
155

flap: A Deterministic Parser with Fused Lexing

JEREMY YALLOP, University of Cambridge, UK

NINGNING XIE, University of Toronto, Canada

NEEL KRISHNASWAMI, University of Cambridge, UK

Lexers and parsers are typically defined separately and connected by a token stream. This separate definition

is important for modularity and reduces the potential for parsing ambiguity. However, materializing tokens as

data structures and case-switching on tokens comes with a cost.

We show how to fuse separately-defined lexers and parsers, drastically improving performance without

compromising modularity or increasing ambiguity. We propose a deterministic variant of Greibach Normal

Form that ensures deterministic parsing with a single token of lookahead and makes fusion strikingly simple,

and prove that normalizing context free expressions into the deterministic normal form is semantics-preserving.

Our staged parser combinator library, flap, provides a standard interface, but generates specialized token-free

code that runs two to six times faster than ocamlyacc on a range of benchmarks.

CCS Concepts: • Software and its engineering → Parsers; Software performance; • Theory of compu-

tation → Parsing.

Additional Key Words and Phrases: parsing, lexing, multi-stage programming, optimization, fusion

ACM Reference Format:

Jeremy Yallop, Ningning Xie, and Neel Krishnaswami. 2023. flap: A Deterministic Parser with Fused Lexing.

Proc. ACM Program. Lang. 7, PLDI, Article 155 (June 2023), 24 pages. https://doi.org/10.1145/3591269

1 INTRODUCTION

Software systems are easiest to understand when their components have clear interfaces that hide
internal details. For example, a typical compiler uses a separate lexer and parser to reduce parsing
ambiguity [Aho et al. 2007], and connects the two components via a token stream.

Unfortunately, hiding internal details can also reduce optimization opportunities. For parsers, the
token stream interface isolates parser definitions from character syntax details like whitespace, but
it also carries overheads that reduce parsing speed. Parsers built for efficiency avoid backtracking
and typically need only one token at any time. However, even in this case, materializing tokens as
data structures and case-switching on tokens comes with a cost.
In this paper, we present the following contributions:

• We present a transformation that significantly improves parsing performance by fusing together
a separately-defined lexer and a parser, entirely eliminating tokens.
(1) We propose DGNF, a Deterministic variant of Greibach Normal Form [Greibach 1965] that

ensures deterministic parsing with a single token of lookahead, allowing tokens to be
discarded immediately after inspection (§2.5).

Authors’ addresses: Jeremy Yallop, University of Cambridge, UK, jeremy.yallop@cl.cam.ac.uk; Ningning Xie, University of

Toronto, Canada, ningningxie@cs.toronto.edu; Neel Krishnaswami, University of Cambridge, UK, Neel.Krishnaswami@cl.

cam.ac.uk.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART155

https://doi.org/10.1145/3591269

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3591269
https://doi.org/10.1145/3591269

155:2 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

parser first-order typed normalized (§3)

lexer specialized (§2.7)

fused (§4) staged (§5.4)

Krishnaswami and Yallop [2019]

Owens et al. [2009]

flap

Fig. 1. Architecture of flap

(2) We formalize a normalization process that elaborates context-free expressions into DGNF,
and prove that the elaboration is well-defined and preserves semantics (§3).

(3) We present lexer-parser fusion, which transforms a separately-defined lexer and normalized

parser into a single piece of code that is specialized for calling contexts, avoids materializing
tokens, and branches only on individual characters, not intermediate structures (§4).

• We implement the transformation in a parser combinator library, flap (fused lexing and

parsing) (§5). The lexer and parser are built using standard tools: derivative-based lexers
by Owens et al. [2009]) and typed parser combinators by Krishnaswami and Yallop [2019].

• We demonstrate the effect of our transformation: flap produces efficient code that runs several
times faster than code produced by standard tools such as ocamllex and menhir (§6).

We survey related work in §7 and set out some directions for further development in §8.
Fig. 1 presents the novel code generation architecture of flap. The reader is advised to refer back

to this figure while reading the rest of the article, as what it depicts will gradually come to make
sense. The appendix included in the extended version of the paper [Yallop et al. 2023b] includes
proofs for the lemmas in the paper.

2 OVERVIEW

2.1 Background: Parser Combinators and Typed Context-Free Expressions

Parser combinators, introduced almost four decades ago by Wadler [1985], provide an elegant
way to define parsers using functions. A parser combinator library provides functions denoting
token-matching, sequencing, recursion, and so on, allowing the library user to describe a parser by
combining these functions in a way that reflects the structure of the corresponding grammar. Here
is a partial interface for constructing parsers (type pa) in this way:

type 'a pa

val tok: 'a tok → 'a pa

val (>>>): 'a pa → 'b pa → ('a * 'b) pa

val fix: ('a pa → 'a pa) → 'a pa

(* token match *)

(* sequence *)

(* recursion *)

The parameterization of pa allows parsers to construct and return suitably-typed syntax trees.
The earliest parser combinator libraries represented nondeterministic parsers, with support

for arbitrary backtracking and multiple results. However, although they enjoyed various pleasant
properties (such as a rich equational theory), they suffered from potentially disastrous performance.
In a recent departure from the nondeterministic tradition, Krishnaswami and Yallop [2019] define
typed context-free expressions, whose types track properties of languages. Their design provides the
standard set of parser combinators (as defined above), but adds an additional type-checking step to
preclude nondeterminism and ensure linear-time parsing using a single token of lookahead.

Fig. 2 shows the typing rules from Krishnaswami and Yallop [2019], and we direct the reader to
the original paper for more detailed explanations. The definition for context-free expressions (CFE)
6 is standard: ⊥ for the empty language, n for the language containing only the empty string, C for
the language containing only the single-token string C , variables U , sequences 61 ·62, unions 61 ∨62,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:3

Context-free expression 6 F n | C | ⊥ | U | 61 · 62 | 61 ∨ 62 | `U : g . 6

Types g ∈ {Null : 2; First : P(Σ); FLast : P(Σ)}

Contexts Γ,Δ F • | Γ, U : g

gn = {Null = true; First = ∅; FLast = ∅}

gC = {Null = false; First = {C}; FLast = ∅}

g⊥ = {Null = false; First = ∅; FLast = ∅}

g1 · g2 =

Null = g1 .Null ∧ g2 .Null

First = g1 .First ∪ g1 .Null ?g2 .First

FLast = g2 .FLast ∪ g2 .Null ? (g2 .First ∪ g1 .FLast)

g1 ∨ g2 =

Null = g1 .Null ∨ g2 .Null

First = g1 .First ∪ g2 .First

FLast = g1 .FLast ∪ g2 .FLast

g1 ⊛ g2
def
= g1 .FLast ∩ g2 .First = ∅ ∧ ¬g1 .Null

g1 # g2
def
= (g1 .First ∩ g2 .First = ∅) ∧ ¬(g1 .Null ∧ g2 .Null)

1 ? (
def
= if 1 then (else ∅

Γ;Δ ⊢ n : gn Γ;Δ ⊢ C : gC

Γ;Δ ⊢ ⊥ : g⊥

U : g ∈ Γ

Γ;Δ ⊢ U : g

Γ;Δ, U : g ⊢ 6 : g

Γ;Δ ⊢ `U : g . 6 : g

Γ;Δ ⊢ 61 : g1 Γ,Δ; • ⊢ 62 : g2 g1 ⊛ g2

Γ;Δ ⊢ 61 · 62 : g1 · g2

Γ;Δ ⊢ 61 : g1 Γ;Δ ⊢ 62 : g2 g1 # g2

Γ;Δ ⊢ 61 ∨ 62 : g1 ∨ g2

Fig. 2. Krishnaswami and Yallop’s type system for context-free expressions

and the least fixed point operator `U : g .6. A type is a triple recording Nullability, the First set,
and the FLast set. Intuitively, a type is an overapproximation of the properties of a language. That
is, a language ! satisfies a type g , if the following is true: (1) when the empty string is in !, g .Null
is true; (2) the set of tokens that can start any string in ! is a subset of g .First; (3) the set of tokens
which can follow the last token of a string in ! is a subset of g .FLast1.

There is one typing rule for each combinator, whose types are constructed using corresponding
combinators (e.g. g1 · g2). The two contexts Γ and Δ restrict where variables can occur, disallowing
left recursion. Specifically, when typing `U : g . 6, the variable U is added to Δ. But a variable U is
well-typed only if (U : g) ∈ Γ. The trick is that when typing 61 · 62, Δ is appended to Γ, where
the separability side condition g1 ⊛ g2 ensures that 61 cannot be empty, so that 62 can now use U .
Additionally, g1 ⊛ g2 also says that g1 .FLast is disjoint with g2 .First, ensuring strings matched by
sequenced parsers have a unique decomposition. Moreover, the side condition apartness g1 # g2 on
the rule for 61 ∨ 62 ensures that languages matched by alternated parsers do not overlap.

2.2 Overhead of Separate Lexing and Parsing

These typing rules ensure that well-typed expressions have good asymptotic performance, support-
ing linear-time parsing with a single token of lookahead. However, even linear-time parsers can be
inefficient, using significant resources at each parsing step. Some parsing algorithms examine state
dispatch tables to determine what actions to take; similarly, Krishnaswami and Yallop’s system
examines the types of context-free expressions to select branches. To avoid this overhead, Krish-
naswami and Yallop apply multi-stage programming to eliminate dispatch on type information,
generating type-specialized parsing code that has performance competitive with ocamlyacc.
However, even with these improvements, parsing still caries considerable overhead. The main

source of inefficiency is the interface between the lexer and the parser. In a typical system, a

1FLast sets, originally introduced by Brüggemann-Klein and Wood [1992], are used as a alternative to the Follow set

traditionally used in LL(1) parsing. FLast is compositional, so Krishnaswami and Yallop [2019] can calculate larger types

from smaller ones. In contrast, Follow is the set of tokens following a particular nonterminal, and so is a property of a

grammar rather than of a language. In practice, the typed parser combinators accept languages very close to LL(1); there are

some differences that only seem to show up in contrived examples.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:4 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

lexer materializes each token it recognizes, then the parser branches on that token to select an
action. This approach is clearly inefficient: information about which token has been recognized was
available at the point that the token was created, then discarded and recovered via branching. Just
how inefficient it is becomes apparent when we eliminate the materialization of tokens. §6 shows
that flap’s fused lexer and parser, in which tokens are not materialized, outperforms the unfused
implementation by 2 to 7 times — that is, the overhead of token materialization and associated
branching accounts for the majority of parsing time.

2.3 Our Proposal: A Deterministic Parser with Fused Lexing

In this work, we take a systematic approach to fusing a lexer and a deterministic parser. We
demonstrate our approach with flap, a parser combinator library that fuses

(1) a lexer based on derivatives of regular expressions (regexes) [Owens et al. 2009], and
(2) parser combinators for typed context free expressions (§2.1) [Krishnaswami and Yallop 2019].

Lexer-parser fusion is not inherently limited to this particular combination; it extends to other
lexers for regexes and other deterministic parsers. In this paper, flap is restricted to LL(1) grammars,
and we leave it as future work to apply flap to real programming languages (e.g. Python), and to
adapt the fusion strategy to other grammars such as LR and other practical programming languages.

For flap, the characteristic properties of derivatives and typed CFEs make our implementation
straightforward. First, derivatives make it straightforward to build compact deterministic automata
that implement regex matchers. Specifically, the derivative [Brzozowski 1964] of a regex A with
respect to a character 2 is another regex m2 A that matches B exactly when A matches 2 · B . Therefore,
one way to construct an automaton is to take regexes A as states, with a transition from A8 to A 9 via
character 2 whenever m2 A8 = A 9 . As Owens et al. [2009] show, lexers based on derivatives provide a
practical basis for real-world lexing tools such as ml-ulex and the PLT Scheme scanner generator.
We direct the reader to their work for the details about derivative-based lexers that we omit here.

Second, the types in typed context-free expressions correspond to syntactic constraints in a
normal form, DGNF (§3), that serves as a basis for lexer-parser fusion. Since every well-typed
context free expression normalizes to DGNF, we can provide the same parser combinator interface
as Krishnaswami and Yallop, but with a significantly more efficient implementation (§6).

The running example. The following sections illustrate flap’s key ideas through a running
example shown in Fig. 3. Fig. 3a presents the grammars that will be introduced and used throughout
this section, with colors to help distinguish different grammars for better clarify.

2.4 Example: The Lexer and Parser for S-Expressions

Consider defining a lexer and a parser for s-expressions (sexps) representing tree-structured data.
Sexps are either (1) atoms, or (2) a possibly-empty lists of sexps enclosed in parentheses ′(′ sexps ′) ′.

Lexer. We start with the lexer. Fig. 3a defines the syntax for regexes A and lexers !. Regexes
A include ⊥ for nothing , n for the empty string, characters 2 , sequencing A · B , alternation A | B ,
Kleene star A∗, intersection A & B , and negation ¬A . A lexer ! is a mapping2 from regexes to actions,
where an action might return a token (r ⇒ Return C), invoke the lexer recursively to skip over
some input r ⇒ Skip, or raise an error otherwise. Our example sexp lexer (Fig. 3b) has four actions:
three return tokens atom, lpar and rpar, and one skips whitespace.

Parser. Fig. 3a repeats the definition of CFE from §2.1. Fig. 3c gives a well-typed sexp grammar
that matches sequences of tokens. For simplicity, we often omit g in `U : g . 6.

2We canonicalize lexers (§4) so there is no overlap between rules.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:5

regular expression A F ⊥ | n | 2 | A · B | (A | B) | A∗ | (A & B) | ¬A

lexer ! F { r ⇒ Return C } ∪ { r ⇒ Skip }

context-free expression 6 F ⊥ | n | C | U | 61 · 62 | 61 ∨ 62 | `U : g . 6

DGNF grammar � F {= → C = } ∪ {= → n }

fused grammar � F {= → r = } ∪ {= →?A }

(a) Syntax of lexers, forms, and grammars in flap

id ⇒ Return atom

space ⇒ Skip

(⇒ Return lpar

) ⇒ Return rpar

id
def
= [a-z]+

space
def
= ␣ | \n

(b) A s-expression lexer (2.4)

(b)

(c) (d)

(e)

normalizing

fusing

` sexp . (lpar · (` sexps . n ∨ (sexp · sexps)) · rpar) ∨ atom

sexp ::= lpar sexps rpar 1

| atom 2

sexps ::= sexp sexps 3

| n 4

(c) A well-typed s-expression grammar (top), and its BNF form (bo�om) (2.1 & 2.4)

sexp ::= lpar sexps rpar
| atom

rpar ::= rpar sexps ::= lpar sexps rpar sexps
| atom sexps
| n

(d) An s-expression DGNF grammar, wri�en in BNF form (2.5 & 2.6)

id ⇒ Return atom

space ⇒ Skip

(⇒ Return lpar

) ⇒ Return rpar

sexp ::= (sexps rpar
| id
| space sexp

id ⇒ Return atom

space ⇒ Skip

(⇒ Return lpar

) ⇒ Return rpar

rpar ::=)

| space rpar

id ⇒ Return atom

space ⇒ Skip

(⇒ Return lpar

) ⇒ Return rpar

sexps ::= (sexps rpar sexps
| id sexps
| space sexps
| ?¬

(
id | space | (

)

(e) Fusing drops lexing rules that return non-matchable tokens (top); the fused s-expr grammar (bo�om) (2.7)

Fig. 3. flap running example: s-expression lexing and parsing. Grammars are wri�en in BNF form.

The bottom of Fig. 3c shows the BNF form of the grammar to help understanding. Intuitively,
sexp stands for s-expressions, and sexps stands for lists of s-expressions. That is, sexp is either a
lpar token followed by a list of s-expressions sexps and a rpar token, or an atom token; and sexps
is either empty (n), or a sexp followed by another list of s-expressions (sexp sexps).
The rest of this section will show how to fuse the lexer and parser. First, however, we need to

present DGNF grammars.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:6 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

2.5 Deterministic Parsing with DGNF

To motivate DGNF, we consider how to parse with the s-expression grammar in Fig. 3c. Linear
time, one-token-lookahead, deterministic parsing requires committing to a particular branch after
examining each token. However the grammar in Fig. 3c does not make it clear how to select
branches by examining a single token.

For example, when parsing sexps when the first token matches lpar, it is not immediately clear
from the productions for sexps whether to pursue production 3 or production 4 . Deterministic
parsing systems improve this situation by analysing the grammar beforehand to calculate the
branches that correspond to particular input tokens. In Krishnaswami and Yallop’s case, the analysis
takes the form of type inference. Each CFE is annotated with a type whose First set indicates
which tokens can appear at the beginning of the strings in the corresponding language. Their
parsing algorithm then examines First sets to select branches. Using multi-stage programming,
they then improve efficiency by ensuring that First sets are only examined during analysis, not
during parsing itself.
In this work we take a different approach, transforming the grammar into a form in which the

branch to take at each point is syntactically manifest. We call this form Deterministic Greibach

Normal Form (DGNF), since it is a deterministic variant of GNF [Greibach 1965]. Fig. 3a shows the
syntax for DGNF grammars. A DGNF grammar � is a set of productions that map nonterminals to
normal forms, where all productions are either of form = → C = or = → n , where = is a nonterminal,
C is a terminal, and = denotes =1=2 . . . =: (: ≥ 0). Moreover, a DGNF grammar must also satisfy
the following constraints (the formal definition of DGNF is given later in §3.2). First, for any pair
of a nonterminal = and a terminal C , there is at most one production beginning = → C=1=2 . . . =: .
Second, the n-production may only be used when no terminal symbol in the non-n productions
matches the input string.
Intuitively speaking, the constraints on the DGNF grammar are a syntactic analogue of the

constraints enforced by the types in the typed CFEs. The constraints have a simple practical
motivation in parsers. That is, each = → C=1=2 · · ·=: production represents one branch that matches
a distinct terminal C , and n-productions represent an else branch that is taken if none of the active
productive branches matches the input. With those constraints, it is evident that DGNF ensures
deterministic parsing with a single token of lookahead, and branching (except for n-productions)
always consumes tokens immediately.

Examples. We consider a few examples. For readability, we write the grammar in BNF form,
e.g. = ::= a=1=2 | b corresponds to = → a=1=2 and = → b.

(1) = ::= a=1=2
| b

=1 ::= c

=2 ::= e

(2) = ::= ab=1
=1 ::= c

(3) = ::= a=1
| a=2

=1 ::= c

=2 ::= e

(4) = ::= a=1=2
=1 ::= c

| n

=2 ::= c

Here (1) is in DGNF, while (2) (3) (4) are not. The reasons why (2) (3) are not are obvious: In (2), =
starts with two terminals; in (3), = has two productions starting with a.
(4) is the most subtle case. Consider matching = with ac. First, = expands to a=1=2. But should

=1 then expand to c or n? In a general nondeterministic grammar, it is impossible to tell simply by
looking ahead at the next token c: we may first consider =1 → c and, finding that =2 fails to match,
backtrack to the other branch to consider =1 → n and =2 → c and succeed. However, the second
constraint on DGNF grammars eliminates this choice: only =1 → c applies, and so the grammar
does not match ac. As we will see, the formal definition of DGNF (§3.2) rules out (4) as a DGNF
grammar, ensuring that parsing is deterministic. As the examples demonstrate, DGNF ensures that
there is never any ambiguity about whether a production rule applies during parsing.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:7

Fig. 3c is obviously not a DGNF grammar. So next, we discuss a normalization algorithm that
normalizes a context-free expression into a DGNF grammar.

2.6 Normalizing Context-Free Expressions to DGNF Grammars

We formalize a normalization algorithm (§3) which takes a context-free expression, traverses its
structure and turns it into a DGNF grammar. As an example, Fig. 3d presents the DGNF grammar
of normalizing the s-expression grammar in 3c. This example illustrates several points.

First, the normalized DGNF presentation addresses the problem of repeated branching discussed
in the last section. In particular, parsing sexps involves reading the next token and branching to the
first, second or third branch depending on whether the token is lpar, atom or something else. In
the first two cases the token is consumed immediately, and parsing moves on to the next token in
the input. Only in the last case is the token examined more than once: after selecting the n branch
that does not consume it, the token is retained until it selects a non-n branch that does.
Second, while in this case it seems straightforward to check that the normalized grammar (3d)

represents exactly the same language as the original context-free expression (3c), establishing
correctness properties for normalization is generally difficult. A particularly challenging case is
when normalizing a fixed point `U. 6. In such case, although we do not yet know the normalized
grammar for U , we must proceed with normalizing 6 regardless. Therefore, it is necessary to “tie
the knot” when the result of normalizing 6 becomes available, which requires us to introduce an
intermediate non-DGNF grammar form = → U =, causing extra complication and subtleties during
normalization. We detail the normalization process and its correctness proofs in §3.

Lastly, in what cases do we know that normalization will produce DGNF grammars? For example,
it’d be difficult (if not impossible) to normalize an ambiguous grammar. Fortunately, typed context-
free expressions give us enough guarantee: we prove that if a context free expression is well-typed,
then the normalization will always produce a DGNF grammar. This is done by showing that DGNF
indeed captures the constraints enforced by types in the typed context free expressions system.

2.7 Lexer-Parser Fusion

Now that we have the lexer, and the normalized parser, we can apply the lexer-parser fusion. Fig. 3a
defines the syntax of fused grammars. The fused grammar � is a set of productions, where each
production maps a nonterminal to either a regex followed by a list of nonterminals = → A =, or a
single-token lookahead = →?A that matches but not consumes tokens by A .
Fusion acts on a lexer and a normalized parser, connected via tokens, and produces a grammar

that is entirely token-free, in which the only branches involve inspecting individual characters.
Fig. 3e fuses the s-expression lexer (3b) and the normalized parser (3d), following the steps:

(1) As the first step, fusion implicitly specializes the lexer to each nonterminal = in the normalized
grammar, and lexing rules that return tokens not in productions for the nonterminal = are
discarded, except for skip rules, since skipped characters can precede any token.
Example (3e top): rpar has only a single production, which begins with the terminal rpar. We
look at the lexing rules, and discard those rules that do not return rpar, but keep the skip rule.

(2) Then, the algorithm fuses the lexing rules and the parsing rules, by substituting the tokens in
the parsing rules by regexes in the lexing rules that return corresponding tokens. Moreover,
skip rules generate extra productions that match an arbitrary number of skipped characters.
Example (3e bottom): the fused rpar has two branches. The first branch fuses lexing and parsing,
by having the original token rpar replaced with the regex). The second branch corresponds
to the skip rule in the lexer, allowing rpar to match an arbitrary number of spaces. Observe
how rpar now directly matches on characters, without referring to any tokens.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:8 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

(3) For each n-production, fusion generates a lookahead rule consisting of the complement of the
regexes that appear at the start of the right hand side of the other productions.
Example (3e bottom): when fusing sexps, the n-production sexps → n has been replaced with a
lookahead rule sexp →?¬

(
id | space | (

)
.

Fig. 3e presents the complete result of fusing the s-expression lexer and normalized grammar
following the fusion steps described above.

Crucially, note how the representation of DGNF grammar allows fusion to be defined so concisely
– it would be more difficult to fuse the original CFE (3c) with the lexer. With DGNF grammars, the
constraints on the positions of terminals make it straightforward to fuse the lexing rules into the
grammar without disrupting its structure. Additionally, the fused grammar inherits the properties
of DGNF: the productions of a nonterminal start with distinct regexes, and an optional lookahead
rule may only be used when no regexes in other productions match the input string.

2.8 Staging

In the last step, flap uses MetaOCaml’s staging facilities to generate code for the fused grammar.
Parsing with staging is very common, and various systems use some form of staging; for example,
ocamlyacc computes parsing tables once in advance, not repeatedly during parsing.
The staging step in flap generates one function for each parser state (i.e. for each pair of a

nonterminal and a regex vector), following a parsing algorithm with fused grammars, but elimi-
nating information that is statically known, such as the nullability and derivatives of the regexes
associated with each state. The DGNF representation used in flap also makes staging compara-
tively straightforward: flap does not involve sophisticated optimization techniques such as the
binding-time improvements, Furthermore, flap does not rely on compiler optimizations to further
simplify the code it generates; instead, it directly generates efficient code, containing no indirect
calls, no higher-order functions and no allocation, except where these elements are inserted by
the user of flap in semantic actions. §5 presents the algorithm underlying flap’s staged parsing
implementation in more detail.

3 NORMALIZING CONTEXT-FREE EXPRESSIONS

This section presents a normalization algorithm that transforms context-free expressions into DGNF
grammars. The normalization sets the basis for follow-up optimizations of fusion and staging.

3.1 Normalization to DGNF

Fig. 4 presents the syntax for normal forms and the normalization algorithm.
The normal form grammar � maps nonterminals to the normal forms. Note the difference from

the DGNF grammar � : � includes an extra non-DGNF form = → U =, which makes � a superset
of � . As discussed in §2.6, this non-DGNF form is necessary for normalizing fixpoints, where U
is interpreted as a special kind of nonterminal. As a nonterminal, U itself may appear as part of a
C = (e.g. C U). We show later that U = is an intermediate form that is entirely eliminated in the final
result, turning the grammar into DGNF. We will mostly use � in this section.

The key to normalization is the normalization functionNJ6 K that normalizes6 and yields= ⇒ � ,
with a distinguished start nonterminal = and a normalized grammar� . There are seven cases for the
seven context-free expression constructors, and each case involves allocating a fresh nonterminal (=
or U) to use as the start symbol. The cases with sub-expressions (61 ·62, 61∨62 and `U. 6) are defined
compositionally in terms of the normalization of those sub-expressions. Since normalization simply
merges together all the production sets resulting from sub-expressions, the situation frequently

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:9

normal form # F n | C = | U =

normal form grammar � F {= → # }

DGNF grammar � F {= → C = } ∪ {= → n }

NJ6 K returns = ⇒ � , with a grammar � and the start nonterminal =
Each rule allocates a fresh nonterminal =, except for rule (fix), which allocates a fresh U

(epsilon) NJ n K = = ⇒ {= → n }

(token) NJ C K = = ⇒ {= → C }

(bot) NJ⊥ K = = ⇒ ∅

(seq) NJ61 · 62 K = = ⇒ {= → # 1 =2 | =1 → # 1 ∈ �1 } ∪�1 ∪�2

where NJ61 K = =1 ⇒ �1 ∧ NJ62 K = =2 ⇒ �2

(alt) NJ61 ∨ 62 K = = ⇒ {= → # 1 | =1 → # 1 ∈ �1 }

∪ {= → # 2 | =2 → # 2 ∈ �2 } ∪�1 ∪�2

where NJ61 K = =1 ⇒ �1 ∧ NJ62 K = =2 ⇒ �2

(fix) NJ `U. 6 K = U ⇒ { U → # | = → # ∈ � } 1

∪ {=′ → # =′ | =′ → U =′ ∈ � ∧ = → # ∈ � } 2

∪ �\=′→U =′ 3

where NJ6 K = = ⇒ �

�\=′→U =′ is � with all =′ → U =′ removed for any =′ and =′

(var) NJU K = = ⇒ {= → U }

Fig. 4. Normalization of well-typed context-free expressions.

arises where some productions are not reachable from the start symbol; the definition here ignores
this issue, since it is easy to trim unreachable productions in the implementation.

Rules (epsilon), (token), and (bot) are straightforward. For each of n and C , normalization produces a
grammar with a single production whose right-hand side is n or C respectively. For ⊥, normalization
produces an empty grammar, with a start symbol and no productions.

Normalization of 61 ·62 (rule (seq)) is defined compositionally in terms of the normalization of 61
and 62, which produces start symbols =1 and =2 respectively. We then want = → =1 =2, i.e.:

(seq1) NJ61 · 62 K = = ⇒ {= → =1 =2} ∪�1 ∪�2 where NJ6i K = =i ⇒ � i, 8 = 1, 2

However, while this is semantically correct, = → =1 =2 is not in normal form. Therefore, rule (seq)
instead copies each production # 1 of =1, appending to each the start symbol =2, producing # 1 =2.
Rule (alt) is similar, with normalization merging the productions for the start symbols =1 of 61 and
=2 of 62 into the productions for the new start symbol =.

Finally, rules (fix) and (var) deal with the binding fixed point operator `U. 6 and with bound
variables U . In rule (fix), we assume we can always rename bound variables to avoid clashes.
Normalizing `U. 6 takes place in two stages. First, the body 6 is normalized, yielding a start symbol
=. Then, according to the semantics of fixed point, we should proceed to tie the knot by producing
U → = and return U as the start symbol. That is:

(fix1) NJ `U. 6 K = U ⇒ {U → =} ∪� where NJ6 K = = ⇒ �

However, U → = is not in normal form so, as with (seq), we instead copy the productions for = into
the rules for U :

(fix2) NJ `U. 6 K = U ⇒ {U → # | = → # ∈ �} ∪� where NJ6 K = = ⇒ �

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:10 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

NJlparK = · · ·

· · ·

NJ` ss . n ∨ s · ss K = ss ⇒ { ss → n, ss → s ss }

NJlpar · (` ss . n ∨ s · ss)K = =1 ⇒ { =1 → lpar ss , ss → n, ss → s ss } NJrparK = · · ·

NJlpar · (` ss . n ∨ s · ss) · rparK = =2 ⇒ { =2 → lpar ss rpar , ss → n, ss → s ss, rpar → rpar } NJatomK = · · ·

NJ(lpar · (` ss . n ∨ s · ss) · rpar) ∨ atomK = =3 ⇒ { =3 → lpar ss rpar , =3 → atom , ss → n, ss → s ss, rpar → rpar }

NJ6K = s ⇒ { s → lpar ss rpar , s → atom , ss → n, ss → lpar ss rpar ss , ss → atom ss , rpar → rpar }

Fig. 5. Normalizing s-expression 6 = ` s .(lpar · (` ss . n ∨ s · ss) · rpar) ∨ atom

But there is some extra work. In particular, productions in � might start with U (e.g. =′ → U =′).
While such form is allowed by the syntax of # , our ultimate goal is to get rid of it and turn the
productions into DGNF. Now that we learn the rules of U , we can look up and substitute in �
all productions that start with U . For example, if U → b and =′ → U =, then after substitution we
have =′ → b =. Note that U , as a special kind of nonterminal, may still appear in the middle of a
production; for example, =′ → C U won’t get substituted. Performing the substitution would not be
correct: if U → b, then after substitution =′ → Cb is not in DGNF.
Rule (fix) in Fig. 4 presents the final form of normalizing a fixed point. 1 first copies the

productions for = into the rules for U , then 2 substitutes in � all productions that start with U ,
and 3 finally adds back all productions in � that do not start with U . As we will see, rule (fix)
effectively guarantees that normalizing closed context-free expressions produces DGNF.

Lastly, rule (var) creates the singleton production = → U . Combining (fix) with (var), normaliza-
tion treats U as a placeholder for the productions denoted by the fixed point. Once U is known, it is
replaced with its productions if necessary (as in rule (fix)). It is tempting to return U ⇒ ∅ with U as
a start symbol and no productions, but that is incorrect: U ⇒ ∅ means an empty grammar.

Example. Fig. 5 presents a simplified normalization derivation for the grammar in Fig. 3c:

6 = ` s .(lpar · (` ss . n ∨ s · ss) · rpar) ∨ atom

For space reasons, we write s for sexp, and ss for sexps. We highlight new productions generated
during derivation in light gray, and omit some details via · · · for space reasons and also since
normalizing tokens is straightforward; the complete derivation tree is given in the appendix in
the extended version of the paper. Of particular interest is the last step, which normalizes a fixed
point. In this case, s is used as the variable bound by the fixed point, and we have a non-DGNF
production ss → s ss. First, s copies all productions from =3. Then, since ss → s ss starts with s, it
expands to two productions where s is replaced by its two normal forms respectively.

3.2 Semantics of DGNF

Recall that §2.5 gave a high-level description of DGNF. This section defines the formal semantics of
DGNF. We start with the expansion relation:

Definition 1 (Expansion (� ⊢{)). Given a grammar � , we define the expansion relation by (1)

(Base) � ⊢ = { =; (2) (Step) if � ⊢ = { C =1 = and (=1 → # ∈ �), then � ⊢ = { C # =. We write

� ⊢ = { F when = expands to a complete wordF .

The expansion relation essentially captures what a nonterminal can expand to. For example, if
= → b =1 ∈ � and =1 → c ∈ � , then � ⊢ = { bc. We enforce a left-to-right expansion order for
clarity and to stay close to the parsing behavior, but that is not necessary: it is easy to imagine an
arbitrary order expansion, but any order leads to the same set of words.

With the notion of expansion, we define what it means for a grammar to be in DGNF precisely.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:11

Definition 2 (Deterministic Greibach Normal Form). A grammar� is in DGNF (i.e. it is a �

grammar), if all productions are either of form = → C = or = → n , and moreover,

• (Determinism) for any pair of a nonterminal = and a terminal C , if there are two distinct productions

(= → C1 =1) ∈ � and (= → C2 =2) ∈ � , we have C1 ≠ C2;

• (Guarded n-productions) if � ⊢ = { C =1 =2 = and (=1 → n) ∈ � , then for any C , either

(=1 → C =1) ∉ � or (=2 → C =2) ∉ � for any =1, =2.

The Determinism condition is straightforward, while the Guarded n-productions condition needs
more explanation. In §2.5, we mentioned that the n-production may only be used when no terminal
symbol in other productions matches the input string. Consider that the next token to match is
c. The case when both the n-production =1 → n and a production =1 → c can match raises when
=1’s follow-up nonterminal =2 can also match c, making it possible to use the n-production while
=1 → c also matches. Definition 2 captures such cases, requiring that =1 and =2 cannot match the
same terminal if =1 has an n-production, and thus rules out example (4) in §2.5.

Now we can formally define the important property of DGNF that makes it practically useful.

Theorem 3.1 (Deterministic Parsing). If � is a DGNF grammar, then for any expansion � ⊢

= { F , there is a unique derivation for this expansion.

3.3 Well-definedness and Correctness

Since normalization serves as the basis for the parsing algorithm, establishing its correctness is
crucial for flap. In this section, we prove three key properties of normalization: normalization
always succeeds for well-typed expressions (§3.3.1); the normalization result does not include the
internal form U = (§3.3.2); and the result of normalization is a DGNF grammar (§3.3.3).

3.3.1 Normalization is well-defined. To understand what well-definedness means, consider nor-
malizing 61 · 62. Rule (seq) returns # 1 =2 with =1 → # 1 from 61, and =2 from 62. However, in order
for # 1 =2 to be well-formed, we must ensure that # 1 is not n , or otherwise n =2 is ill-formed.
The case for sequencing is one of several places the typing information is useful. In particular, if
61 · 62 is well-typed, then the typing rule for sequencing (Fig. 2) guarantees g1 ⊛ g2, which says
¬g1.Null. We then prove below that if an expression is not nullable, its normalization cannot have
an n-production. Thus # 1 cannot be n , ensuring that the normalization result is in normal form.

Lemma 3.2 (Productions of Null). Given Γ;Δ ⊢ 6 : g and NJ6 K returns = ⇒ � , we have

g .Null = true if and only if (1) = → n ∈ � ; or (2) = → U ∈ � where (U : g ′) ∈ Γ and g ′.Null = true.

In other words, if g .Null = false, then = → n ∉ � .

With Lemma 3.2 and similar reasoning about typing for other constructs (such as alternations),
we prove that normalization is well-defined for well-typed expressions.

Theorem 3.3 (Well-definedness). If Γ;Δ ⊢ 6 : g , then NJ6 K returns = ⇒ � for some � and =.

3.3.2 Normalizing closed expressions produces no U = form. Theorem 3.3 says that if an expression
is well-typed then normalizing it returns a grammar � . However, � may include = → U =, which
is not valid DGNF. In this part, we prove that normalizing closed well-typed expressions will not
generate U = productions. To do so, we need to reason about the occurrences of U . The following
lemma says that every U returned as the head of a production must be in the typing context.

Lemma 3.4 (Internal normal form). Given Γ;Δ ⊢ 6 : g and NJ6 K returns = ⇒ � ,

• if (= → U =) ∈ � , then U ∈ dom (Γ);

• if (=′ → U =) ∈ � for any =′, then U ∈ fv (6), and thus U ∈ dom (Γ,Δ).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:12 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

Note that the first result applies only to the start symbol =, and its proof relies on the typing rule
where U is well-typed only if U ∈ Γ (Fig. 2). The second result applies to any =′, and the most tricky
case in the proof is when normalizing `U. 6, where we need to prove that the productions of the
start symbol of 6 cannot start with U , or otherwise normalizing `U. 6 would copy all productions
from 6 for U which would result in (e.g.) U → U that fails the lemma as we are getting out of the
scope of U . Fortunately, that is exactly what the first result tells us: when typing `U. 6, we add U to
Δ (Fig. 2), and thus normalizing 6 cannot have U at the head of a production for its start symbol.
Our goal then follows as a corollary of Lemma 3.4, which says that normalizing any closed

well-typed expression produces only the desired normal forms.

Corollary 3.5 (Normalizing without internal normal form). Given •; • ⊢ 6 : g , if NJ6 K
returns =′ ⇒ � , then any production in � is either = → n or = → C = for some =, C and =.

3.3.3 Normalization returns DGNF grammars. Finally, we prove that normalization returns DGNF
grammars. That requires productions to satisfy the conditions given in Definition 2.

(1) Determinism: We prove that all = → C = for the same = start with different C . To this end, we
establish the relation between starting terminals in productions and the First set of types.

Lemma 3.6 (Terminals in First). Given Γ;Δ ⊢ 6 : g andNJ6 K returns= ⇒ � , we have C ∈ g .First

if and only if (1) (= → C =) ∈ � ; or (2) (= → U =) ∈ � where (U : g ′) ∈ Γ and C ∈ g ′.First.

This lemma is particularly important when proving the case for normalizing 61 ∨ 62, where the
typing condition g1 # g2 ensures that 61 and 62 have disjoint First, which in turn ensures that rule
(alt) only copies distinct head terminals from 61 and 62.

(2) Guarded n-productions: The proof is more involved, as it essentially requires us to show that
during expansion � ⊢ = { C =1 =2 =, the First set of =1 is disjoint with the First set of =2, if =1 is
nullable. The proof relies on showing that “expansion preserves typing”. More concretely, think
from the well-typed context free expressions’ point of view: if (61 ∨ 62) · 63 is well-typed, then
61 · 63 (and 62 · 63) must also be well-typed, and going from (61 ∨ 62) · 63 to 61 · 63 is one step of
branching, similar to one step of expansion. We refer the reader to the appendix of the extended
version of the paper for more details.

With all the conditions proved, we conclude our goal.

Theorem 3.7 (NJ6 K produces DGNF). If •; • ⊢ 6 : g , then NJ6 K returns = ⇒ � for some =, � .

3.4 Normalization Soundness

Our final piece of normalization metatheory establishes that normalization is sound with respect
to the denotational semantics of typed context-free expressions. The denotational semantics J6KW
interprets 6 as a language (i.e. a set of strings matched by 6), where W interprets free variables in 6:

JnKW = {n} J61 · 62KW = {F ·F ′ | F ∈ J61KW ∧F
′ ∈ J62KW }

JCKW = {C} JUKW = W (0)

J⊥KW = ∅ J`U. 6KW = fix(_L.J6K(W,L/U))

J61 ∨ 62KW = J61KW ∪ J62KW fix(5) =
⋃
8∈N

L8 where
L0 = ∅

L8+1 = 5 (L8)

Most cases are straightforward: n denotes the singleton set containing the empty string, C the
singleton containing the one-token string C , ⊥ the empty language, and 61 ∨ 62 a union of sets. The
interpretation of 61 ·62 appends a string from 61 to a string from 62. Variables U draw interpretations
from the environment W , and `U. 6 denotes the least fixed point of 6 with respect to U .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:13

fused grammar � F {= → r = } ∪ {= →?A }

F J!,� K = F1 ∪ F2 ∪ F3

where F1 = {= → r = | r ⇒ Return C ∈ ! ∧ = → C = ∈ � } (inline the lexer)

F2 = {= → r = | r ⇒ Skip ∈ ! ∧ = ∈ � } (whitespace)

F3 = {= →?¬r | = → n ∈ � ∧ r =
∨
{ r | = → r = ∈ F1 ∪ F2 }} (epsilon productions)

Fig. 6. Lexer-parser fusion

To prove that our normalization is sound, we show that the normalized DGNF denotes exactly
the same language as the denotation semantics of an expression. Recall that we have defined the
expansion relation in Definition 1, where � ⊢ = { F denotes that = expands to a complete string
F , where all non-terminals have been expanded. We prove the normalized grammar can expand to
a string if and only if the string is included in the denotational semantics of the expression. The
proof is done by induction first on the length ofF and then on the structure of 6.

Theorem 3.8 (Soundness). Given •; • ⊢ 6 : g and NJ6 K returns = ⇒ � , we have F ∈ J6K• if
and only if � ⊢ = { F for anyF .

3.5 Implementation

The compositionality of the normalization algorithm simplifies the implementation of normalization
in flap. For example, if 6 and 6′ are flap parsers in normal form, then 6 >>> 6′ is also a parser in
normal form, built from 6 and 6′ using the rules in Fig. 4.
Unsurprisingly, the most intricate part of the algorithm — dealing with fixed points — is also

the subtlest part of the implementation. The implementation follows the formal algorithm closely,
inserting placeholders (Us) that are tracked using an environment and resolved later. This kind of
“backpatching” mirrors the way in which recursion is commonly implemented in eager functional
languages such as OCaml [Reynaud et al. 2021]; if flapwere instead implemented in a lazy language
then it would be possible to implement fixed point normalization with less fuss.

4 FUSION

This section shows how flap fuses a separately-defined lexer and normalized parser, eliminating
tokens from generated code altogether.

Canonicalizing lexer. We use canonicalized lexers: we assume that rules are disjoint on the left
(i.e. there is no string that is matched by more than one regular expression in a set of rules), and on
the right (i.e. there is exactly one Skip rule, and no token appears in more than one Return rule).
Negation and intersection make it easy to transform a lexer that does not obey these constraints
into an equivalent lexer that does, so there is no need to restrict the interface exposed to the user.

The fusion algorithm. Fig. 6 formally defines the fusion algorithm. F J!,� K, which operates on a
canonicalized lexer ! and a normalized grammar � , yielding a fused grammar � .
The fused result consists of three parts. First, we replace each production = → C = with a new

production = → r =, retrieving the regex A that is associated with the token C in the lexer ! (F1). This
is where the fusion function implicitly specializes the lexer to each nonterminal in the normalized
grammar, and discards lexing rules that return tokens not in productions for the nonterminal.
Canonicalizing the lexer to enforce disjointness simplifies this discarding of rules.

Then, we add an additional production = → r = for the skip regex A (which may be ⊥) for each
nonterminal, allowing each nonterminal to match an arbitrary number of the skip regex (F2).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:14 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

L4G (!, B) = L(!,no, [], B)

L(!′, :, AB, []) = M(:, AB)

L(!′, :, AB, 2 ::2B) = if !′2
?
= ∅ thenM(:, AB)

else case of ∅ ↦→ L(!′2 , :, AB, 2B)

{: ′} ↦→ L(!′2 , :
′, 2B, 2B)

where !′2 = {m2 (A) ⇒ : | A ⇒ : ∈ !′ ∧ m2 (A) ≠ ⊥}

 = {: | A ⇒ : ∈ !′2 ∧ a (A)}

M(no, AB) = fail

M(Skip, []) = []

M(Skip, 2::2B) = L(!,no, [], 2::2B)

M(Return C, []) = [C]

M(Return C, 2::2B) = C :: L(!,no, [], 2 :: 2B)

Fig. 7. Lexing algorithm

P0AB4 (= ⇒ �, B) = P(=, B)

P(=, []) = if = → n ∈ � then [] else fail

P(=, C ::CB) = if = → C= ∈ � then Q(=, CB)

else if = → n ∈ � then C ::CB else fail

Q([], CB) = CB

Q(=::=B, CB) = Q(=B,P(=, CB))

Fig. 8. Parsing algorithm for DGNF grammars

FP0AB4 (= ⇒ �, B) = G([=], B)

F (�=, :, AB, B) =

case B of [] ↦→ (C4? (:, AB)

2::2B ↦→ if � ′=
?
= ∅ then (C4? (:, AB)

else case of ∅ ↦→ F (� ′=, :, AB, 2B)

{=B} ↦→ F (� ′=, on =B, 2B, 2B)

where � ′= = {⟨m2 (A), :⟩ | ⟨A, :⟩ ∈ �= ∧ m2 (A) ≠ ⊥}

 = {: | ⟨A, :⟩ ∈ � ′= ∧ a (A)}

G([], B) = B

G(=::=B, B) = G(=B, F (�=, :, B, B))

where �= = {⟨A, =⟩ | = → A= ∈ � }

: = if = →?A ∈ � then back else no

(C4? (back, B) = B

(C4? (on =B, B) = G(=B, B)

(C4? (no, B) = fail

Fig. 9. Parsing algorithm for fused grammars

SP0AB4=⇒� (B) = T ([=], B)

S�=,: (AB, B) =

case B of [] ↦→ (C4? (:, AB)

28 ::2B ↦→ if � ′=,8
?
= ∅ then (C4? (:, AB)

else case 8 of ∅ ↦→ S� ′
=,8

,: (AB, 2B)

{=B} ↦→ S� ′
=,8

,on =B (2B, 2B)
2 9 ::2B ↦→ . . .

where � ′=,8 = {⟨m28 (A), :⟩ | ⟨A, :⟩ ∈ �= ∧ m28 (A) ≠ ⊥}

 8 = {: | ⟨A, :⟩ ∈ � ′=,8 ∧ a (A)}

T ([], B) = B

T (=::=B, B) = T (=B, S�=,: (B, B))

where �= = {⟨A, =⟩ | = → A= ∈ � }

: = if = →?A ∈ � then back else no

(C4? (back, B) = B

(C4? (on =B, B) = T (=B, B)

(C4? (no, B) = fail

Fig. 10. Staged parsing algorithm

Finally, for nonterminals with an n-production, the discarded regexes, along with the skip regex,
are incorporated into a lookahead regex (F3). That is, we add a lookahead production = →?¬r for
the regex that is the complement of the regexes that appear in other productions for =.

Fusion with normalized grammars is strikingly simple; it would be muchmore involved to directly
fuse context-free expressions with the lexing rules. As with normalized grammars, an expansion
relation for fused grammars would guarantee that every expansion has a unique derivation.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:15

5 IMPLEMENTATION OF PARSING

This section describes the lexing and parsing algorithms, shows how to stage the parsing algorithm
to improve performance, and explains details of the implementation of the algorithms in flap.

5.1 The Lexing Algorithm

Fig. 7 presents the lexing algorithm. The algorithm has conventional longest-match semantics: each
token returned corresponds to the rule matching the longest possible prefix of the input. This
behaviour is implemented by repeatedly updating the best match seen so far until no rule matches.
The top-level function L4G takes lexing rules ! and input string B . For simplicity, we assume

utility functions L and M can freely access !. At a high level, L reads a single token from a prefix
of a string, pairs the token action with the remainder of the string, and passes it toM.M constructs
a sequence of tokens, updating the sequence according to the action passed from L.

L has four arguments: the lexing rules !′; a token action : representing the best match so far;
the remainder string AB for the best match; the input string B . For empty input the best match
information : and AB is passed toM. For non-empty input 2::2B , the result depends on !′2 , the lexing
rules updated to use the non-empty derivatives with respect to 2 of the string. If !′ is empty, lexing
cannot advance, so L transfers control toM. Otherwise, the result depends on the rule A ⇒ 0 that
matches the string up to this point including 2 (i.e. the rule that accepts n after consuming 2). If
there is no such rule, then lexing continues with : . If there is such a rule, it is unique (since lexing
rules are disjoint (§4)), and lexing continues with the new longest match : ′.
The M function has two arguments: an action : , and a remainder string AB . The sentinel no

indicates that lexing has failed. For Skip, lexing continues if the remainder AB is non-empty. For
Return C , C is added to the output sequence, and lexing continues if the remainder AB is non-empty.
In the cases where lexing continues, it commences by supplying no for the best-match-so-far, so
that reading the next token only succeeds if L matches a non-empty prefix of the remaining input.

5.2 The DGNF Parsing Algorithm

Fig. 8 presents the parsing algorithm for DGNF grammars. Deterministic parsing makes the algo-
rithm simple, since there is no need for backtracking.

P0AB4 is the top-level parsing algorithm which takes the parsing grammar = ⇒ � and a sequence
of tokens B . There are two key functions: P parses using a single nonterminal =, and Q parses using
a sequence of nonterminals =B . Again, we assume P and Q can freely access � .

P takes the nonterminal = and a sequence of tokens and returns the remainder of the sequence
after parsing. For empty sequences parsing succeeds only if the grammar has a rule = → n . For
non-empty sequences C ::CB , if the grammar has a rule = → C=, P consumes C and parses CB with Q.
Otherwise, parsing succeeds (consuming nothing) only if the grammar has a rule = → n .

Q takes a sequence of nonterminals =B and a sequence of tokens CB and parses successive prefixes
of B with each nonterminal in =B .

5.3 The Parsing Algorithm for Fused Grammars

In practice, flap does not use separately-defined lexing and DGNF parsing algorithms, since it
fuses lexing and parsing. We presented those algorithms to allow a direct comparison with the
algorithm for fused grammars.

Fig. 9 shows an algorithm for parsing with fused grammars. The algorithm combines the features
of the lexing algorithm (Fig. 7) and the parsing algorithm (Fig. 8): like the lexing algorithm it
maintains a set of derivatives and an action and remainder string for the current best match; like
the parsing algorithm, it keeps track of the current non-terminal.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:16 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

FP0AB4 takes the fused grammar = ⇒ � and an input string B , with two key functions: F parses
using a single nonterminal =, and G parses using a sequence of nonterminals =B using � .

F takes four arguments: �= , a set of pairs representing non-epsilon productions for=; : , an action;
AB , a remainder string; and B , an input string. For empty input strings the best match information :
and AB is passed to G (via the auxiliary function (C4?). For non-empty input strings 2::2B , the result
depends on � ′= , the production pairs for = updated to use the non-empty derivatives with respect

to 2 (§2.3) of the string. If � ′= is empty, parsing cannot proceed any further, and so F transfers
control to G (via (C4?), passing the best match information. Otherwise, the result depends on the
production pair ⟨A, =⟩ for which A matches the string up to this point including 2 (i.e. the rule that
accepts n after consuming 2). If there is no such rule, then parsing continues with : . If there is such
a rule, it is unique (since the regexes for a particular nonterminal are disjoint), and it represents a
new longest-match =B , and parsing continues, updating the best match information to on =B . Here
on =B represents one of three continuation types, and indicates that parsing should continue using
the nonterminal sequence =B; the others are back, indicating that parsing with = should succeed,
consuming no input, and no, indicating that parsing with = should fail. The (C4? function matches
these three cases, and takes an action appropriate to each continuation.
The G function takes a sequence of nonterminals =B and a sequence of characters B and parses

successive prefixes of B with each nonterminal in =B by calling F . The value of F ’s : argument
depends on whether there is an epsilon rule for = in the fused grammar: if so, then a parsing failure
with = should backtrack, consuming no input; if not, then parsing returns fail.

We draw attention to two salient features of the fused parsing algorithm: first, it consists of
elements from the lexing and parsing algorithms of Sections 5.1 and 5.2; second, it does not
materialize the tokens produced by the lexing algorithm, instead operating directly on the character
string. The final algorithm in the next section makes this even more apparent.

5.4 The Staged Parsing Algorithm

unstaged
parser

grammar

input string

parser
generator

specialized
parser

grammar

input string

The parsing algorithm for fused grammars described in §5.3 is practically inefficient. For each
character of the input, the algorithm computes derivatives and checks emptiness and nullability for
sets of regexes. However, since the regexes and other information about the grammar are known
in advance of parsing, the inefficient algorithm can be staged [Taha 1999] to produce an efficient
algorithm. The idea of staging is to identify those parts of the algorithm that do depend only on
static information — i.e. on the grammar — and execute them first, leaving only the parts that
depend on dynamic information — i.e. on the input string — for later. The result of staging, as
illustrated in Fig. 10, is to transform the unstaged parser into a parser generator that produces as
output a parser specialized to the input grammar.

Fig. 10 shows a staged version of the fused parsing algorithm. The structure of the algorithm is
very close to the fused grammar parsing algorithm of §5.3: S corresponds to F and T corresponds
to G. However, there are three key differences.
First, those parts of the algorithm that depend on the input string are marked as dynamic,

indicated with red highlighting . These dynamic elements are not executed immediately; instead

they become part of the generated specialized parser produced by the first stage of execution.
Second, in the function S, �= and : have become indexes rather than arguments. Consequently,

rather than being passed to the function at run-time, those arguments serve to distinguish generated
functions: each instantiation of �= and : generate a distinct function S in the specialized parser.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:17

Finally, the case match in S is expanded to include a distinct case for each character 28 , 2 9 , etc.
This expansion resolves a tension in the distinction between static and dynamic data: the static
computation of derivatives m2 (A) in the first stage depends on the value of 2 , which is only available
dynamically. In the expanded case match the value of 28 is known on the right-hand side of the
corresponding case, making it possible to compute derivatives valid within that program context.
This scrutiny of a statically-unknown expression using a case match over its statically-known set
of possible values is known as “The Trick” in the partial evaluation literature [Danvy et al. 1996].
The evaluation of the staged parsing algorithm is largely standard: the unhighlighted (static)

expressions are executed first, producing the highlighted (dynamic) expressions as output. Each
call to a dynamic indexed function S�=,: triggers the generation of a dynamic function whose
body consists of the result of executing the right-hand side of S�=,: in Fig. 10. To ensure that the
generation process terminates, the generation of these indexed functions is memoized: there is at
most one generated function S�=,: for any particular �= and : . The result of the algorithm is a set
of mutually recursive functions that operate only on strings, not on components of the grammar:

(=→A=,...,back (A, B) = case B of 'a' :: 2B ↦→ (=→A0=,back (A, 2B)

'b' :: 2B ↦→ (=→A0=,on =B (2B, 2B)
. . .

(=→A=,...,on =B (A, B) = . . .

5.5 Implementing the Staged Parsing Algorithm

flap generates code for fused grammars using MetaOCaml’s staging facilities together with Yallop
and Kiselyov’s [2019] letrec insertion library for creating the indexed mutually-recursive functions
produced by the staged parsing algorithm (§5.4).
There are three key differences between the pseudocode algorithm in Fig. 10 and flap’s im-

plementation. First, while the pseudocode presents a recognizer that either consumes input or
fails, flap supports semantic actions — i.e. constructing and returning ASTs or other values when
parsing succeeds — as described in §2.1.

Second, while the input to the pseudocode is a character linked list, flap operates on OCaml’s flat
array representation of strings, using indexes to keep track of string positions as parsing proceeds.
Relatedly, flap also optimizes the end of input test by using the fact that OCaml’s strings are
null-terminated, like C’s. This representation allows the end of input check to be incorporated into
the per-character branch in the generated code: a null character '\000' indicates a possible end of
input, which can subsequently be confirmed by checking the string length.
Third, while the pseudocode generates a case in each branch for each possible character in the

input, flap generates a smaller number of cases by grouping characters with equivalent behaviour
into classes, as described in detail by Owens et al. [2009]. Branching on these character classes
rather than treating characters individually leads to a substantial reduction in code size.
Here is an excerpt of the code generated by flap for the s-expression parser:

and parse5 r i len s = match s.[i] with

| ' '|'\n' → parse6 r (i + 1) len s

| '(' → parse9 r (i + 1) len s

| 'a'..'z' → parse3 r (i + 1) len s

| '\000' → if i = len then [] else failwith "unexpected"

| _ → []

This excerpt shows the code generated for a single indexed function S�=,: . There are four argu-

ments, representing the beginning of the current token r (to support backtracking in the lookahead
transition), the current index i, the input length len, and the input string s.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:18 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

jsonsexp arithpgn ppm csv
0

500

1,000

2
3
6

7
6

3
06
7

1
6 7
0

2
4
2

7
5

3
27
4

1
4 7
6

3
2
6

1
2
3

4
81
2
3

4
6 1
2
6

1
,3
5
9

2
1
3

5
7

2
8
6

1
0
4

3
2
3

3
4
4

1
2
5

2
94
8

1
4

1
6
2

1
6
9

9
2

2
98
1

2
7 8
91
0
8 T
h
ro
u
g
h
p
u
t
(M

B
/s
)ocamlyacc menhir+table menhir+code

flap normalized asp

ParTS

Fig. 11. Parser throughput: ocamlyacc, menhir, flap, asp and ParTS

The subscripts 5, 6, etc. attached to the parse functions correspond to the indexes �=, : in the
pseudocode algorithm; the letrec insertion library assigns a fresh subscript to each distinct index.

The character range pattern 'a'..'z' illustrates the character class optimization described above,
without which each of the characters from 'a' to 'z' would have a separate case in the match.

The check i = len determines whether '\000' indicates end of input or a null in the input string.
The value [] corresponds to a semantic action: it is the empty list returned when an empty

sequence of s-expressions is parsed. It appears twice in the generated code, since (as Fig. 10 shows),
parsing for a particular nonterminal can end in two ways: when it encounters the end of input, and
when it encounters a non-matching character.

OCaml compiles tail calls to known functions such as parse6 to unconditional jumps. As §6
shows, the resulting code is extremely fast.

6 EVALUATION

This section evaluates the performance of flap, and shows that lexer-parser fusion drastically
improves performance. Many parser combinator libraries suffer from poor performance, but the
experiments described here show that combinator parsing does not need to be slow.

In part, flap’s speed is a consequence of the linear-time guarantee provided by the type system
of §2.1 and by the application of staging to eliminate the overhead arising from parsing abstractions.
This section shows that lexer-parser fusion provides a substantial further performance improvement
by eliminating the overhead that arises from defining lexers and parsers separately, which accounts
for most of the remaining running time.

Benchmarks. We compare seven implementations. All seven guarantee deterministic, linear-
time parsing, and use staging, generating code specialized to a given grammar. Our aim is to
evaluate whether flap is faster than other asymptotically-efficient systems, so it is not possible to
make meaningful comparisons with systems with different complexity (e.g. GLR or backtracking
recursive-descent):

The parser implementations are:
(a) ocamlyacc (b) menhir in table-generation mode
(c) menhir in code-generation mode (d) flap

(e) asp [Krishnaswami and Yallop 2019] (f) ParTS [Casinghino and Roux 2020]
(g) Parsing with normalized but unfused grammars

Implementations (a)–(c) are widely-used parser-generation tools. Implementation (d) is described
in this paper. Implementations (e) and (f) are existing parser combinator libraries that guaranteee
deterministic, linear-time parsing. Implementation (g) is a variant of (d) in which the grammars

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:19

0.5 1 1.5 2
0

10

20

30

input size (MB)

ru
n
ti
m
e
(m

s) sexp

0.5 1 1.5 2
0

20

40

60

80

input size (MB)

arith

0 20 40

0

20

40

input size (kpixels)

ppm

0 2,000 4,000

0

50

input size (games)

pgn

0 0.2 0.4

0

2

4

6

input size (MB)

csv

50 100 150

0

1

2

input size (msgs)

json

Fig. 12. Linear-time parsing (colors as Fig. 11)

used for parsing are normalized by flap and lexers are implemented using flap, but parsers and
lexers are connected via OCaml’s Stream type (as in asp) rather than fused together (as in flap).

For lexing we use ocamllex for (a)–(c), and the combinators supplied by each library for (d)–(g).
Implementations (a)–(c) use identically structured grammars (since menhir [Pottier and Régis-
Gianas [n. d.]] accepts ocamlyacc files as input) and lexers based on ocamllex. Implementations
(d)–(g) also use identically structured grammars based on the standard parser combinator interface
(§2.1). However, (d)–(g) use differently-structured lexers: (e) and (f) reuse the deterministic parser
combinators for lexing, while flap and the normalized but unfused parser use themore conventional
lexing interface from Fig. 3a.
The benchmarks are largely taken from Krishnaswami and Yallop [2019] (using the same test

corpora), except for the CSV benchmark (which uses a set of files of various sizes and dimensions,
using a random variety of textual and numeric data). They are:

(1) (pgn) Parse 6759 Portable Game Notation chess game descriptions, and extract game results.
(2) (ppm) Parse and check semantic properties (e.g. pixel count, color range) of Netpbm files.
(3) (sexp) Parse S-expressions with alphanumeric atoms, returning the atom count.
(4) (csv) Parse CSV files (Shafranovich [2005], with mandatory terminating CRLF), checking row

lengths. This benchmark has no asp implementation, because distinguishing escaped double-
quotes "" from unescaped quotes " in the lexer needs multiple characters of lookahead.

(5) (json) Parse JSON using the grammar by Jonnalagedda et al. [2014], returning the object count.
(6) (arith) Parse and evaluate terms in a mini language (arithmetic/comparison/binding/branching).

The benchmarks were compiled with BER MetaOCaml N111 with flambda optimizations enabled
and run on a single Intel i9-12900K core with 1GB memory running Debian Linux, using the
Core_bench micro-benchmarking library [Hardin and James 2013].

Running time. Fig. 11 shows the throughput of the seven implementations using the benchmark
grammars. Fig. 12 illustrates that all seven produce parsers with running time linear in input length.

As Fig. 11 shows, our experiments confirm the results reported by Krishnaswami and Yallop: the
staged implementation of typed CFEs in asp generally outperforms ocamlyacc. The addition of
lexer-parser fusion makes flap considerably faster than both asp and ocamlyacc, reaching around
1.4GB/s (a little over 2.3 cycles per byte) on the json benchmark. The throughput ratios of flap to
asp (286

81
= 3.5×, 104

27
= 3.9×, 213

92
= 2.3×, 1359

169
= 8.0×, 57

29
= 2.0×) indicate the additional performance

benefit provided by the combination of fusion and staging over staging alone. The throughput
ratios of flap to the normalized but unfused implementation (286

48
= 6.0×, 104

14
= 7.4×, 213

125
= 1.7×,

1359
344

= 4.0×, 57
29

= 2.0×) show that the normalization step in flap is not sufficient to account for
flap’s superior performance: performing lexer-parser fusion after grammar normalization provides
a substantial additional speedup.

Code size. A second important measure of usefulness for parsing: if parsing tools are to be usable
in practice, it is essential that they do not generate unreasonably large code.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

https://en.wikipedia.org/wiki/Portable_Game_Notation
https://en.wikipedia.org/wiki/Netpbm_format

155:20 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

Table 1. Sizes of inputs, intermediate forms, and generated code

Table 2. Compilation time

(type-checking, normaliza-

tion, fusion, code generation)

Input Normalized Fused Output

Grammar Lex rules CFEs NTs Prods Prods Functions

pgn 13 95 38 53 91 203

ppm 6 10 5 6 16 55

sexp 4 11 3 6 9 11

csv 3 14 5 7 7 17

json 12 42 9 33 42 93

arith 14 143 28 55 83 209

Compilation time

(ms)
212

3.60

0.331

0.499

28.5

460

There are several reasons to be apprehensive about the size of code generated by flap. First,
conversion to Greibach Normal Form is known to substantially increase grammar size; for example,
in the procedure given by Blum and Koch [1999] the result of converting a grammar � has size
$ (|� |3). Second, fusion is inherently duplicative, repeatedly copying lexer rules into grammar
productions. Finally, experience in the multi-stage programming community shows that it is easy
to inadvertently generate large programs, since antiquotation makes it easy to duplicate terms.

However, measurements largely dispel these concerns. Table 1 lists parser representation sizes at
various stages in flap’s pipeline. The leftmost columns show the size of the input parsers, measured
as the number of lexer rules (both Return and Skip) and the number of CFE nodes, as described in
Fig. 3a. The central columns show the number of nonterminals and productions after conversion to
DGNF using the procedure in §3; they show that normalization for typed CFEs does not produce the
drastic increases in size that occur in the more general conversion to GNF. The next column to the
right shows the grammar size after fusion (§4). Fusion does not alter the number of nonterminals,
but can add productions; for example, the Skip rules in the sexp lexer add additional productions
to each nonterminal. Finally, the rightmost column shows the number of function bindings in the
code generated by flap. Comparing this generated function count with the number of CFEs in the
input reveals an unalarming relationship: with one exception (ppm), their ratio barely exceeds 2.

Sharing. The entries for pgn and arith hint at opportunities for further improvement. In both
cases, the number of CFEs in the grammar (95 and 143) is surprisingly high, since both languages
are fairly simple. Inspecting the grammar implementations reveals the cause: in several places,
the combinators that construct the grammar duplicate subexpressions. For example, here is the
implementation of a Kleene plus operator used in pgn:

let oneormore e = (e >>> star e) . . .

Normalization turns these two occurrences of e into multiple entries in the normalized form, and
ultimately to multiple functions in the generated code.
The core problem is that the parser combinator interface (§2.1) provides no way to express

sharing of subgrammars. Since duplication of this sort is common, it is likely that extending flap
with facilities to express and maintain sharing could substantially reduce generated code size.

Compilation time. A final measure of practicality is the time taken to perform the fusion transfor-
mation. Slow compilation times can have a significant effect on usability; as Nielsen [1993] notes,
software that takes more than ten seconds to respond can cause a user to lose focus.

Table 2 shows the compilation time for the benchmark grammars. For each, the total time taken
to type-check and normalize the grammar, fuse the grammar and lexer and generate code is below
half a second. Measurements indicate that the compilation time of the OCaml code generated by
flap is also fairly low, at approximately 20ms/function, and linear in the size of the generated code.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

flap: A Deterministic Parser with Fused Lexing 155:21

7 RELATED WORK

Deterministic Greibach Normal Form. There are several longstanding results related to determin-
istic variants of Greibach Normal Form. For example, Geller et al. [1976] show that every strict
deterministic language can be given a strict deterministic grammar in Greibach Normal Form, and
Nijholt [1979] gives a translation into Greibach Normal Form that preserves strict deterministicness.
The distinctive contributions of this paper are the new normal form that is well suited to fusion,
and the compositional normalization procedure from typed context-free expressions, allowing
deterministic GNF to be used in the implementation of parser combinators.

Combining lexers and parsers. The work most closely related to ours, by Casinghino and Roux
[2020] investigates the application of traditional stream fusion techniques to parser combinators
in the ParTS system. We have included their two published benchmarks in the evaluation of §6
and found that, as they report, when the flambda compiler optimizations are applied to their code,
its performance is similar to the results achieved by Krishnaswami and Yallop [2019]. A major
difference between their work and ours is that they approach fusion as a traditional optimization
problem, in which transformations are applied to code that satisfies certain heuristics, and are not
applied in more complex cases. In contrast, we treat fusion as a sequence of total transformations
guaranteed to convert every parser into a form with good performance. More concretely, in Fig. 11,
flap achieves two and ten times the throughputs of ParTS on the sexp and json benchmarks.
Another line of work, on Scannerless GLR parsing [Economopoulos et al. 2009; van den Brand

et al. 2002], also aims to eliminate the boundary between lexers and parsers, but in the interface
(not just in the implementation, as in flap). The principal aim is a principled way to handle lexical
ambiguity. Scannerless parsing carries considerable cost, often running orders of magnitude slower
than flap according to the figures given by Economopoulos et al. [2009].

Similarly, ANTLR 4 [Parr et al. 2014] supports scannerless parsing based on a top-down algorithm,
ALL(*), that performs grammar analysis dynamically, during parsing. Like Scannerless GLR, it has
superlinear (here $ (=4)) complexity in theory, but often enjoys linear performance in practice.
The packrat algorithm [Ford 2002] also supports a form of scannerless parsing; in contrast

to Scannerless GLR and ALL(*), it is restricted to deterministic grammars. Packrat parsers are
structured like backtracking recursive-descent parsers, but use lazy evaluation to construct and
memoize intermediate results during parsing, reducing needless recomputation and guaranteeing
linear time complexity. However, packrat has some sigificant performance limitations. Since it
retains all intermediate structures, it uses space linear in the input size; further, its reported
throughput (around 25 kb/second) is orders of magnitude slower than flap.

Unlike scannerless systems, flap does not provide a more powerful parsing interface to eliminate
the need for a separate lexer. In flap parsers are defined using a traditional parser combinator
interface and lexers are defined separately: it is only in the code generated by flap, not in the
interface, that tokens are statically eliminated.

Context-aware scanning, introduced by Van Wyk and Schwerdfeger [2007] is another variant on
the parser-lexer interface focused on disambiguation; it passes contextual information from parser
to lexer about the set of valid tokens at a particular point, in a similar way to the lexer specialization
in §2.7 of this paper. However, Van Wyk and Schwerdfeger’s framework goes further, and allows
the automatic selection of a lexer (not just a subset of lexing rules) based on parsing context.

Fusion. The notion of fusion, in the sense of merging computations to eliminate intermediate
structures, has been applied in several domains, including query engines [Shaikhha et al. 2018],
GPU kernels [Filipovic et al. 2015] and tree traversals [Sakka et al. 2019].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

155:22 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

Perhaps the most widespread is stream fusion, which originated with Wadler’s deforesta-
tion [Wadler 1990], and has been applied as both a traditional compiler optimization [Coutts
et al. 2007] and a staged library [Kiselyov et al. 2017] with guarantees similar to flap’s.

Parser optimization. Finally, in contrast to the constant-time speedups resulting from lexer-
parser fusion, we note an intriguing piece of work by Klyuchnikov [2010] that applies two-level-
supercompilation to parser optimization, leading to asymptotic improvements.

8 FUTURE WORK

There are a number of promising avenues for future work. First, extending flap’s rather minimal
lexer and parser interfaces to support common needs such as left-recursive grammars, lexers and
parsers with multiple entry points, mechanisms for maintaining state during parsing, and more
expressive lexer semantic action could make the library substantially more usable in practice.
Second, applying the fusion techniques to more powerful parsing algorithms (e.g. LR(1)) in a

traditional parser generator could make lexer-parser fusion available to many more programmers.
Finally, it may be that fusion can be extended to longer pipelines than the lexer-parser interface

that we investigate here. Might it be possible to fuse together (e.g.) decompression, unicode decoding,
lexing and parsing into a single computation that does not materialize intermediate values?

ACKNOWLEDGMENTS

We thank Paul Gazzillo for shepherding the paper, the anonymous reviewers for their helpful
comments, members of IFIP WG 2.11 for feedback on a presentation of this work, and Laurence
Tratt and Ben Karel for feedback on earlier drafts.

This work was supported in part by a European Research Council (ERC) Consolidator Grant
for the project “TypeFoundry”, funded under the European Union’s Horizon 2020 Framework
Programme (grant agreement no. 101002277), and in part by a grant from the Isaac Newton Trust
(grant no. G101121).

ARTIFACT

We have made available an artifact and accompanying instructions that allow the interested reader
to reproduce the claims in this paper [Yallop et al. 2023a].

REFERENCES

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers: principles, techniques, and tools. Vol. 2. Addison-wesley

Reading.

Norbert Blum and Robert Koch. 1999. Greibach Normal Form Transformation Revisited. Information and Computation 150,

1 (1999), 112–118. https://doi.org/10.1006/inco.1998.2772

Anne Brüggemann-Klein and Derick Wood. 1992. Deterministic regular languages. In STACS 92, Alain Finkel and Matthias

Jantzen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 173–184.

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964), 481–494. https://doi.org/10.1145/

321239.321249

Chris Casinghino and Cody Roux. 2020. ParTS: Final Report. HR001120C0016 - Final Report.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream fusion: from lists to streams to nothing at all. In

Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP 2007, Freiburg, Germany,

October 1-3, 2007, Ralf Hinze and Norman Ramsey (Eds.). ACM, 315–326. https://doi.org/10.1145/1291151.1291199

Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. 1996. Eta-Expansion Does The Trick. ACM Trans. Program. Lang.

Syst. 18, 6 (1996), 730–751. https://doi.org/10.1145/236114.236119

Giorgios Economopoulos, Paul Klint, and Jurgen J. Vinju. 2009. Faster Scannerless GLR Parsing. In Compiler Construction,

18th International Conference, CC 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5501), Oege de Moor and

Michael I. Schwartzbach (Eds.). Springer, 126–141. https://doi.org/10.1007/978-3-642-00722-4_10

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

https://doi.org/10.1006/inco.1998.2772
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/236114.236119
https://doi.org/10.1007/978-3-642-00722-4_10

flap: A Deterministic Parser with Fused Lexing 155:23

Jiri Filipovic, Matus Madzin, Jan Fousek, and Ludek Matyska. 2015. Optimizing CUDA code by kernel fusion: application on

BLAS. J. Supercomput. 71, 10 (2015), 3934–3957. https://doi.org/10.1007/s11227-015-1483-z

Bryan Ford. 2002. Packrat parsing: : simple, powerful, lazy, linear time, functional pearl. In Proceedings of the Seventh ACM

SIGPLAN International Conference on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002,

Mitchell Wand and Simon L. Peyton Jones (Eds.). ACM, 36–47. https://doi.org/10.1145/581478.581483

Matthew M. Geller, Michael A. Harrison, and Ivan M. Havel. 1976. Normal forms of deterministic grammars. Discret. Math.

16, 4 (1976), 313–321. https://doi.org/10.1016/S0012-365X(76)80004-0

Sheila A. Greibach. 1965. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars. J. ACM 12, 1 (Jan.

1965), 42–52. https://doi.org/10.1145/321250.321254

Christopher S. Hardin and Roshan P. James. 2013. Core_bench: Micro-Benchmarking for OCaml. OCaml Workshop.

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Odersky. 2014. Staged Parser Combinators

for Efficient Data Processing. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming

Systems Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, NY, USA, 637–653. https:

//doi.org/10.1145/2660193.2660241

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2017. Stream fusion, to completeness. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 285–299. https://doi.org/10.1145/3009837

Ilya Klyuchnikov. 2010. Towards effective two-level supercompilation. Preprint 81. Keldysh Institute of Applied Mathematics,

Moscow.

Neelakantan R. Krishnaswami and Jeremy Yallop. 2019. A typed, algebraic approach to parsing, See [McKinley and Fisher

2019], 379–393. https://doi.org/10.1145/3314221.3314625

Kathryn S. McKinley and Kathleen Fisher (Eds.). 2019. Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. ACM. https://doi.org/10.1145/3314221

Jakob Nielsen. 1993. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Anton Nijholt. 1979. Strict Deterministic Grammars and Greibach Normal Form. J. Inf. Process. Cybern. 15, 8/9 (1979),

395–401.

Scott Owens, John H. Reppy, and Aaron Turon. 2009. Regular-expression derivatives re-examined. J. Funct. Program. 19, 2

(2009), 173–190. https://doi.org/10.1017/S0956796808007090

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) parsing: the power of dynamic analysis. In Proceedings

of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA

2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM,

579–598. https://doi.org/10.1145/2660193.2660202

François Pottier and Yann Régis-Gianas. [n. d.]. The Menhir parser generator. http://gallium.inria.fr/~fpottier/menhir/.

Alban Reynaud, Gabriel Scherer, and Jeremy Yallop. 2021. A practical mode system for recursive definitions. Proc. ACM

Program. Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434326

Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, and Milind Kulkarni. 2019. Sound, fine-grained traversal fusion

for heterogeneous trees, See [McKinley and Fisher 2019], 830–844. https://doi.org/10.1145/3314221.3314626

Yakov Shafranovich. 2005. Common Format and MIME Type for Comma-Separated Values (CSV) Files. RFC 4180. https:

//doi.org/10.17487/RFC4180

Amir Shaikhha, Mohammad Dashti, and Christoph Koch. 2018. Push versus pull-based loop fusion in query engines. J.

Funct. Program. 28 (2018), e10. https://doi.org/10.1017/S0956796818000102

Walid Taha. 1999. Multi-Stage Programming: Its Theory and Applications. Technical Report.

Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser. 2002. Disambiguation Filters for Scannerless

Generalized LR Parsers. In Compiler Construction, 11th International Conference, CC 2002, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings (Lecture Notes

in Computer Science, Vol. 2304), R. Nigel Horspool (Ed.). Springer, 143–158. https://doi.org/10.1007/3-540-45937-5_12

Eric R. VanWyk and August C. Schwerdfeger. 2007. Context-aware Scanning for Parsing Extensible Languages. In Proceedings

of the 6th International Conference on Generative Programming and Component Engineering (Salzburg, Austria) (GPCE ’07).

ACM, New York, NY, USA, 63–72. https://doi.org/10.1145/1289971.1289983

Philip Wadler. 1985. How to Replace Failure by a List of Successes. In Proc. of a Conference on Functional Programming

Languages and Computer Architecture (Nancy, France). Springer-Verlag, Berlin, Heidelberg, 113–128.

Philip Wadler. 1990. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science 73, 2 (1990),

231–248. https://doi.org/10.1016/0304-3975(90)90147-A

Jeremy Yallop and Oleg Kiselyov. 2019. Generating Mutually Recursive Definitions. In Proceedings of the 2019 ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation (Cascais, Portugal) (PEPM 2019). ACM, New York, NY, USA,

75–81. https://doi.org/10.1145/3294032.3294078

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

https://doi.org/10.1007/s11227-015-1483-z
https://doi.org/10.1145/581478.581483
https://doi.org/10.1016/S0012-365X(76)80004-0
https://doi.org/10.1145/321250.321254
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1145/3314221
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1145/2660193.2660202
http://gallium.inria.fr/~fpottier/menhir/
https://doi.org/10.1145/3434326
https://doi.org/10.1145/3314221.3314626
https://doi.org/10.17487/RFC4180
https://doi.org/10.17487/RFC4180
https://doi.org/10.1017/S0956796818000102
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1145/1289971.1289983
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/3294032.3294078

155:24 Jeremy Yallop, Ningning Xie, and Neel Krishnaswami

Jeremy Yallop, Neel Krishnaswami, and Ningning Xie. 2023a. flap: A Deterministic Parser with Fused Lexing (artifact).

(April 2023). https://doi.org/10.5281/zenodo.7824835

Jeremy Yallop, Ningning Xie, and Neel Krishnaswami. 2023b. flap: A Deterministic Parser with Fused Lexing.

arXiv:2304.05276 [cs.PL]

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 155. Publication date: June 2023.

https://doi.org/10.5281/zenodo.7824835
https://arxiv.org/abs/2304.05276

	Abstract
	1 Introduction
	2 Overview
	2.1 Background: Parser Combinators and Typed Context-Free Expressions
	2.2 Overhead of Separate Lexing and Parsing
	2.3 Our Proposal: A Deterministic Parser with Fused Lexing
	2.4 Example: The Lexer and Parser for S-Expressions
	2.5 Deterministic Parsing with DGNF
	2.6 Normalizing Context-Free Expressions to DGNF Grammars
	2.7 Lexer-Parser Fusion
	2.8 Staging

	3 Normalizing context-free expressions
	3.1 Normalization to DGNF
	3.2 Semantics of DGNF
	3.3 Well-definedness and Correctness
	3.4 Normalization Soundness
	3.5 Implementation

	4 Fusion
	5 Implementation of parsing
	5.1 The Lexing Algorithm
	5.2 The DGNF Parsing Algorithm
	5.3 The Parsing Algorithm for Fused Grammars
	5.4 The Staged Parsing Algorithm
	5.5 Implementing the Staged Parsing Algorithm

	6 Evaluation
	7 Related work
	8 Future work
	Acknowledgments
	References

