Σ, i.e. a function A ⎜𝑓 ⨆︁ : (U A)𝑛 → U A. So

Additive-algebras andMultiplicative-algebras amount to triples (𝑋, ⎜(+)⨆︁ : 𝑋 2 → 𝑋, ⎜0⨆︁ ∈ 𝑋 ). For
example, we can equip the natural numbers N with several algebra structures: arithmetic addition

(N, (+), 0), arithmetic multiplication (N, (·), 1); maximum (N,max(𝑎, 𝑏), 0). Similarly, 𝑛×𝑛 matrices

over N have such algebra structures given by matrix addition and multiplication with the zero and

identity matrix respectively, and so on.

Each signature determines a language consisting of terms. Given a set X of variables, the Σ-terms
over X are given inductively as either a variable in X or an application 𝑓 (𝑡1, . . . , 𝑡𝑛) of an operation

symbol 𝑓 : 𝑛 from Σ to 𝑛 terms over X. The primary role of terms is to designate equations in context
X ⊢ 𝑡 = 𝑠 , i.e. triples consisting of a set X of variables and two terms in context X. For example, the

associativity equation, expressed over the Additive signature, is 𝑥,𝑦, 𝑧 ⊢ 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧.

An environment for a context (=set) X in an algebra A is a function e : X → U A. An algebra A

determines, for each term in context X ⊢ 𝑡 , an interpretation function A ⎜𝑡⨆︁ : (U A)X → U A that, given

an environment e, uses the algebra structure to interpret each operator as its corresponding op-

eration structurally: A ⎜x⨆︁ e := e x and A ⎜𝑓 (𝑡1, . . . , 𝑡𝑛)⨆︁ e := A ⎜𝑓 ⨆︁ (A ⎜𝑡1⨆︁ e, . . . , A ⎜𝑡𝑛⨆︁ e). For example,

the interpretation of the left-hand-side (LHS) of the associativity axiom in the Additive-algebra
(N,max, 0) given the environment 𝑥 ↦→ 5, 𝑦 ↦→ 3, 𝑧 ↦→ 8 is max(5,max(3, 8)) = 8.

We say that an equation is valid in an algebra A, writing A |= (X ⊢ 𝑡 = 𝑠), when A ⎜𝑡⨆︁ e = A ⎜𝑠⨆︁ e for
all environments e : X → U A. It is this implicit universal quantification over the environment that

gives universal algebra its name. For example, the Additive-algebras andMultiplicative-algebras
presented so far validate the associativity axiom, whereas interpreting the binary operation as

subtraction over the integers (Z, (−), 0) does not validate the associativity equation, e.g. taking the

environment 𝑥 ↦→ 0, 𝑦 ↦→ 0, 𝑧 ↦→ 1, we have 0 − (0 − 1) = 1 ≠ −1 = (0 − 0) − 1.

A presentation T = (ΣT ,T.Axiom) consists of a signature ΣT and a set T.Axiom of ΣT-equations in
context, which we call axioms. A T -algebra A is a ΣT-algebra A validating all T -axioms. For example,

the axioms of theMonoid presentation consist of associativity and neutrality (𝑥 ⊢ 𝑥 ∗1 = 𝑥, 1∗𝑥 = 𝑥 )

over the multiplicative monoid signature. The axioms for the CommutativeMonoid presenta-

tion, typically phrased over the additive monoid signature, additionally include commutativity

𝑥,𝑦 ⊢ 𝑦+𝑥 = 𝑥+𝑦. We can now generically manipulate classes of algebraic structures using these con-

cepts, while generalising the usual examples:Monoid-algebras are monoids, CommutativeMonoid-
algebras are commutative monoids, etc.
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2.2 Simplification and Universality

The input to the simplification problem is a term; terms may be purely abstract, definable using

the operations and constants in the signature, or partially concrete, involving also constants from

a given algebra. In both cases, the goal of the simplification problem is to use this information

as much as possible to find a representative modulo the presentation’s axioms and the rules of

deduction, and, in the partially concrete case, using the evaluation semantics of the given concrete

algebra. The goal ‘use this information as much as possible’ is informal, and an algebraically natural

way to formulate it is a free algebra. The term ‘free’ in this context intends to capture formally the

intuition of using all and only the information given by the algebraic axioms, equational logic, and

the given abstract and concrete algebra elements. To cast formal meaning to this notion, we need to

define the relevant classes of structure-preserving maps. Each such class isolates free constructions,

and bringing these maps to the fore is a hallmark of modern algebra. These abstract concepts

connect to the frex and fral simplification examples from page 2:

−6 + (𝑥 + 3) + (𝑦 + 𝑥) evaluateZ↦−−−−−−−→ (−3, 2, 1)
reify

↦−−−→ − 3 + 2𝑥 + 𝑦 (1)

−6+ (𝑥 +3) + (𝑦+𝑥)
evaluate(𝑥0+(𝑥2+𝑥1 )+(𝑥3+𝑥2 ) )↦−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 2, 1)

reify(𝑥0 ↦→−6,𝑥1 ↦→3,𝑥2 ↦→𝑥,𝑥3 ↦→𝑦)
↦−−−−−−−−−−−−−−−−−−−−−−−−−→ −6+3+2𝑥 +𝑦

Let A, B be Σ-algebras for a signature Σ. A homomorphism ℎ : A → B of Σ-algebras is a semantics-

preserving function ℎ : U A → U B between their carriers. Explicitly, for all operators 𝑓 : 𝑛 in Σ and

elements 𝑎1, . . . , 𝑎𝑛 in U A, we have: ℎ(A ⎜𝑓 ⨆︁(𝑎1, . . . , 𝑎𝑛)) = B ⎜𝑓 ⨆︁(ℎ 𝑎1, . . . , ℎ 𝑎𝑛). A homomorphism

between presentation algebras is a homomorphism between the underlying signature algebras. For

example, the list-length function is a homomorphism from the monoid of concatenation over lists

to the monoid of addition over naturals: length : (ListX, (++), []) → (N, (+), 0).
Let T be a presentation and X a set whose elements represent variables. We define a T -algebra

a = (a.Model, Env a) over X to be a T -algebra a.Model equipped with an X-environment in this model,

i.e. a function e : X → U(a.Model). This concept formalises the inputs to the fral simplification

process from (1). The argument in the label on the left arrow is a Additive-term with variables

from X := {𝑥0, . . . , 𝑥3}. The argument to the label on the right arrow is an X-environment in a

yet-to-be-determined syntactic monoid involving concrete and abstract elements.

X

a.Model

b.Model

e

e

h=

A morphism h : a → b of T -algebras over X is a T -algebra homomorphism that

moreover makes the diagram on the right commute. A free T -algebra over X is then
a T -algebra over X from which there is a unique such morphism to every other

T -algebra over X. This existence-and-uniqueness property is called the universal
property of free T -algebras. For example, the free commutative monoid over X = {𝑥0, . . . , 𝑥3} is
the Additive-algebra over N4

given by componentwise arithmetic addition, and equipped with

the X-environment sending 𝑥0 to (1, 0, 0, 0), etc. The unique morphism out of this algebra into any

commutative monoid A, equipped with an environment e, sends (𝑎0, . . . , 𝑎3) to 𝑎0𝑒 (𝑥0) + . . .+𝑎3𝑒 (𝑥3).
So the core idea behind fral simplification is to make the creativity that goes into designing the

data-structure in the middle of (1) methodological and principled: it is an implementation of the

fral. The universal property, which singles the fral up to a unique isomorphism of algebras over X,

provides a checklist that organises the simplification code.

Let A be aT -algebra and X a set whose elements represent variables. An extension of A by X is a triple

a = (a.Model, a.Var, a.Embed.H) consisting of a T -algebra a.Model, a function a.Var : X → U(a.Model),
and a T -homomorphism a.Embed : A → a.Model. This concept formalises the inputs to the frex

simplification process from (1). This time both concrete elements of the algebra A and abstract

variables from X are part of the vocabularly in the left-most term.
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free algebra free extension

ordinary variable lists 𝑦𝑥𝑥𝑦𝑥 alternating lists

(
1 3

0 2

)
𝑦

(
0 1

1 0

)
𝑦

monoid inM2×2 (Nat) [𝑦]
commutative origin-intercepting 𝑎1𝑥1+ . . .+𝑎𝑛𝑥𝑛 linear polynomials 𝑐+𝑎1𝑥1+ . . .+𝑎𝑛𝑥𝑛
monoid linear polynomials (𝑎𝑖 : Nat) in A[𝑥1, . . . , 𝑥𝑛] (𝑎𝑖 : Nat, 𝑐 : A)

involutive lists over 𝑦𝑥𝑥𝑥𝑦𝑥 alternating lists ""𝑥"hello"𝑦"olleh"𝑥""

monoid ordinary and involuted variables with tagged variables in String[𝑥,𝑦]

Fig. 1. Frals and frexes for varieties of monoids

X

a.Model

b.Model

UA

e

e

h

a.Embed

b.Embed

= =
A morphism h : a → b of extensions of A by X is a T -homomorphisms

h : a.Model → b.Model that moreover makes the two triangles in diagram

on the right commute. A free extension of A by X is then an extension from

which there is a unique such morphism to every other extension of A by

X. For example, the free extension of a commutative monoid A by two variables X := {𝑥,𝑦} is the
Additive-algebra over U A×N2

, given componentwise, equipped with the Additive-homomorphism

that sends 𝑢 ∈ U A to (𝑢, 0, 0) and the function that sends 𝑥 to (A ⎜0⨆︁ , 1, 0) and 𝑦 to (A ⎜0⨆︁ , 0, 1). The
unique morphism to any extension (B, e, 𝑏) sends (𝑢, 𝑎0, 𝑎1) to 𝑏𝑢 + 𝑎0 (e𝑥) + 𝑎1 (e𝑦).

Figure 1 summarises the frals and frexes considered in this manuscript. All but the last frex are

well-known representations. Our contribution is to implement, alongside these representations,

constructive proofs that they represent the fral or the frex, which in turn requires implementing

the universal algebraic concepts we introduced so far, enabling other simplification modules to

reuse them, and allowing users and library code to be extensible and modular.

2.3 Completeness, Proof Extraction, and Certification with Setoids

One way to design the library, which we explored in an early implementation, is to faithfully

represent the concepts in Section 2.1 and Section 2.2. However, generalising the design to use

setoids rather than sets enables the same abstractions to offer more flexible functionality.

A setoid X = (U X, (≡X)) consists of a set U X and an equivalence relation (≡X) over U X. A setoid
homomorphism f : X ~> Y is a relation-preserving function between sets X and Y: f𝑥 ≡Y f𝑦 whenever

𝑥 ≡X 𝑦. We think of elements in U X as representatives of the equivalence classes of (≡X), and so

every setoid homomorphism induces a (unique) function between the quotients X/(≡X) → Y/(≡Y).
One way to construct a setoid is to equip a set X with its equality relation to give (X, (=)), but using
setoids also allows us to explicate sophisticated equivalence relations and define operations on

them that are not supported by the corresponding quotients. For example, given a presentation T
and a set X, we can define the provability relation X ⊢ − = − over terms X ⊢ 𝑡 (cf. Fig. 2). Related

elements in the setoid (Term X, X ⊢ − = −) represent different, but provably equal, terms. In contrast,

elements in the quotient Term X/(X ⊢ − = −) represent equivalence classes of provably equal terms.

Figure 2 also includes the evaluation axiom (eval), which we will use to present the frex.

Setoids and their homomorphisms form a common technique to complete an intensional type

theory with extensional functions and quotients, requiring users to establish that every defined

function is a setoid homomorphism. However, in Frex we make essential use of setoids that a type

theory with quotients does not allow. For example, the terms-up-to-provability setoid supports

operations such as vars : Term X → ListX which extract the list of variables appearing in a given

term in-order. This function is not a setoid homomorphism. The quotient can only support such

extraction following a canonisation, i.e. a function which first chooses one term representing the

equivalence class, and then applies vars to it. Both flavours of function are useful in applications,
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X ⊢ 𝑡 = 𝑡
refl

X ⊢ 𝑠 = 𝑡

X ⊢ 𝑡 = 𝑠
sym

X ⊢ 𝑡 = 𝑠 X ⊢ 𝑠 = 𝑟

X ⊢ 𝑡 = 𝑟
trans

(X ⊢ 𝑡 = 𝑠) ∈ T.Axiom

X ⊢ 𝑡 = 𝑠
ax

Y ⊢ 𝑡 = 𝑠 𝜃1, 𝜃2 : Y → Term Y (X ⊢ 𝜃1𝑦 = 𝜃2𝑦)𝑦∈Y
X ⊢ 𝑡 [𝜃1] = 𝑠 [𝜃2]

cong

UA ⊢ 𝑡
X ⊢ 𝑡 = A ⎜𝑡⨆︁eval

Fig. 2. Provability in (a) equational logic (unshaded) and (b) the evaluation rule

record Equivalence (A : Type) where

constructor MkEquivalence

0 relation: Rel A

reflexive : (x : A) -> relation x x

symmetric : (x, y : A) -> relation x y -> relation y x

transitive: (x, y, z : A) -> relation x y -> relation y z

-> relation x z

record Setoid where

constructor MkSetoid

0 U : Type

equivalence : Equivalence U

data Setoid : Type where

MkSetoid : (0 U : Type) ->

(equivalence

: Equivalence U) -> Setoid

0

U : Setoid -> Type

U (MkSetoid x _) = x

equivalence : (s : Setoid) ->

Equivalence (U s)

equivalence (MkSetoid _ y) = y

Fig. 3. (a) Equivalence relations and setoids as records and (b) example desugaring into a GADT and projections

but setoids, and not quotients, support both. The setoid design supports, for example: printing

terms and proofs, proof simplication, code generation, etc.

In Frex, we implement setoid-enriched universal algebra: carriers are setoids; algebraic opera-

tions are setoid homomorphisms; algebra homomorphisms and environments must also be setoid

homomorphisms; and the unique homomorphisms in the universal properties of the fral and the

frex must be setoid homomorphisms. With this generalisation, the setoid Term X/(X ⊢ − = −) also
satisfies the fral universal property constructively. Therefore, there is a unique canonical setoid

isomorphism to every other fral. Similarly, by including the evaluation equations (eval), we obtain

a setoid frex together with a setoid isomorphism to every other frex. These isomorphisms let us

extract simplification proofs generically out of user-defined simplifiers.

3 Setoids in Idris2

To introduce the relevant features of Idris2, we review some relevant standard constructions

in dependent types [e.g. Hu and Carette 2021; Huet and Saïbi 2000]. We represent equivalence

relations and setoids in Idris2 with records in Fig. 3a. Idris2 records are syntactic sugar for a

single-constructor data declaration and automatically generated field projections, as in Fig. 3b.

Idris2 also automatically generates the post-fix projections for each field using a dotted notation,

writing b.equivalence.relation for the nested projection. The annotation 0 preceding the definition

of the field U is a quantity [Atkey 2018; McBride 2016] indicating that the field is not represented

at runtime, but may be used in types. If you are reading this manuscript in colour, our listings

include semantic highlighting, designating the semantic class of each lexeme: data constructor, type

constructor, defined function or value, and variable in a binding/bound occurence. We define setoid

homomorphisms:
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8 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

(^) : Type -> Nat -> Type

(^) a n = Vect n a

algebraOver : (sig : Signature)

-> (a : Type) -> Type

sig `algebraOver` a =

(f : Op sig) -> a ^ (arity f) -> a

record Algebra (Sig : Signature) where

constructor MakeAlgebra

0 U : Type

Semantics : Sig `algebraOver` U

CongruenceWRT : {n : Nat} -> (a : Setoid) ->

(f : (U a) ^ n -> U a) -> Type

CongruenceWRT a f = SetoidHomomorphism (VectSetoid n a) a f

record SetoidAlgebra (Sig : Signature) where

constructor MkSetoidAlgebra

algebra : Algebra Sig

equivalence : Equivalence (U algebra)

congruence : (f : Op Sig) ->

(MkSetoid (U algebra) equivalence)

`CongruenceWRT` (algebra.Sem f)

Fig. 4. Algebras and setoid algebras in Frex

SetoidHomomorphism : (a,b : Setoid)

-> (f : U a -> U b) -> Type

SetoidHomomorphism a b f

= (x,y : U a) -> a.equivalence.relation x y

-> b.equivalence.relation (f x) (f y)

record (~>) (A,B : Setoid) where

constructor MkSetoidHomomorphism

H : U A -> U B

homomorphic : SetoidHomomorphism A B H

The Appendix includes expanded examples for setoids of functions and quotient setoids.

This technique is affectionately dubbed ‘setoid hell’, since we need to prove that all our functions

are setoid homomorphisms. Following Hu and Carette [2021], we manage setoid hell by structuring

code categorically, organising results into homomorphisms between appropriate setoids.

4 Universal Algebra in Frex

To define an interface to algebraic simplifiers, we first specify and represent algebraic structures.

We implement signatures and their operators in Frex as follows (below, left and middle):

record Signature where

constructor MkSignature

OpWithArity : Nat -> Type

record Op (sig : Signature) where

constructor MkOp

{arity : Nat}

snd : sig.OpWithArity arity

data Operation

: Nat -> Type where

Neutral : Operation 0

Product : Operation 2

The implementation uses Idris2’s implicit record field for arity. Users define concrete instances

of Signature, such as the signature MkSignature Operation for monoids, by defining an injective type

family for the indexed field OpWithArity (above, right). Injectivity avoids projecting the arity in

concrete cases, where unification extracts it automatically. Injectivity improves usability but is not

otherwise necessary. Idris currently has limited support for injectivity: unification makes use of the

injectivity of data-type constructors, but there is no means for a type to require a judgementally

injective type-level function.

Frex represents the domain of an 𝑛-ary operation with an 𝑛-ary vector (Fig. 4). (As in Haskell,

backticks turn any name into an infix operator.) For example, the additive natural numbers form

an algebra for the monoid signature as follows:

Additive : Algebra Monoid.Theory.Signature

Additive = MkAlgebra {U = Nat, Sem = \case

Neutral => 0

Product => plus}

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article . Publication date: January 2025.



Frex: dependently typed algebraic simplification 9

data Axiom

= LftNeutrality

| RgtNeutrality

| Associativity

MonoidTheory : Presentation

MonoidTheory = MkPresentation Theory.Signature

Theory.Axiom $ \case

LftNeutrality => lftNeutrality Neutral Product

RgtNeutrality => rgtNeutrality Neutral Product

Associativity => associativity Product

MonoidStructure : Type

MonoidStructure =

SetoidAlgebra Signature

Monoid : Type

Monoid = Model MonoidTheory

Fig. 5. Axiomatising monoids in Frex

The code uses the smart constructor MkAlgebra that transfers its Sem argument into MakeAlgebra’s

Semantics field by uncurrying each n-ary function into a function taking an n-ary vector of arguments.

The \case keyword is an anonymous function that immediately pattern-matches its argument. Setoid
algebras further require an equivalence relation that forms a congruence w.r.t. the operations (Fig. 4).

We implement terms over a signature as follows, mirroring their mathematical definition:

data Term : (0 sig : Signature) -> Type -> Type where

||| A variable with the given index

Done : {0 sig : Signature} -> a -> Term sig a

||| An operator, applied to a vector of sub-terms

Call : {0 sig : Signature} -> (f : Op sig) ->

Vect (arity f) (Term sig a) -> Term sig a

Terms form an algebra, the free algebra, with symbols denoting term formers:

Free : (0 sig : Signature) -> (0 x : Type) -> Algebra sig

Free sig x = MakeAlgebra (Term sig x) Call

Terms also form a monad, with Done as its unit and substitution as its sequencing operation.

Turning to equations, Frex only needs equations in a finite context, and we call its cardinality

the support of the equation. We implement equations and presentations as follows:

record Equation

(Sig : Signature) where

constructor MkEq

support : Nat

lhs, rhs :

Term Sig (Fin support)

record Presentation where

constructor MkPresentation

signature : Signature

0 Axiom : Type

axiom : (ax : Axiom) ->

Equation signature

associativity : {sig : Signature} 1

-> EqSpec sig [2] 2

associativity product = 3

let (+) = call product in 4

MkEquation 3 $ X 0 + (X 1 + X 2) 5

=-= (X 0 + X 1) + X 2 6

For example, the monoid presentation Monoid in Fig. 5 has three axioms: left and right neutrality,

and associativity. Frex defines a generic collection of axiom schemes (above, right). Its type

EqSpec sig [2] (lines 1–2) states that it is a scheme involving a single binary operation, and its

declaration involves 3 variables (MkEquation 3 in line 5).

Frex’s representation of this statement is in Fig. 6. We use Idris2’s dependent pairing construct

to pair an algebra with an environment in the standard entailment syntax eq =| (a ** env). The

following code validates the monoid axioms for our running example:

IsMonoid : Validates MonoidTheory NatAdditive

IsMonoid LftNeutrality env = Refl

IsMonoid RgtNeutrality env = plusZeroRightNeutral _

IsMonoid Associativity env = plusAssociative _ _ _
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10 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

models : {sig : Signature} ->

(a : SetoidAlgebra sig) -> (eq : Equation sig) ->

(env : Fin eq.support -> U a.algebra) -> Type

models a eq env = a.equivalence.relation

(a.Sem eq.lhs env)

(a.Sem eq.rhs env)

(=|) : {sig : Signature} -> (eq : Equation sig) ->

(a : SetoidAlgebra sig

** Fin eq.support -> U a.algebra) -> Type

eq =| (a ** env) = models a eq env

ValidatesEquation : (eq : Equation sig) ->

(a : SetoidAlgebra sig) -> Type

ValidatesEquation eq a =

(env : Fin eq.support -> U a.algebra) ->

eq =| (a ** env)

Validates : (pres : Presentation) ->

(a : SetoidAlgebra pres.signature) -> Type

Validates pres a = (ax : pres.Axiom) ->

ValidatesEquation (pres.axiom ax) a

Fig. 6. Equational validity in an algebra

We define models for a presentation:

record Model (Pres : Presentation) where

constructor MkModel

Algebra : SetoidAlgebra (Pres).signature

Validate : Validates Pres Algebra

We can now define a monoid to be aMonoid-model, as in Fig. 5. For another example, now putting

everything together, we validate the monoid structure of multiplication as follows:

Multiplicative : Monoid 1

Multiplicative = MkModel 2

{ Algebra = cast {from = Algebra Signature} $ 3

MkAlgebra {U = Nat, Sem = \case Neutral => 1 4

Product => mult} 5

, Validate = \case 6

LftNeutrality => \env => plusZeroRightNeutral _ 7

RgtNeutrality => \env => multOneRightNeutral _ 8

Associativity => \env => multAssociative _ _ _ 9

} 10

Line 3 converts the constructed algebra into a setoid algebra, and lines 7–9 use results about the

natural numbers from Idris2’s standard library.

Using Frex

While the definitions in this section are layered and structured, they generalise familiar situations

concerning monoids and groups that are usually covered by computer science curricula. We hope

users can pick up a working knowledge by modifying such examples.

Unless they are already working abstractly with an algebraic structure, we expect that in practice

users start by recognising that their concrete algebra validates the axioms of an existing simplifica-

tion module—frexlet for short. As a concrete example, we will take computations with lists that

also involve the reverse function. These form an involutive monoid: a monoid A equipped with a

unary involution operator 𝑥 ↦→ 𝑥 : UA → UA satisfying two axioms x = x and xy = y x. We then equip

our type of interest, lists, with an involutive model structure as in Fig. 7. We can use this algebra

and the involutive monoid to discharge equations containing list variables and concrete lists:
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ListInvMonoid : {0 a : Type} -> InvolutiveMonoid

ListInvMonoid = MkModel

{ Algebra = cast $ MkAlgebra

{sig = Monoid.Involutive.Theory.Signature}

{ U = List a -- Carrier

, Sem = \case -- Operations

Mono monoidOp => case monoidOp of -- Inherited from monoids

Neutral => []

Product => (++)

Involution => reverse

}

, Validate = \case -- Validate equations

Mon LftNeutrality => \env => Refl -- Directly, or

Mon RgtNeutrality => \env => appendNilRightNeutral _ -- use existing standard

Mon Associativity => \env => appendAssociative _ _ _ -- library functions

Involutivity => \env => reverseInvolutive _

Antidistributivity => \env => sym (revAppend _ _)

}

Fig. 7. The involutive monoids of list reversal

1 lemma : {x,y : List a} -> (i,j,k : a)

2 -> (reverse ([j, i] ++ reverse y ++ ([] ++ reverse x))) ++ [k]

3 = x ++ y ++ [i, j, k]

4 lemma i j k = solve 2 (Involutive.Frex.Frex ListInvMonoid) $

5 ((Sta [j, i] .*. (Dyn 1) .inv .*. (I1 .*. (Dyn 0) .inv)) .inv) .*. Sta [k]

6 =-= Dyn 0 .*. (Dyn 1 .*. Sta [i, j, k])

The solve function takes as argument the number of variables (n=2 on line 2) in the algebraic term

to simplify, and an algebraic simplifier from the frexlet (Involutive.Frex.Frex on line 4). The final

argument is a pair of terms with n=2 variables (Dyn 0 and Dyn 1) and concrete values from the algebra.

By importing notation modules the frexlet provides, we can use infix multiplicative notation such

as (.*.). The type-checker then infers the terms to substitute for each variable.

In this example, we used solve to define a stand-alone lemma, but we may also call solve directly

from a chain of equational reasoning steps. When we extract lemmas, we often want to prove them

more abstractly, for all involutive monoids. In that case we use a fral:

1 ExampleFral : {a : InvolutiveMonoid} -> (x,y,z : U a)

2 -> let %hint notation : ? -- Open notation hints for the monoid

3 notation = a.Notation1 -- for infix operator (.*.) and

4 in a.rel -- postfix operator (.inv)

5 (x .*. y.inv .*. z).inv

6 (z.inv .*. y .*. x.inv)

7 ExampleFral x y z =

8 let %hint notation : ? -- ditto, but for terms

9 notation = Involutive.Notation.multiplicative1

10 in solve 3 (Involutive.Free.FreeInvolutiveMonoidOver 3) $

11 (X 0 .*. (X 1).inv .*. X 2).inv =-= (X 2).inv .*. X 1 .*. (X 0).inv
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Preserves : {sig : Signature}

-> (a, b : SetoidAlgebra sig)

-> (h : U a -> U b)

-> (f : Op sig) -> Type

Preserves {sig} a b h f

= (xs : Vect (arity f) (U a))

-> b.equivalence.relation

(h $ a.Sem f xs)

(b.Sem f (map h xs))

Homomorphism : {sig : Signature}

-> (a, b : SetoidAlgebra sig) -> (h : U a -> U b) -> Type

Homomorphism a b h = (f : Op sig) -> Preserves a b h f

record (~>) {Sig : Signature} (a, b : SetoidAlgebra Sig) where

constructor MkSetoidHomomorphism

H : cast {to = Setoid} a ~> cast b

preserves : Homomorphism a b (.H H)

Fig. 8. Setoid algebra homomorphisms in Frex

Lines 2–3 and 8–9 overload the infix and postfix notation using the frexlet’s built-in notation suites.

Concretely, the projection Notation1 brings into scope the functions (.*.) and (.inv) when writing

algebraic terms. The solve function takes the number of free variables and a corresponding fral

simplifier (line 10), as well as the two terms representing the equation of interest. The variables x, y,

z (bound in line 7) are implicitly used in this call. §5.2 covers the type of solve in more detail.

5 Free Extensions and Algebras

Before delving into the details of Frex’s core, we revisit our frexlet representations using examples

for elements in the fral and the frex for ordinary, commutative, and involutive monoids (see Fig. 1).

The elements in the free monoid are lists of the variables appearing in the term, which are

sometimes known as reduced words in the context of freely generated groups. The elements in the

free extension of a monoid are lists alternating between concrete elements in the given monoid,

and freely adjoined variables. The figure shows an element in the free extension by 1 variable (𝑦)

of the multiplicative monoid of 2 × 2 matrices with natural-number components. The matrix 𝑦 is

unknown, or Dynamically known, and so its occurrence separates the elements in the list.

Further assuming commutativity equates more terms, resulting in the representation of the free

commutative monoid over n variables as an n-vector of coefficients, representing a linear polynomial.

Freely extending a commutative monoid A by n variables can be represented by a concrete coefficient

𝑐 : A together with an n-vector of coefficients, representing a linear polynomial over A.

If we instead include an involutive operation 𝑥 ↦→ 𝑥 over the monoid, we get reduced words

and alternating lists whose letters may be tagged as involuted. The figure demonstrates the free

extension of the monoid structure of String concatenation, with string reversal for the involution.

5.1 Universal Properties

Frex defines homomorphisms of setoid algebras in Fig. 8, by requiring the underlying function to

be a setoid homomorphism between the corresponding setoids. The code uses an appropriate cast

function that assembles these setoids from the data in each setoid algebra. Each a : Algebra sig de-

fines a homomorphic extension operator a.Sem : Term sig x -> (x -> U a) -> U a by structural induc-

tion over the term (i.e. folding). For example, (Nat.Additive).Sem (X 0.+.O1.+.X 1) (\case {0=>5; 1=>7})

evaluates to 5+0+7 in the Additive Nat algebra. The free algebra construction, together with the em-

bedding of variables into terms, forms the left adjoint to the forgetful functor from algebras to sets

by the uniqueness of this homomorphic extension. Being left-ajoint to the forgetful functor is the

category-theoretic definition of the free algebra, justifying the terminology.
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record ModelOver

(Pres : Presentation)

(X : Setoid) where

constructor MkModelOver

Model : Model Pres

Env : X ~> cast Model

PreservesEnv : {Pres : Presentation}

-> {X : Setoid}

-> (a, b : Pres `ModelOver` X) ->

(cast {to = Setoid} a.Model

~> cast b.Model) -> Type

PreservesEnv a b h =

(X ~~> cast b.Model).equivalence.relation

(h . a.Env) b.Env

record (~>)

{Pres : Presentation} {X : Setoid}

(A, B : Pres `ModelOver` X) where

constructor MkHomomorphism

H : (A .Model) ~> (B .Model)

preserves : PreservesEnv A B (H .H)

record Extension {Pres : Presentation}

(A : Model Pres)(X : Setoid) where

constructor MkExtension

Model : Model Pres

Embed : A ~> Model

Var : X ~> cast Model

record (~>) {Pres : Presentation}

{A : Model Pres} {X : Setoid}

(Extension1, Extension2 : Extension A X) where

constructor MkExtensionMorphism

H : (Extension1).Model ~> (Extension2).Model

PreserveEmbed :

(cast A ~~> (Extension2).Model)

.equivalence.relation

(H . (Extension1).Embed)

(Extension2).Embed

PreserveVar :

(X ~~> cast (Extension2).Model)

.equivalence.relation

((H).H . (Extension1).Var)

(Extension2).Var

Fig. 9. Structure and its preservation for (a) algebras over a setoid, and (b) extensions of an algebra

Similarly, Fig. 9 presents the declarations for algebras over a setoid and extensions. It expresses

the equations in the commuting diagrams using the extensionality equivalence relation on the

setoid of functions from Fig. 16b in the Appendix and the power of an algebra by a setoid (see §5.3).

As Idris2 resolves names using type-directed disambiguation, we overload the record name (~>).

The free algebra over a set (fral) and the free extension (frex) of an algebra by a set is then the

initial such structure: there is a unique structure-preserving map from the free structure to every

structure. This succinct definition, while standard, packs much structure. By way of introduction,

we will unpack it for the free commutative monoid over Fin n, the finite set with n elements.

First, we designate a commutative monoid for the model structure in the fral. This structure is

the data structure our simplifier will use to represent the equivalence classes of terms. In Fig. 1,

we mentioned the carrier consists of origin-intercepting linear polynomials with Nat coefficients

𝑝 = 𝑎1𝑥1 + . . . + 𝑎n𝑥n, which we represent with n-tuples of natural numbers and pointwise addition:

Carrier : (n : Nat) -> Setoid

Carrier n = VectSetoid n

(cast Nat)

0 := 0𝑥1 + . . . + 0𝑥𝑛 𝑝+𝑞 := (𝑎1 + 𝑏1)𝑥1 + . . . + (𝑎n + 𝑏n)𝑥n
:= [0, . . . ,0] := [𝑎1+𝑏2, . . . ,𝑎n+𝑏n]

= replicate n 0 = map (uncurry (+)) (zip as bs)

Denote the resulting CommutativeMonoid by Model n. For the Env component, use tabulation to define

unit n : Fin n → Carrier n, with 1 in the argument position and 0 elsewhere:

unit n 𝑖 := 1𝑥𝑖

:= [0, . . . ,0,1,0, . . . ,0]

= tabulate $ dirac i

where
3
:

dirac i j :=

{
i = j : 1

i ≠ j : 0

3
This function is in fact Kronecker’s delta, but the shorter name Dirac’s delta seems more familiar to readers.
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1 solveVect : {0 n : Nat} -> {pres : Presentation} -> {a : Model pres} ->

2 (frex : Frex a (irrelevantCast $ Fin n)) -> (env : Vect n (U a)) ->

3 (eq : ( Term pres.signature (U a `Either` Fin n)

4 , Term pres.signature (U a `Either` Fin n))) ->

5 {auto prf : frex.Data.Model.rel

6 (frex.Sem (fst eq) (frexEnv {x = cast $ Fin n} frex).H)

7 (frex.Sem (snd eq) (frexEnv {x = cast $ Fin n} frex).H)}

8 ->

9 a.rel (a.Sem (fst eq) (either Prelude.id (flip Vect.index env)))

10 (a.Sem (snd eq) (either Prelude.id (flip Vect.index env)))

Fig. 10. Core frex-based simplification routine

The initiality of this structure follows from the normal form property — every origin-intersecting

linear polynomial 𝑝 can be represented as 𝑝 =
∑𝑛

𝑖=1 𝑎𝑖 · unit n i:

normalForm : (n : Nat) -> (xs : U (Model n)) ->

xs = (Model n).sum (tabulate $ \i => (index i xs) *. (unit n i))

Since monoid homomorphisms preserve the summation and multiplication-by-a-natural, the unique

structure preserving map h : (Model n, unit n) → a is this homomorphism:

h xs = a.Model.sum (mapWithPos (\i,k => k *. a.Env.H i) xs)

This standard argument lies behind many simplifiers, as well as more advanced techniques like

normalisation-by-evaluation. Frex takes the same approach, but also explores how to use general-

purpose constructions involving frals and frexes, and bespoke facts about algebraic structures, to

construct new frals and frexes.

To summarise, to implement a fral/frex simplifier, the developer follows these steps:

• Design a data-structure for the carrier of the frex/fral’s algebra, e.g. for commutative monoids:

Vect n Nat for the fral and (U a, Vect n Nat) for the frex.

• Equip it with a setoid algebra structure: pointwise operations with propositional equality.

• Equip it with the appropriate additional structure, e.g. the unit for the fral and the Variable

function and the Embedding homomorphism for the frex.

• Define the function underlying the homomorphism into any other algebra over the variable

setoid or extension, e.g. linear combination for commutative monoids.

• Prove that this function is a homomorphism and its uniqueness.

5.2 Solver Implementation

We can now explain how Frex implements the solve functions. We describe the frex-based interface

in detail; the fral-based interface is similar. We implement the core functionality in the auxiliary

function solveVect in Fig. 10.

The argument frex (line 2) is an implementation of a frex simplifier for some pres-algebra a,

extended with n free variables (line 1). We erase the number of variables at runtime, and so we also

erase the type Fin n. We cast an erased type to a setoid instead of an unerased type, i.e.:

irrelevantCast : (0 a : Type) -> Setoid instead of cast : (a : Type) -> Setoid

The function also takes an environment of terms to substitute for the free variables in the simpli-

fication equation (line 2). In this auxiliary function, we present the environment using an n-ary

vector of terms over the algebra’s carrier. Next comes the equation we want to discharge (line 3),
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data Visibility = Visible | Hidden | Auto

Pi : Visibility -> (a : Type) -> (a -> Type) -> Type

Pi Visible a b = (x : a) -> b x

Pi Hidden a b = {x : a} -> b x

Pi Auto a b = {auto x : a} -> b x

PI : (n : Nat) -> Visibility -> (a : Type) -> (Vect n a -> Type) -> Type

PI Z vis a b = b []

PI (S n) vis a b = Pi vis a (\ x => PI n vis a (b . (x ::)))

Fig. 11. Metaprogramming abstractions for curried Π-types

involving either concrete values (of type U a) and any of the n available variables. Both the frex and

the algebra with its environment give rise to extensions in the formal sense, which we can use to

give an environment for the equation in question, namely a setoid homomorphism from the joint

setoid of constants and free variables to the carrier of the model underlying the extension:

extEnv : {a : Model pres} -> {x : Setoid} -> (ext : Extension a x) ->

Either (cast a) x ~> cast ext.Model

extEnv ext = either ext.Embed.H ext.Var

where: either : {0 a, b, c : Setoid} -> (a ~> c) -> (b ~> c) -> (a `Either` b) ~> c

We use these environments to interpret the equation, once in the frex (lines 6–7) and once in the

given algebra (lines 9–10). If the equation holds in all extensions, it will hold in the frex and in a,

and, moreover, homomorphisms of extensions will preserve this interpretation. Interpreting this

equation in the frex may have better decidability properties over equivalence in a.

We use Idris2’s auto-implicits mechanism to search for the equivalence of the frex interpretations.

This mechanism will try to find terms that resolve the implicit argument prf, using a heuristic

informed by unification, that will also attempt to apply data constructors.

Typically, Idris2’s judgemental equality decides the frex setoid’s equivalence relation, and the

number of variables we extend by is known statically. This case can happen when the equivalence

relation on the setoid algebra a is decidable by judgemental equality. Then, the type of the prf

argument (line 5) is a propositional equality between closed terms. Judgemental equality decides

this relation between the interpretations in the type of prf. In Idris2, the auto-search heuristic tries to

use Refl, and promotes the required equation to a judgemental equality constraint. Even when the

setoid relation is not decidable by judgemental equality, making prf an auto-implicit may provide

more functionality in the future. We may be able to freely extend algebras whose propositional

equality is only partially decidable by judgemental equality (e.g. function types in a type theory

with function extensionality), or by a sophisticated decision procedure (e.g. multiset equality).

We use metaprogramming abstractions (Fig. 11) to simplify the user-facing interface. The PI

combinator produces an n-ary telescope of Visible/Hidden/Auto arguments, packaged as an n-ary

vector which it passes this its argument b. Using this abstraction to reduce solve (Fig. 12) to solveVect

means unification can resolve the arguments to substitute for the free variables in the equation.

5.3 Powers

X

a.Model ~~> A

b.Model ~~> A

a.Eval

b.Eval

pre Hh=

The commutative monoid structure Model n instantiates a general construction:

T -algebras have powers by setoids. The power of an algebra A by a set(oid)

X is the terminal parameterisation. Parameterisations, shown succinctly on

the right, are an X-indexed collection of algebra homomorphisms a.Eval f :

a.Model → A.
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1 solve : (n : Nat) -> {pres : Presentation} -> {a : Model pres} ->

2 (frex : Frex a (cast $ Fin n)) ->

3 PI n Hidden (U a) $ (\ env =>

4 (eq : ( Term pres.signature (U a `Either` Fin n)

5 , Term pres.signature (U a `Either` Fin n))) ->

6 {auto prf : frex.Data.Model.rel

7 (frex.Sem (fst eq) (frexEnv frex).H)

8 (frex.Sem (snd eq) (frexEnv frex).H)}

9 ->

10 a.rel (a.Sem (fst eq) (either Prelude.id (flip Vect.index env)))

11 (a.Sem (snd eq) (either Prelude.id (flip Vect.index env))))

Fig. 12. User-facing frex-based simplification routine

Requiring a.Eval f to be homomorphic implies that operations are given pointwise. The structure

preservation uses the contravariant action pre Hh precomposing a homomorphism Hh : a.Model →
b.Model. Universality singles out the carrier of the power as the function-space X ~~> a.Model. For

X = Fin n, we can represent it by n-tuples from U A.

5.4 Frex via Coproducts with Fral

A1

a.Sink

b.Sink

A2

a.Lft

b.Lft

Hh

a.Rgt

b.Rgt

= =

The fral and the frex relate: the free extension of A by X is the coproduct of
A with the free algebra over X. Coproducts are the initial cospans, showed
succinctly in the diagram on the right. A cospan consists of two homomor-

phisms with a shared codomain. All algebras have coproducts, but these

may be difficult to represent. However, in cases such as commutative monoids, the coproduct is

straightforward to represent: its carrier is the cartesian product of the components carriers.

The universal property of the frex A[X] combines those of the fral FreeTX and its coproduct with

A. The fral’s universality equates the left triangles:

X

A[X]

a.Model

UA

Var

a.Var

Hh

Embed.H

a.Embed.H

= = Free T X

(Free T X) ⊕ A

a.Sink

A

Lft

a.Lft

Hh

Rgt

a.Rgt

= =

This identification lets us construct:

CoproductAlgebraWithFree pres a x : (free : Free pres x) ->

(coprod : Coproduct a free.Data.Model) -> Frex a x

For commutative monoids it gives the commutative monoid of linear polynomials with natural

numbers as degree-1 coefficients whose carrier is represented by (U A, Vect n Nat).

5.5 Fral via an Initial Algebra Frex

Since developing the sound and complete frex can be tedious, there is a generic mechanism for

reusing this work to derive a corresponding fral with less effort. This method is based on the

following calculation that uses a categorical principle: the free algebra construction preserves initial

constructions. Let O be the initial algebra. Since the empty set is the initial set, by this principle,

the free algebra on the empty set FreeT∅ is also the initial algebra. We then calculate the frex:

FreeT X � FreeT (X + ∅) � (FreeT X) ⊕ (FreeT∅) � O[X]
Therefore, we may construct the fral from an initial algebra and its frex:
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ByFrex : (initial : Free pres (cast Void)) ->

Frex initial.Data.Model s -> Free pres s

This generic construction produces suboptimal representations. For example, the initial monoid

is easy to construct: its carrier is the unit type. Freely extending this initial monoid produces

alternating lists, that interleave the unit value. Taking variable lists instead leads to a simpler

representation, but requires more complicated proofs. So Frex allows us to trade rapid prototyping

for efficient representation.

5.6 Reusing Frexlets

The final example demonstrates reuse of one simplifier when constructing another. Recall the

presentation of involutive monoids from the end of Section 4.

Proposition 5.1 (Jacobs). The free involutive monoid on X is the free monoid on the product
(Bool,X). The frex of an involutive monoid by X is the frex of its underlying monoid by (Bool,X).

We can prove this proposition directly, establishing the involutive axioms, and have taken this

strategy in Frex. However, it is also possible to phrase the result in much greater generality, and

give a higher-level proof, using Jacobs’s [2021] axiomatisation of involutions. This more abstract

proof generalises to other notions of involutive algebras, and we plan to exploit it in the future for

generic frexlet reuse. However, the more abstract proof goes beyond the scope of this manuscript,

involving more abstract category theoretic notions. We include it in Appendix D for reviewing

purposes.

6 Completeness and Certification

Frex uses setoids beyond a mere completion: it automatically extracts the proofs its simplifiers

derive. Concretely, the fral and frex can be constructed by quotienting the term algebra with the

provability equivalence relation. For the fral, the relation is provability with respect to the axioms

of the theory, or a postulated equivalence in the given variables setoid. For the frex A[X], we further
postulate constants 𝑎 for every element 𝑎 : U A, and the provability relation includes the following

evaluation equations, for every operation 𝑓 : 𝑛 and constants 𝑐
1
, . . . , 𝑐

𝑛
: 𝑓 (𝑐

1
, . . . , 𝑐

𝑛
) = 𝑓 (𝑐1, . . . , 𝑐𝑛).

The inhabitants of the provability relations deeply embed the rules of equational logic from Fig. 2.

These resulting candidate ‘abstract’ fral and frex validate the universal property, and Frex

implements this validation. As a consequence, the provability relation coincides with equality in

the fral or frex, and these frexlets are therefore complete. The provability relations are not effective

— there is no general algorithm deciding, for all algebraic theories and two terms, whether the two

terms are provably equal. Therefore, we cannot use the abstract fral and frex to simplify terms by

simple evaluation, and we need the creativity of frexlet designers. However, as any other model,

soundness ensures that we can construct proofs using a given frexlet simplifier. By invoking the

universal property, we get a deeply embedded proof that we can inspect, simplify, print, and certify.

For concreteness, consider proof extraction for the frex. Extracting equational proofs for all

algebras is similar, using the abstract fral and the fral universal property. Take a typical input to

the frex solve function, namely a concrete algebra a, and an equation X ⊎ U a ⊢ 𝑡 = 𝑠 involving

variables and concrete elements in the algebra represented by terms over the disjoint union

X ⊎ U a. The abstract frex in this situation is the term algebra over X ⊎ U a quotiented by provability:

A := Term (X ⊎ U a)/Provability. Even though A validates the universal property, the interpretation of

𝑡 and 𝑠 in A are themselves, i.e. A ⎜𝑡⨆︁ = 𝑡 . Provability proofs between A ⎜𝑡⨆︁ and A ⎜𝑠⨆︁ are non-effective
— all they amount to are deep embeddings of equational proofs in a, and A does not help us find

them. However, if we have a frex whose equivalence relation is effective, then we can use A as

follows. The function solve requires an environment env : X → U a, and then appeals to the universal
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property of the frex a[X] with respect to the algebra a and this environment. The abstract frex

A is also an algebra with an appropriate environment. We can therefore appeal to the universal

property for a[X] and get a proof in the setoid A for the interpretation of our equation of interest.

The equality proof in A is a deep-embedding of an equational proof in a, our goal.

At this point it is worth pausing and reflecting on this implementation. There is no need to write

any proof extraction code for our simplifiers. The universal properties of the fral and the frex have

done all the presentation-specific heavy-lifting. Frexlet designers shallowly construct proofs, but

Frex can nonetheless produce, for free, the deeply embedded proof. The remainder of this section

explains how Frex processes (simplifies, prints, certifies) these deeply embedded proofs.

Frex’s Lemma over a theory is a pair of terms with finite support together with a proof that they

are equal in the free algebra of the theory. Such lemmata are sound: every Lemma for a theory holds

in all models of this theory. Frex provides a mkLemma smart constructor which runs the given free

algebra simplifier, constructs a proof that a stated equivalence holds, and returns a valid Lemma.

This mechanism allows users to build up a library of lemmata for their theories. Users can then

seamlessly invoke these lemmata in any model, avoiding further Frex calls. This approach however

forces the user’s project to depend on most of Frex indirectly through such modules. To avoid such

dependencies, Frex also supports proof extraction, allowing users to produce standalone lemmata

libraries independent of the Frex library.

6.1 Extracting Certificates

Our goals for extraction are to (1) produce libraries from lemmata, and (2) produce somewhat

idiomatic Idris2 code. The derivation found by Frex may not be what a human would have chosen

but it should nonetheless be possible for a sufficiently patient human to follow the reasoning steps.

The main challenge was to go from a rich type of derivation trees with arbitrarily nested

transitivity, symmetry, and 𝑛-ary congruence steps to a type of linear/flat derivations that could be

pretty-printed using Idris2’s combinators for setoid reasoning.

We represent derivations in layers (cf. Fig. 17 in Appendix C): (a) the reflexive-transitive closure

of (b) the symmetric closure of (c) the unary congruence closure of (d) axiomatic reasoning steps.

(a) Reflexive-transitive closure: type-aligned [van der Ploeg and Kiselyov 2014] lists of steps in the

closed-over relation: the target element of each element in the list is the source element of the next.

(b) Symmetric closure: either the relation or its opposite.

(c) Unary congruence closure: It suffices to pair a term with a distinguished variable for the contextual

hole, together with a step in the closed-over relation. To ease our pretty-printing code, we distinguish

between using the closed-over relation in an empty context, and using it in a context with a

distinguished variable represented by the Idris value Nothing.

(d) Axiomatic steps An atomic step is either a setoid equivalence, or one of the theory’s axioms.

Putting these together, we get the type of derivations (cf. Fig. 17(e) in Appendix C).

Every provable derivation decomposes into a value in this layered representation. The modular

definition makes decomposition straightforward: we use generic combinators for each closure

relation-transformers. Closure under congruence is the trickiest part, decomposing an 𝑛-ary congru-

ence into 𝑛 separate unary congruences, pushing them under the reflexive-transitive and symmetric

closure layers, and erasing any congruence steps with the identity context.

6.2 Proof Simplication

Certification also allows us to inspect Frex-generated proofs. Frexlet developers can check whether

data-structures and proofs are suboptimal, spurring code refactoring. Concretely, when developing

Frex, we noticed proofs with loops: multi-step derivations that start and end in the same term. Such

loops come from internal data structures that optimise simplifier-development effort, but insert
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units : {a, b : Nat} -> (0 + (a + 0)) + b + 0 = a + b

units = %runElab frexMagic MonoidFrexlet Additive

agdaEx : ∀ {x y}→ (2 + x) + (y + 3) ≡ x + (y + 5)

agdaEx = fragment CSemigroupFrex +-csemigroup

Fig. 13. Goal extraction in (a) Idris2 Frex’s elaborator reflection script; (b) the frex Agda augmentation lib.

semantically irrelevant subterms that can be simplified away. Frex implements a generic proof

simplifier that automatically removes all such loops. This mechanism suggests future investigation

of certification modules that simplify these deeply embedded proofs further.

7 Goal Extraction via Reflection

Thus far, our examples have illustrated interaction with Frex using solve. The solve function

provides a similar interface to the simplifiers in (e.g.) Agda’s standard library: it takes the fral

or frex simplifier, the number of free variables and the abstract syntax of a goal. However, these

simplifiers additionally provide ergonomic goal extraction with Agda’s proof reflection mechanism.

Proof reflection is a metaprogramming paradigm, available in proof assistants and dependently

typed programming languages, that supports bi-directional communication between a language and

its implementation. The language provides a representation of its terms, operators that construct,

manipulate and destruct term representations, and primitives quote and unquote that respectively
reify terms into the representation and reflect back encoded terms as ordinary terms.

Given mechanisms for querying unsolved proof obligations, proof reflection enables the imple-

mentation of verified decision procedures for automatically discharging such obligations without

boilerplate [Boutin 1997; Christiansen and Brady 2016]. Coupled with the meta-theoretic properties

that dependently typed implementations of decision procedures can enforce (e.g. relative soundness

and completeness), reflection-driven interfaces yield easy-to-use tactics with strong guarantees. It

is then natural to ask: is it possible to construct an interface to Frex that uses proof reflection to

avoid the need to explicitly supply the equation to discharge?

As the example code in Fig. 13 illustrates, using proof reflection to provide such an interface to

Frex is possible in both Idris2 and Agda. Rather than designing custom reflection-based drivers for

individual simplifiers, we combine proof reflection with Frex’s design philosophy of extensibility

and common core reuse and provide a single generic metaprogram parameterized by a signature

and a model of a presentation. The metaprogram can be instantiated for any algebraic simplifier,

built-in or user-defined. Fig. 13 (a) shows the invocation of the Idris2 elaboration script frexMagic,

and Fig. 13 (b) shows the Agda proof reflection macro fragment. Both implementations aim to

infer the abstract syntax of the goal equation based on the expected type.

The drivers have no information about the structure of the algebraic signature argument ahead

of time. Frex’s inductive Term representation means that relevant abstract operator names can be

extracted from the presentation. However, the process of matching goal fragments against the ab-

stract syntax of the algebraic interpretation is tightly coupled to the language’s reflection primitives.

Implementing Frex in both Idris2 and Agda allows us to compare differences in behaviour.

The differences between the Idris2 and Agda implementations can be seen by considering the

normalisation of arithmetic expressions such as (x + 1) + y = x + (1 + y). In Idris2, the reflected

syntax passed to the driver represents the normalized expression (x + 1) + y = x + S y. As far

as the theory of monoids is concerned, S y is an atomic expression and is therefore treated as

another free variable, distinct from y. The Idris2 driver then incorrectly infers the invalid equation

Dyn 0 .+. Sta 1 .+. Dyn 1 =-= Dyn 0 .+. Dyn 2, and fails to discharge the goal. In contrast, Agda does

not normalise quoted expressions before reflection, and so the Agda driver successfully finds the

equation, allowing Frex to solve the example. Agda’s approach is not always superior: it is possible
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to construct similar examples where the Agda driver fails. The extent to which the implementation

can avoid such pathologies ultimately depends on the engineering effort available to develop

heuristics.

As these problems indicate, this rather naive approach to automation requires significant devel-

oper resources to deal with edge cases or construct bespoke solutions under simplifying assumptions.

In large, mature ecosystems it may be possible to maintain practical heuristics despite these chal-

lenges. However, we think there might be better mechanisms for specifying algebraic contexts from

which the solver can extract the required information automatically; we touch on some possible

directions in Section 11.

8 Supplementary Evaluation: Usability and Interactive Development

The implementation of Frex is still in its early stages, and offers many opportuntities for further

engineering work to extend its functionality, expressiveness, ergonomics, and efficiency. However,

we have already carried out some small experiments to assess user experience and frexlet developer

experience to establish that the approach is feasible, and to identify further directions.

8.1 Using Frex

Quantitative evaluation. Idris2 encourages interactive, type-driven development, so it is important

that the checker is responsive when the user modifies the program. Following Nielsen [1993], our

Idris2 implementation aims for response times under one second, and we treat a response time of

over 10 seconds when type checking a modification to Frex client code as a bug.

For typical small equalities that arise incidentally in dependently typed programs, Frex’s perfor-

mance falls very comfortably within Nielsen’s limits. For example, the checking time
4
is under 0.1s

for terms of size six or below with the commutative solver and terms of size 14 or below with the

non-commutative solver, creating an impression of instantaneous response.

As the term size increases, Frex eventually crosses the one second interactivity threshold. Fig. 14

shows how type-checking times grow with term size and with the number of free variables in

a randomly generated term for the commutative and non-commutative monoid solvers. As the

figure shows, Frex’s type-checking time generally remains below the interactivity threshold up to

terms of around size 30, and only exceeds the 10 second threshold (beyond which users’ attention

is lost) for a few terms of size 45 or above. Our experience with Frex development suggests that the

anomalously high checking times for these terms is likely to arise from a performance bottleneck in

Idris2’s evaluator (Section 9) and that the ongoing development of Idris2 may eventually eliminate

the problem, bringing the type-checking time for most terms up to size 60 down to a few seconds.

Qualitative evaluation. To experience using Frex, we have reproduced Brady et al.’s [2007]

dependently typed representation of binary arithmetic. Brady et al. index binary representations

by the natural numbers that they represent, and so the programmer needs to give proofs for

the correctness of arithmetic operations. These proofs typically interleave insightful equational

reasoning steps with rote calculational steps such as the following:

c_s + 2*(val_s + ((2 `power` width)*c0)) = ((c_s + val_s) + val_s) + (2*((2 `power` width)*c0))

which may be discharged by passing the equation to solve. We do not use our reflection capabilities

since these kinds of examples, in which the binding-time analysis is challenging, are beyond their

reach at the moment. With early implementations of Frex the task was arduous due to several

performance bottlenecks in Idris2 that are now eliminated. The only other significant obstacle we

encountered was the usual pain point involved in invoking an algebraic simplifier without a goal

4
We use a dated AMD FX-8320 machine with 16GB memory, running Idris 2 version 0.5.1-1011cc616 on Debian Linux.
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Fig. 14. Frex monoid simplifiers type-checking times

extraction mechanism: the need to repeat the equation and its relevant rewriting-context when

calling Frex.

8.2 Extending Frex.

The Frex library itself, around 9,500 lines of Idris code, compiles in around 24 seconds. To evaluate

its extensibility, we assigned an experienced Frex developer the task to extend the library with

an involutive monoid frexlet. The development took place over a period of two weeks, with the

code-development phase taking 10 days.

This paragraph is for readers who are interested in the breakdown of the experiment. It took the

developer around an afternoon to design the frex data structure and produce a pencil-and-paper

proof for soundness and completeness. However, the developer noticed the structural simplicity of

the frexlet, and conjectured that a more modular construction might be possible. Within two days,

the developer found Jacobs’s axiomatisation of involutive algebras [Jacobs 2021], and refactored

the pencil-and-paper proof using Jacobs’s concepts, though still specialised to involutive monoids

only. Then code development began, and the developer discovered a new performance bottleneck

in Idris2, which meant that every new 2-3 lines of Idris2 code took five minutes or longer to type

check. To work around the bottleneck, the developer proceeded with a three buffer approach, using

using separate buffers for definitions that are completed, currently checked and under construction.

Later, when preparing this manuscript, the developer used the ByFrex construct to implement the

involutive monoid fral from this frex. This step took an additional half-afternoon, mostly spent on

reducing the construction of the initial involutive monoid to the initial monoid. The management

of notation is cumbersome and slowed the fral development by perhaps an hour or so.
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We view the experiment as noisy due to the effect of the type-checker bottleneck (now eliminated,

as described in the next section), but draw some tentative conclusions. First, a two-week develop-

ment time seems acceptable for a shipping component: the involutive monoid frexlet now forms

part of Frex. Second, we expect Frex will need an overhaul of its notation-system as it accrues more

frexlets. This refactoring might depend on proposing additional notation-management features to

Idris2 first. Finally, although algebraic generalization delayed the development of the component,

the result of the delay is pleasing: it appears that working with the generic representations in Frex

encourages algebraic thinking that can lead to modular code and even to new theorems.

9 System Design Lessons

Frex uses generic and dependently typed programming techniques extensively, requiring significant

type level computation that taxes the capabilities of the host language implementation. In developing

Frex in Agda and Idris2 we have eliminated some performance bottlenecks in Idris2’s type checker,

and learned valuable lessons about practical dependently typed language implementation. We share

these lessons here, in the hope that developers of other systems will find them useful.

9.1 Idris2

At the heart of the type checker is an implementation of dynamic pattern unification [Gundry 2013;

Miller 1992; Reed 2009], which instantiates implicit arguments, and a conversion checker, which

checks whether two terms evaluate to the same reduct. Each of these components requires an

evaluator. Idris2 uses a form of normalisation by evaluation [Berger and Schwichtenberg 1991] with

a syntactic representation (terms) and a semantic representation (values in weak head normal form).

The static evaluator is call-by-name and produces a weak head normal form from a term, and Idris2

implements a quotation mechanism which reconstructs a term from a semantic representation of a

weak head normal form.

Profiling the Idris2 executable reveals that most performance bottlenecks we have encountered

in developing Frex are caused by the evaluator. We have experimented with alternative implemen-

tations of the evaluator that compile terms using Scheme’s backend and a glued representation of

values [Chapman et al. 2005; Coquand and Dybjer 1997] rather than interpreting terms directly.

We have made modest performance gains this way, but in the end nothing is more effective than

removing the need to evaluate in the first place! We have therefore also experimented with various

ways to avoid evaluating terms, including preserving subterm sharing, choosing appropriate data

representation in unification, and taking advantage of the typical structure of unification and

conversion problems.

Preserving Sharing Instantiating implicit arguments in dependently typed programs often leads to

significant sharing of subterms. For example, [True, False] : Vect 2 Bool elaborates to (::) (S Z) Bool

True ((::) Z Bool False (Nil Bool)), sharing the subexpressions Z and Bool. As the vector gets longer,

sharing increases. Following Kovács [2019], we preserve sharing by introducing a metavariable

for every implicit argument, inlining only when it is guaranteed that the definition cannot break

sharing. Consequently, we inline a metavariable whose definition is itself a metavariable applied to

local variables. Otherwise, we do not substitute metavariable solutions into terms at all until they

are required for unification or display purposes.

Unification Unification operates on values, not terms, but sometimes Idris2 needs to postpone a

unification problem if it is blocked due to an unsolvedmetavariable.When themetavariable is solved,

Idris2 need to re-evaluate the terms being unified. Previously, Idris2 stored postponed problems as

a pair of (syntactic) terms in an environment, re-evaluated once the blocking metavariable is solved.

However, Frex produces some large postponed problems, for which quotation to syntax is expensive.
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Now, in addition to the evaluator and quotation, we have introduced a continue operation, which
re-evaluates the metavariable at the head of a blocked value, and avoids unnecessary quotation.

Conversion Checking Types in Frex can be large, and sometimes a unification problem that arises

while type checking Frex is postponed due to an unsolved metavariable which blocks evaluation.

In this case, we might have a unification problem of the form f x1 ... xn =?= f y1 ... yn where

the xi, yi etc may be very large subterms, and the terms unify if they are convertible. If most

corresponding terms are equal after evaluation, but one differs, it may take a long time to find the

differing subterm which blocks unification, especially since checking the convertibility of subterms

involves evaluation. Fortunately, terms in blocked unification problems tend to differ at the heads

rather than at deeply nested subterms. Therefore, we always check the heads of the values of

corresponding xi and yi first, postponing the unification problem if any are unequal. This heuristic

significantly improves performance, preventing a lot of unnecessary evaluation.

Influence on Language Design and Ecosystem The development of Frex has led to the implementation

of a number of desirable language features in Idris2. Many of these have been minor changes to the

treatment of implicit arguments and parameters blocks. More significantly, Frex makes extensive

use of auto implicit arguments, which are solved by a search procedure which uses constructors

and functions marked as search hints. To assist the development of Frex and improve the readability

of its code we have added the ability to mark local functions as search hints, allowing us to restrict

the scope of the hints and so avoid excessive growth of the search space. Frex is now part of the

Idris2 test suite, ensuring that it will remain consistent with any updates to Idris2.

9.2 Agda

Agda is a well-established dependently typed interactive proof environment. Idris2 and Agda and

their communities have different goals, leading to subtle Frex implementation differences.

The key differences between the two languages arise from Agda’s focus on proving versus Idris2’s

focus on programming. Idris2 currently uses a single universe [Palmgren 1998], allowing Type : Type,

and is hence inconsistent by Girard’s paradox. In contrast, Agda’s well-developed predicative theory

of universes avoids Girard’s paradox. Agda also protects users from other logical paradoxes of its

more experimental features with its ‘--safe’ compiler flag. In the spirit of Hu and Carette [2021],

we adopt a conservative set of compiler options (--without-K --safe). All our definitions are
universe-polymorphic. This conservativity broadens the applicability of Frex in the Agda ecosystem

by guaranteeing compatibility with all of Agda’s various configurations, and further assures us

about the correctness of Frex itself. Corbyn [2021] discusses these ideas in greater detail.

10 Related Work

Within the Coq ecosystem, an abundance of tactics enable algebraic simplification. Boutin’s [1997]

ring and field tactics
5
let programmers discharge proof obligations involving (and requiring!)

addition, multiplication, and division operations. Strub’s [2010] CoqMT extends Coq’s Calculus

of Inductive Constructions, allowing users to extend the conversion rule with arbitrary decision

procedures for first order theories (e.g. Presburger arithmetic). To ensure preservation of good

meta-theoretical properties, Strub extends only term level conversion. Implementations of Hilbert’s

Nullstellensatz theorem (Harrison’s [2007] in HOL Light and Pottier’s [2008] in Coq) help users

discharge proof obligations involving polynomial equalities on a commutative integral domain.

5
See the Coq documentation: https://coq.inria.fr/distrib/current/refman/addendum/ring.html .
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Coq’s setoid_rewrite is an advanced tactic library for setoid rewriting.
6
Disregarding the dif-

ference between the direct manipulation of proof-terms in Idris2 and the tactic-based manipulation

in Coq, setoid_rewrite provides abstractions for manipulating parameterised relations (covariant

and contravariant), and users can register setoids of interest and custom ‘morphisms’ — horn-like

equational clauses — with the library. The various tactics in the library apply these user-defined

axioms to the goal. Users may also register tactics, and the library includes an expressive collection

of term-traversal primitives (climbing up and down the syntax tree, repeating sub-tactics, and so

on). While setoid_rewrite does not deal with algebraic simplification directly, it may help in

generalising equality-based simplifiers to setoid-based simplifiers. In comparison, Frex’s setoid

reasoning is minimal, implementing only the necessary features for the library.

In Idris1, Slama and Brady [2017] and Slama [2018] implement a hierarchy of rewriting procedures

for algebraic structures of increasing complexity. Though the procedures’ completeness is not

enforced by type as in Frex, these simplifiers are based on a Knuth-Bendix resolution of critical

pairs, and so are likely to be complete. Frex also investigates a hierarchy of rewriting procedures,

but: (1) frexlets are complete by construction, (2) Frex is based on normalisation-by-evaluation

(like Boutin’s tactic, and unlike Slama and Brady’s), and (3) Frex is extensible, with support for

sufficiently motivated users to extend the library with bespoke solvers.

Normalisation-by-evaluation is an established technique for simplifying terms in a concrete

equational theory, often involving function types. One compelling example is Allais et al.’s [2013]

work, which demonstrates by a careful model construction that the equational theory decided by

normalisation-by-evaluation can be enriched with additional rules. They implement a simply typed

language internalising the functorial and fusion laws for list fold, map, and append and prove their
construction sound and complete with respect to the extended equational theory.

In Agda, Cockx’s [2020] and Cockx et al.’s [2021] ‘--rewriting’ flag allows users to enrich

the existing reduction relation with new rules. Their implementation goes beyond Allais et al.’s:

it may restart stuck computations. They leave to future work the soundness of user-provided

reduction rules, i.e. ensuring rules neither introduce nontermination nor break canonicity. Unlike

our approach, neither Allais et al’s nor Cockx et al’s technique currently supports commutativity.

Implementing Frex required formalising the fragments of universal algebra needed for its

architecture. Formalising more complete fragments of the theory is an active area of research, with

recent contributions by Gunther et al. [2018] and Abel [2021] in Agda. Carette et al. [2020] generate

Agda code for a comprehensive collection of multi-sorted algebraic theories and their associated

machinery via a pre-processing phase from a much smaller description. Fiore and Szamozvancev

[2022] similarly generate definitions for the significantly more general second-order abstract syntax

in Agda via a preprocessing step, while formalising more of the meta-theory as library code. We

consider it an open problem in this domain to include the concise information as first-class data in

the meta-language while nonetheless enjoy the full ergonomics of hand-written, inlined, definitions.

The Meta-F★ language [Martínez et al. 2019] provides normalisation tactics for commutative

monoids and semi-rings through its metaprogramming facilities. Frex’s usage resembles these

tactics’ usage, and we hope a Frex port to F★will make use of F★’s metaprogramming facilities to

reduce some syntactic noise during goal extraction.

11 Conclusions and Further Work

We have presented a novel, mathematically structured, design for algebraic simplification suites

that guarantees sound and complete simplification, even of user-defined simplifiers. Preliminary

evaluation shows that, despite a high level of abstraction, the resulting library is responsive, with

6
See the Coq documentation: https://coq.inria.fr/refman/addendum/generalized-rewriting.html .
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comparable functionality to other libraries, in a combination of features that no single existing

library provides. Frex’s unique design—the frex and the fral—offer new prospects and questions.

Yallop et al.’s [2018] partial evaluators include additional frexlets (e.g. abelian groups, semirings,

distributive lattices). We plan to follow suit and port the remaining simplifiers, then conduct

larger evaluation and comparison studies. The main challenge is that, unlike Yallop et al., we must

mechanically prove that these frexlets are complete, which is costly. One elegant motivation for

including more simplifiers is the following. The frex generalises the ‘ring of polynomials over

a ring’ to that of an algebra of polynomials over an algebra. By porting Yallop et al.’s family of

representations, we will fully realise this generalisation.

Our experiment with reflection-based goal extraction as well as the reflection-based interfaces of

existing solvers show that with enough engineering efforts, library designers can extract the goal

equation from the goal type. However, since software engineers for dependently typed languages

are a scarce resource, we plan to explore other principled approaches. In practice, when invoked

inside a chain of equational steps, the goal equation already appears in the source-code, albeit

in a context. Programmers seem willing to type the goal equation once, since it documents the

reasoning steps, but seem unhappy to do so twice. Perhaps generic programming with holes
7
could

use this already-available information.

Another promising direction is bootstrapping of the Frex library using simplifier certification.

Bootstrapping might start with a hierarchy of inefficient simplifiers that are easy to implement.

Next, these simplifiers may then be used to develop a hierarchy of more efficient simplifiers and

proof-simplifiers. Finally, the certification mechanism can extract proofs to complete the bootstrap.

We would also like to extend Frex’s design beyond algebraic structures. More general notions of

theories abound: multisorted, second-order/parameterised, and essentially algebraic. Supporting

these may allow Frex to cover much more complex situations, such as decision procedures for first

order theories (e.g. Presburger arithmetic, cf. Strub’s [2010] CoqMT) normalisation-by-evaluation

for fusion laws [Allais et al. 2013], and equational manipulation of big-operators [Bertot et al. 2008;

Lau 2017; Markert 2015]. Note that Frex can already deal with big-operators such as sum so long

as the argument list is a concrete collection of constants and variables such as sum [2, x]. We only

need the more sophisticated theories when the length of the lists is abstract.

Frex uses many category-theoretic concepts, but the library itself is oblivious to category

theory. We hope that making use of a rich category theory library like Hu and Carette’s [2021]

agda-categories might lead to a sleeker and even more modular Frex implementation. More

specifically, we plan to explore a general treatment of involutive algebras following Jacobs [2021],

and Power’s distributive tensor of equational theories [Hyland and Power 2006; Power 2005] for a

uniform treatment of semi-ring varieties. Instantiating each of the 6 semi-group varieties makes it

possible to cover each instance of the following combinations:(
{ordinary} × {ordinary, involutive, non-reversing involutive}

∪ {commutative} × {ordinary, involutive}

)
×
{

commutative

semigroup,monoid, group

}
and modularly construct (2 + 3) × 3 = 15 semi-ring varieties, including rings and semirings. As this

example shows, this kind of modular treatment can provide a multiplicative development boost.
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• Frex (§4–§5.4): core definitions
• Signature (§4): operations & arities

• Algebra (§4,§5.1): algebraic structures
and terms, homomorphisms

• Presentation (§4): axioms, equational

theories

• Axiom (§4): common axiom schemes

• Model (§4): axiom-validating algebras

• Powers (§5.3): parameterised algebras

• Free (§4): simplification in all algebras

• Definition (§5.1): universal property

• Construction (§6): a non-effective

quotient construction used for extrac-

tion, printing, and certification

• ByFrex (§5.5): reuse a frex simplifier

to define a fral simplifier

• Linear (§6.1–§6.2): generic proof

simplification and printing

• Idris (§6): generic certification
• Coproduct (§5.4): universal property
• Frex (§5.1–§5.4): universal property,

reuse coproduct and fral simplifier to

define a frex simplifier

• Construction (§6): non-effective quo-

tient construction used for extrac-

tion, printing, and certification

• Lemma (§6): auxiliary representation

for auxiliary lemmata discharged by

fral simplifiers, printed, or certified

• Magic (§7): generic reflection code for

ergonomic invocation

• Frexlet.Monoid: modules concerning varieties of

monoids and their simplifiers

• Theory (§4): signature, axioms, pretty printing

for the theory of ordinary monoids

• Notation (§4): shared infix notation (additive

and multiplicative) for monoid varieties

• Frex (Fig. 1): frex simplifier for monoids

• Free (§5.5): fral simplifier, reuses frex simplifier

• Nat (§4): additive and multiplicative monoid

structure of the natural numbers

• Pair: typeswith the cartesian product as a proof-
relevant monoid structure

• List: monoid structure of lists with catenation

• Commutative: commutative monoids modules

• Theory: commutativity axiom

• Free (§5.1:) fral simplifier

• NatSemiLinear (§5.1): auxiliary definitions for
fral simplifier

• Frex (§5.4): simplifier, reuses fral via coprod-

ucts

• Coproduct (§5.4): coproduct of commutative

monoids

• Nat: addition and multiplication of naturals

• Involutive: modules concerning monoids

equipped with an involution

• Theory (§4): signature and axioms

• Free (§8.2): simplifier, reuses frex simplifier

• Frex (§5.6): simplifier, reuses monoid frex

• List (§4): involutive monoid structure of list

reversal

Fig. 15. Overview of the core Frex code-base and its relationship to this manuscript

A Module Structure of Frex

Fig. 15 summarises the core modules in this codebase and their relationship to this manuscript.

B Extensional Function andQuotient Setoids

Figure 16a defines the quotient of a type by a function q, taking two elements to be equal when

their images under the function q are equal, and the setoid of homomorphisms between two setoids

together with extensional equality. This example also demonstrates Idris2’s local definitions (lines

4–6, e.g.), possibly with quantities, named-argument function calls (lines 8–15, e.g.), application

operator $, and anonymous functions (lines 9–10, e.g.). Idris2, like Haskell, implicitly quantifies

(with quantity 0) over unbound variables in type-declarations such as the type a in Quotient. These

underscores mean elaboration must fill-in the blanks uniquely using unification.

Figure 16b presents a setoid over n-length vectors over a given setoid. The vector functorial action

VectMap has a setoid homomorphism structure between the two setoids of homomorphisms: (1)
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1 Quotient : (b : Setoid) -> (a -> U b)

2 -> Setoid

3 Quotient b q = MkSetoid a $

4 let 0 relation : a -> a -> Type

5 relation x y =

6 b.equivalence.relation (q x) (q y)

7 in MkEquivalence

8 { relation = relation

9 , reflexive = \x =>

10 b.equivalence.reflexive (q x)

11 , symmetric = \x,y =>

12 b.equivalence.symmetric (q x) (q y)

13 , transitive = \x,y,z =>

14 b.equivalence.transitive

15 (q x) (q y) (q z)

16 }

17 (~~>) : (a,b : Setoid) -> Setoid

18 (~~>) a b = MkSetoid (a ~> b) $

19 let 0 relation : (f, g : a ~> b) -> Type

20 relation f g = (x : U a) ->

21 b.equivalence.relation (f.H x) (g.H x)

22 in MkEquivalence

23 { relation

24 , reflexive = \f,v =>

25 b.equivalence.reflexive (f.H v)

26 , symmetric = \f,g,prf,w =>

27 b.equivalence.symmetric _ _ (prf w)

28 , transitive = \f,g,h,f_eq_g, g_eq_h, q =>

29 b.equivalence.transitive _ _ _

30 (f_eq_g q) (g_eq_h q)

31 }

0 (.VectEquality) : (a : Setoid) -> Rel (Vect n (U a)) 1

a.VectEquality xs ys = (i : Fin n) -> 2

a.equivalence.relation (index i xs) (index i ys) 3

VectSetoid : (n : Nat) -> (a : Setoid) -> Setoid 3

VectSetoid n a = MkSetoid (Vect n (U a)) 4

$ MkEquivalence 5

{ relation = (.VectEquality) a 6

, reflexive = \xs , i => 7

a.equivalence.reflexive _ 8

, symmetric = \xs,ys, prf , i => 9

a.equivalence.symmetric _ _ (prf i) 10

, transitive = \xs, ys, zs, prf1, prf2, i => 11

a.equivalence.transitive _ _ _ (prf1 i) (prf2 i) 12

} 13

VectMap : {a, b : Setoid} -> (a ~~> b) ~> 14

(VectSetoid n a ~~> VectSetoid n b) 15

VectMap = MkSetoidHomomorphism 16

(\f => MkSetoidHomomorphism 17

(\xs => map f.H xs) 18

$ \xs, ys, prf, i => CalcWith b $ 19

|~ index i (map f.H xs) 20

~~ f.H (index i xs) 21

.=.(indexNaturality _ _ _) 22

~~ f.H (index i ys) ...(f.homomorphic _ _ $ prf i) 23

~~ index i (map f.H ys) 24

.=<(indexNaturality _ _ _)) 25

$ \f,g,prf,xs,i => CalcWith b $ 26

|~ index i (map f.H xs) 27

~~ f.H (index i xs) .=.(indexNaturality _ _ _) 28

~~ g.H (index i xs) ...(prf _) 29

~~ index i (map g.H xs) .=<(indexNaturality _ _ _) 30

Fig. 16. (a) Quotient, function-space, and (b) vector setoids (top) and a higher-order homomorphism (bottom)

map f.H is a homomorphism (lines 19–25), and that (2) it maps extensionally equal homomorphisms

to extensionally equal homomorphisms (26–30). These proofs use Idris2’s equational reasoning

notation for setoids (lines 20–25 and 27–30), a deeply embedded chain of equational steps. Each

step ~~ appeals to transitivity, and requires a justification. The last two dots in the thought bubble

operator (...) modify the reason: plain usage (line 23) appeals to a setoid equivalence; an equals in

the middle dot, e.g. (.=.), appeals to reflexivity via propositional equality (lines 22, 25, 28, 30); and

a comparison symbol in the end, e.g. (.=<), appeals to symmetry (lines 25, 30).

C Proof Printing and Certification

Figure 17 presents the layered representation of linear derivations.

Fig. 18 shows an automatically extracted proof for the equation (𝑥 • 3) • 2 = 5 • 𝑥 in the additive

monoid structure (Nat, 0, (+)). The extracted proof has 24 steps — far from the shortest proof possible.

Extraction removes reflexivity and transitivity steps, and the pointed bracket tells whether the step
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data RTList : Rel a -> Rel a where

Nil : RTList r x x

(::) : {0 r : Rel a} -> {y : a}

-> r x y -> RTList r y z

-> RTList r x z

(a) reflexive-transitive closure

data Symmetrise : Rel a -> Rel a where

Fwd : {0 r : Rel a} -> r x y

-> Symmetrise r x y

Bwd : {0 r : Rel a} -> r x y

-> Symmetrise r y x

(b) symmetric closure

Derivation : (p : Presentation)

-> (a : PresetoidAlgebra

p.signature)

-> Rel (U a)

Derivation p a

= RTList -- Reflexive, Transitive

$ Symmetrise -- Symmetric

-- Congruence

$ Locate p.signature a.algebra

$ Step p a -- Axiomatic steps

(e) linear derivations

data Locate : (sig : Signature) -> (a : Algebra sig) ->

Rel (U a) -> Rel (U a) where

||| We prove the equality by invoking a rule at the

||| toplevel

Here : {0 r : Rel (U a)} -> r x y

-> Locate sig a r x y

||| We focus on a subterm `lhs` that may appear in

||| multiple locations and rewrite it to `rhs` using a

||| specific rule.

Cong : {0 r : Rel (U a)} ->

(t : Term sig (Maybe (U a))) ->

{lhs, rhs : U a} -> r lhs rhs ->

Locate sig a r (plug a t lhs) (plug a t rhs)

(c) unary congruence closure

data Step : (pres : Presentation)

-> (a : PresetoidAlgebra pres.signature)

-> Rel (U a) where

Include : {x, y : U a} -> a.relation x y

-> Step pres a x y

ByAxiom : {0 a : PresetoidAlgebra pres.signature}

-> (eq : Axiom pres)

-> (env : Fin (pres.axiom eq).support -> U a)

-> Step pres a

(a .bindTerm (pres.axiom eq).lhs env)

(a .bindTerm (pres.axiom eq).rhs env)

(d) axiomatic steps

Fig. 17. Layered (a–d) representation of linear derivations (e)

uses the axiom directly (angle points right) or using symmetry (angle points left). Square brackets

mean appealing to congruence, where the context is the congruence’s context, and the term in the

hole is the equation’s LHS. Fig. 19 shows an automatically extracted certificate for the equation

0 + (𝑥 + 0) + 0 = 𝑥 in a generic monoid m = (U m, O1, (.+.)). The certificate is generated inside a

module that parameterises over the generic monoid m and introduces the various notations and

reasoning functions.

D Modularity with Involutive Algebras

We recount Jacobs’s account, albeit in a more advanced categorical jargon, and use it to prove

a generic representation theorem for involutive frals and frexes. We don’t use this development

elsewhere in this manuscript.

XX

𝜈
𝑋

𝜈𝑋

=

Jacobs appeals to the Baez-Dolan microcosm principle [Baez and Dolan

1998] — an algebraic structure on an object requires a compatible structure

on its category of context—and defines the following concepts. An involutive
structure on a category C is a pair ((−), 𝜈) consisting of a functor (−) : C →
C, called the involution, and a natural isomorphism 𝜈 : (−) → −, called the involution law, satisfying
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(𝑥 •3) • [2] =
↑

⟨ Right neutrality ]

(𝑥 •3) •2• [𝜀]
⟨ Left neutrality ]

↓
= (𝑥 • [3]) •2•𝜀 •𝜀 =

↑
⟨ Right neutrality ]

(𝑥 •3• [𝜀]) •2•𝜀 •𝜀
⟨ Left neutrality ]

↓
= ( [𝑥] •3•𝜀 •𝜀) •2•𝜀 •𝜀 =

↑
⟨ Right neutrality ]

( [𝑥 •𝜀] •3•𝜀 •𝜀) •2•𝜀 •𝜀
⟨ Right neutrality ]

↓
= ( [(𝑥 •𝜀) •𝜀] •3•𝜀 •𝜀) •2•𝜀 •𝜀 =

↑
⟨ Left neutrality ]

(( [𝜀] • (𝑥 •𝜀) •𝜀) •3•𝜀 •𝜀) •2•𝜀 •𝜀
[ Evaluate ⟩

↓
=

[(0•(𝑥•𝜀)•𝜀)•3•𝜀•𝜀]•2•𝜀•𝜀 =
↑

⟨ Associativity ]

(0•[((𝑥•𝜀)•𝜀)•3•𝜀•𝜀])•2•𝜀•𝜀
[ Associativity ⟩

↓
= (0•[((𝑥•𝜀)•𝜀)•3]•𝜀•𝜀)•2•𝜀•𝜀 =

↑
[ Commutativity ⟩

(0•[(3•(𝑥•𝜀)•𝜀)•𝜀•𝜀])•2•𝜀•𝜀
⟨ Associativity ]

↓
= [0•3•((𝑥•𝜀)•𝜀)•𝜀•𝜀]•2•𝜀•𝜀 =

↑
[ Associativity ⟩

((0•3)•((𝑥•𝜀)•𝜀)•[𝜀•𝜀])•2•𝜀•𝜀
[ Left neutrality ⟩

↓
=

((0•3) • [(𝑥 •𝜀) •𝜀] •𝜀) •2•𝜀 •𝜀 =
↑

⟨ Associativity ]

((0•3) • (𝑥 • [𝜀 •𝜀]) •𝜀) •2•𝜀 •𝜀
[ Left neutrality ⟩

↓
= ( [0•3] • (𝑥 •𝜀) •𝜀) •2•𝜀 •𝜀 =

↑
[ Evaluate ⟩

(3 • (𝑥 • 𝜀) • 𝜀) • 2 • 𝜀 • 𝜀
⟨ Associativity ]

↓
= 3 • [((𝑥 • 𝜀) • 𝜀) • 2 • 𝜀 • 𝜀] =

↑
[ Associativity ⟩

3 • [((𝑥 • 𝜀) • 𝜀) • 2] • 𝜀 • 𝜀
[ Commutativity ⟩

↓
=

3 • [(2 • (𝑥 • 𝜀) • 𝜀) • 𝜀 • 𝜀] =
↑

⟨ Associativity ]

3 • 2 • ((𝑥 • 𝜀) • 𝜀) • 𝜀 • 𝜀
[ Associativity ⟩

↓
= (3 • 2) • ((𝑥 • 𝜀) • 𝜀) • [𝜀 • 𝜀] =

↑
[ Left neutrality ⟩

(3•2) • [(𝑥 •𝜀) •𝜀] •𝜀
⟨ Associativity ]

↓
= (3•2) • (𝑥 • [𝜀•𝜀]) •𝜀 =

↑
[ Left neutrality ⟩

[3•2] • (𝑥 •𝜀) •𝜀
[ Evaluate ⟩

↓
= 5• [(𝑥 •𝜀) •𝜀] =

↑
[ Right neutrality ⟩

5• [𝑥 •𝜀]
[ Right neutrality ⟩

↓
= 5•𝑥

Fig. 18. Frex-extracted proof of (𝑥 • 3) • 2 = 5 • 𝑥 in the additive monoid over Nat

the condition on the right. This definition is equivalent to Jacbos’s, but reverses the direction of the

involution law.

For example, each category has an involutive structure given by the identity functor as involution

and the identity natural transformation as the involutive law. This structure, which we call the

trivial involutive structure, may seem degenerate, but it plays an important role in our development.

The motivating example is Monoid, the category of monoids. It has the following non-trivial

involutive structure. Given a monoid a, construct another monoid a with the operation reversed:

a ⎜·⨆︁ (𝑥,𝑦) := a ⎜·⨆︁ (𝑦, 𝑥). If h : a → b is a monoid homomorphism, then the same underlying

function provides a monoid homomorphism h : a → b. These maps define an involution functor

(−) : Monoid → Monoid. The identity function is then a monoid isomorphism 𝜈 := (λ𝑥 .𝑥) : a → a,
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units : (x : U m) -> O1 .+. (x .+. O1) .+. O1 =~= x

units x = CalcWith (cast m) $

|~ O1 .+. (x .+. O1) .+. O1

~~ O1 .+. (O1 .+. x .+. O1) .+. O1

..<( Cong (\ focus => O2 :+: (focus :+: O2) :+: O2) $ lftNeutrality x )

~~ O1 .+. (O1 .+. (x .+. O1)) .+. O1

..<( Cong (\ focus => O2 :+: focus :+: O2) $ associativity O1 x O1 )

~~ O1 .+. O1 .+. (x .+. O1) .+. O1

...( Cong (\ focus => focus :+: O2) $ associativity O1 O1 (x .+. O1) )

~~ O1 .+. O1 .+. x .+. O1 .+. O1

...( Cong (\ focus => focus :+: O2) $ associativity (O1 .+. O1) x O1 )

~~ O1 .+. x .+. O1 .+. O1

...( Cong (\ focus => focus :+: Val x :+: O2 :+: O2) $ lftNeutrality O1 )

~~ O1 .+. x .+. (O1 .+. O1)

..<( associativity (O1 .+. x) O1 O1 )

~~ O1 .+. x .+. O1

...( Cong (\ focus => O2 :+: Val x :+: focus) $ lftNeutrality O1 )

~~ O1 .+. x

...( rgtNeutrality (O1 .+. x) )

~~ x

...( lftNeutrality x )

Fig. 19. Frex-certificate for the of 0 + (𝑥 + 0) + 0 = 𝑥 in a generic monoid m

the required involution law. We have similar involutive structures on other categories, given by

ordinary or commutative: semi-groups, monoids, groups, semirings and rings, and so on.

aa

a

h

h

𝜈 :=

λ𝑥 .𝑥

=

To see the microcosm principle in action, note that a function h : U a → U a makes

a monoid a into an involutive monoid if and only if (1) it is a monoid homomorphism

h : a → a, so h(x · y) = h y · h x, and (2) the diagram on the right commutes, so h(h x) = x.

These two conditions categorify the notion of an involutive monoid, so we can define

it in any involutive category, not just Monoid. Jacobs calls these self-conjugate objects, and we will

study them in more detail soon.

𝐹 X 𝐹 X 𝐹 X

𝐹𝑋 𝐹𝑋

𝐹𝜈 𝜈𝐹

𝜉
X 𝜉X=

Packaging this structure, an involutive category C = (Co, (−), 𝜈) is an
ordinary category Co equipped with an involutive structure ((−), 𝜈). An
involutive functor 𝐹 : B → C between involutive categories is a pair (𝐹o, 𝜉𝐹 )
consisting of an ordinary functor 𝐹o : Bo → Co and a natural transformation

𝜉𝐹 : 𝐹o (−) → 𝐹o (−) called its distributive law, satisfying the compatibility condition on the right.

Such distributive laws are natural isomorphisms.

The canonical example is the forgetful functor U : ModelT → Set from the category of models of

some presentation T to the category of sets and functions. This functor has an involutive functor

structure w.r.t. an involutive structure on ModelT , when the involution of an algebra only changes

the operations of the algebra, but not its carrier. Note the role that the trivial involutive structure

on Set plays. All the examples above of monoid varieties and the semi-ring varieties w.r.t. the

operation-reversal and trivial involutive structures have such involutive forgetful functors.

𝐹X 𝐺X

𝐺X𝐹X

𝛼X

𝛼X

𝜉𝐹 𝜉𝐺=

An involutive natural transformation 𝛼 : 𝐹 → 𝐺 between two involutive

functors is an ordinary natural transformation 𝛼 : 𝐹o → 𝐺o between their

underlying ordinary functors that moreover satisfies the condition on the right.
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As Jacobs comments, we therefore have a 2-category ICat consisting of involutive
categories, functors, and natural transformations, and we may derive involutive adjunctions as two

involutive functors and two involutive natural transformations satisfying the triangle laws.

We can turn an ordinary adjunction into an involutive one when one of the functors is involutive:

Proposition D.1. Let 𝐺 : A → C be an involutive functor, and 𝐹o ⊣ 𝐺o be a left-adjoint to
the ordinary functor underlying 𝐺 with unit 𝜂 and counit 𝜀. Set 𝜉𝐹X : 𝐹oX → 𝐹oX to be the mate of

the composite X
𝜂
−→ 𝐺o𝐹oX

(𝜉𝐺 )−1
−−−−−→ 𝐺o𝐹oX. Then (1) 𝜉𝐹 equips 𝐹o with an involutive functor structure

𝐹 : C → A; and (2) 𝐹 ⊣ 𝐺 is an involutive adjunction with unit 𝜂 and counit 𝜀.

As a consequence, the free model functors for models in which the forgetful functor is involutive

are all involutive adjunctions. This consequence covers our monoid and semi-ring varieties of

interest, namely ordinary and commutative semi-groups, monoids, groups, semi-rings and rings

with or without a unit. The distributive laws in these examples are given by the mate of the function:

λ𝑥 .𝜂𝑥 : X = X
𝜂=𝜂
−−−→ 𝑈𝐹 X

𝜉𝑈 =λ𝑡 .𝑡
−−−−−−→ 𝑈𝐹X. One might be tempted to think that the resulting distributive

law is the identity homomorphism, because the mate of the unit of an adjunction is the identity

function. It is not the case. When we take the mate, we take into account the algebra structure of

𝐹 X, which may change the interpretation of the operations, and consequently changes the resulting

mate homomorphism. For the non-trivial involutive structures over monoid and semi-ring varieties,

the distributive law will reverse the relevant binary operation.

aa

a

𝑗
𝑗

𝜈
=

A self-conjugate object a in an involutive category A is a pair (aobj, 𝑗a) consist-
ing of an object aobj in A, and an A-morphism 𝑗𝐴 : aobj → aobj, satisfying the

triangle on the right. As we saw on p. 33, self-conjugate monoids are involutive

monoids, and more generally, self-conjugate semi-groups, groups, semi-rings, rings,

etc. are the involutive ones. A homomorphism h : a → b of self-conjugate objects is a homomorphism

a b

ba

h

h

𝑗 𝑗=

h : aobj → bobj between their underlying objects that moreover satisfies the condition

on the left. This condition generalises the usual condition of involutive monoid

homomorphisms and so on. Since homomorphisms of self-conjugate objects compose

and contain the identities, they form a category which we denote by SCA. Jacobs

shows that the forgetful functor U : SC Set → Set has a left adjoint FSC : Set → SC Set sending
each set X to the coproduct of two copies of itself, i.e. by tagging each element with a boolean, and

the self-conjugation structure flips this boolean FSCX := ((Bool,X), λ(b, x).(¬b, x)).
It will pay-off immediately to include one more level of abstraction. Jacobs (Lemma 6) shows that

the SC -construction extends to a 2-functor SC : ICat → ICat. We recall the remaining structure.

The action on objects of ICat equips the category SCA with an involutive structure, sending each

self-conjugate object a to the self-conjugate object a := (aobj, 𝑗a : aobj → aobj). The action on the

SCA

SCC

A

C

U

U

𝐹SC 𝐹 =

morphisms of ICat, sends an involutive functor 𝐹 : B → C to the involutive

functor SC 𝐹 : SCB → SCC mapping each self-conjugate object a to the self-

conjugate object (𝐹oaobj, 𝑗SC 𝐹a : 𝐹oaobj
(𝜉𝐹 )−1
−−−−−→ 𝐹oaobj

𝐹o 𝑗a−−−−→), and acting as 𝐹o
on self-conjugate homomorphisms. The action on 2-cells sends each involutive

natural transformations to itself, i.e. a natural transformation between involutive functors also

preserves the resulting self-conjugated structure. The forgetful functor U : SCA → A is then

natural as on the left.

SCA

SCC A

C

U

UF
C
SC

𝐺

SC𝐺SC 𝐹

nat.

=

⊣

⊣
We profit off of this obscene level of abstraction immediately: 2-functors

preserve all 2-adjunctions, since they transport the triangle equalities to

the appropriate triangle equalities. Therefore, if we have an involutive

adjunction 𝐹 ⊣ 𝐺 : A → C where C has a free self-conjugate object
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adjunction FCSC ⊣ U : SCC → C, we get the free self-conjugate A-object on

X as the composite 𝐹 (FCSCX) completely structurally, as on the right. Applying

this result to frals, we get the following generalisation of Prop. 5.1(fral):

Proposition D.2. Let T be a presentation equipped with an involutive structure over ModelT and
an involutive forgetful functor structure. Let (A, Env) be any free T model over the product (Bool,X).
Then the following structure exhibits A as the free self-conjugate T -model over X:

𝑗A : A
𝜉−1

−−→ A
≫=(¬×id)
−−−−−−−−→ A

Env′ : X
λx.(False,x)
−−−−−−−−−−−→ (Bool,X) (≫=′ f) : A

≫=λ(b,x) .

𝑏 = True : 𝑗a (f x)
𝑏 = False : f x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ a

Having dealt with the fral, we turn to the frex. Jacobs proves that if (a1+a2, 𝜄1, 𝜄2) is a coproduct of a1
and a2 in an involutive category, then (a1 + a2, 𝜄1, 𝜄2) is a coproduct of a1 and a2. The unique cotupling

morphism in the universal property, for each h𝑖 : a𝑖 → b, is [h1, h2] : a1 + a2
[h1◦𝜈−1,h2◦𝜈−1 ]−−−−−−−−−−−−→ b

𝜈−→ b. If

each a𝑖 has a self-conjugate structure 𝑗𝑖 : a𝑖 → a𝑖 , then the coproduct a1 + a2 has a self-conjugate

structure given by 𝑗1 + 𝑗2 := [𝜄1 ◦ 𝑗1, 𝜄2 ◦ 𝑗2] : a1 + a2 → a1 + a2. Since the frex a[X] can be construct

as the coproduct of the model a with the fral on X, we generalise Prop. 5.1(frex):

Proposition D.3. Let T be a presentation equipped with an involutive structure over ModelT
and an involutive forgetful functor structure, and a be a self-conjugate T -model. Let (A, Var, Embed) be
any T -frex of aobj by the product (Bool,X). Then the following structure exhibits A as the frex of the
self-conjugate T -model a by X, for h : a → c involutive monoid homomorphism and function e : X → c:

𝑗 : A

[
aobj

𝜈−1−−→ aobj
𝑗a−−→ a

Embed−−−−−→ A, (Bool,X)
¬×id−−−−→ (Bool,X)

Var−−−→ U A
𝜉−1

−−→ U A

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A

𝜈−→ A

Var
′
: X

λx.(False,x)
−−−−−−−−−−−→ (Bool,X)

Var−−−→ A Embed : aobj
Embed−−−−−→ A

[h, e] : A

ℎ, λ(b,𝑥).
{
b = True : 𝑗c (e x)
b = False : (e x)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c

Frex does not yet implement this proposition in its full generality, since it would require a

substantial amount of additional infrastructure, either inside Frex or as part of a category-theory

library for Idris2. For example, the type of the construction requires a categorical equivalence

between some ModelT ′
for the presentation T ′

of involutive T -models and the self-conjugate

T -models. Frex currently only implements the special case of Prop. 5.1, with its specialised proof.
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