
First-class subtypes
Jeremy Yallop Stephen Dolan

University of Cambridge
{jeremy.yallop,stephen.dolan}@cl.cam.ac.uk

1. Introduction
One purpose of the ML module system is to hide equalities be-
tween types exposed in an interface and types used in the imple-
mentation [11]. Generalized algebraic data types (gadts) [14], a
more recent addition, make these type equalities first class. gadts
attach first class equalities to data; equalities may be hidden by
polymorphism or modular abstraction, and later revealed by scru-
tinising the data.

While gadts are frequently useful, type equality is sometimes
too strong a property. For example, here is a function that prints
arrays by calling the name method of each element:

let print_array = Array.iter (fun o → print o#name)

To call name, print_array does not need to know the full element
type: it needs only to know that there is a method name returning
string. OCaml gives print_array a row type, indicating that the
element type may have other methods:

val print_array : <name: string; ..> array → unit

But rows are sometimes too inflexible. Given two arrays a, b, of
different element types, unification will fail:

List.iter print_array [a; b]

This note introduces an interface based on a type constructor
sub with a coercion operator >: that supports passing informa-
tion around a program, making it possible to combine iterations
over arrays whose element types belong to the same subtyping
hierarchy.
type +’a arr = Arr : ’x array * (’x, ’a) sub → ’a arr
let aiter f (Arr (a,sub)) = Array.iter (fun s → f (s >: sub)) a
List.iter

(aiter (fun o → print o#name)) [Arr (a,refl); Arr (b,refl)]

2. First-class subtypes defined
Subtypes ala Liskov & Wing The first ingredient in a repre-
sentation of subtyping proofs is a definition of subtyping. Here is
Liskov and Wing’s characterization [12]:

Let φ(x) be a property provable about objects x of type T .
Then φ(y) should be true for objects y of type S where S
is a subtype of T .

For instance, properties of a record type r should also hold for a
widening of r, since the extra fields can be ignored.
Subtypes ala Curry & Howard The Curry-Howard corre-
spondence turns Liskov and Wing’s characterization of subtyping
into an executable program.

With a propositions-as-types perspective [16], a property prov-
able about objects of type T is represented as a type φ(T ) involv-
ing T , and a proof of that property is a value1 of that type. Liskov
and Wing’s proposition that S is a subtype of T corresponds to
the following (poly)type:

∀φ.φ(T )→ φ(S)
Two points deserve note. First, the characterization involves prop-
erties of all objects of a particular type, not properties of in-

1 In total languages terms are proofs, but OCaml is not total.

module type POS = sig type +’a t end
module type NEG = sig type -’a t end
module Id = struct type ’a t = ’a end
module Compose+−(F:NEG)(G:POS) = struct type ’a t = ’a F.t G.t end
module Compose++(F:POS)(G:POS) = struct type ’a t = ’a F.t G.t end

Figure 1. Positive and negative contexts
type (-’a, +’b) sub
val refl : (’a, ’a) sub
val lift: {P:POS} → (’a,’b) sub → (’a P.t,’b P.t) sub
val (>:) : ’a → (’a, ’b) sub → ’b

Figure 2. First-class subtypes: minimal interface
dividual objects, which would need dependent types. Second, a
“property about objects” is a context that consumes an object; φ
therefore ranges over negative contexts.
Contexts and variance Fig. 1 defines OCaml signatures, POS
and NEG, of positive and negative type contexts. The - indicates
that the parameter can only appear in negative (contravariant)
positions in instantiations of the signature. The Id module and
Compose functors represent the identity context and the composi-
tion of two contexts. Each composition of variance in the argu-
ment contexts requires a separate Compose (but see §3 for a gener-
alization).
Encoding subtypes Fig. 2 defines an interface to subtype wit-
nesses. A value of type (s, t) sub serves as evidence that s is a
subtype of t. There are two ways to construct such evidence.
First, refl represents the fact that every type is a subtype of it-
self. Second, lift represents the fact that subtyping lifts through
covariant contexts, which are passed as implicit arguments [18].
The single destructor, >:, which mimics OCaml’s built-in coercion
operator :>, supports converting a value of type s to a supertype
t.

This small interface suffices as a basis for many useful subtyping-
related functions. For example, the transitivity of subtyping is
represented by a function of the following type:

val trans : (’a,’b) sub → (’b,’c) sub → (’a,’c) sub

and may be defined as follows:
let trans (type a b) (x : (a,b) sub) y =

let module M = struct type +’c t = (a,’c) sub end
in x >: lift {M} y

and other operations, such as a function to lift through negative
contexts, can be defined similarly (§A.1).

Using the variance of sub, refl can be used to define a witness
for any subtyping fact in the environment. For example, in OCaml
the object type < m:int >, with one method m, is a subtype of the
type < > of objects with no methods. This fact can be turned into
a sub value by coercing refl, either by lowering the contravariant
parameter:

(refl : (< >, < >) sub :> (<m:int>, < >) sub)

or by raising the covariant parameter:
(refl : (<m:int>, <m:int>) sub :> (<m:int>, < >) sub)

The resulting value can be passed freely through abstraction
boundaries that conceal the types involved, eventually being used
to coerce a value of type <m:int> to its supertype < >.



type (-’a, +’b) sub = {N:NEG} → (’b N.t → ’a N.t)
let refl {N:NEG} x = x
let lift {P:POS} s {Q:NEG} = s {Compose+−(P)(Q)}
let (>:) (type b) x f =

let module M = struct type -’a t = ’a → b end in
f {M} id x

Figure 3. First-class subtypes via negative contexts
type (-’a, +’b) sub = {P:POS} → (’a P.t → ’b P.t)
let refl {P:POS} x = x
let lift {P:POS} s {Q:POS} x = s {Compose++(P)(Q)} x
let (>:) x f = f {Id} x

Figure 4. First-class subtypes via positive contexts

module type DIAG = sig type (-’a, +’b) t
val refl : (’a, ’a) t

end
module Function: DIAG with type (’a,’b) = ’a → ’b
module Sub: DIAG with type (’a,’b) t = {D:DIAG} → (’a,’b) D.t
type (-’a, +’b) sub = {D:DIAG} → (’a,’b) D.t
let refl {D:DIAG} = D.refl
let lift {P:POS} f =

let module L = struct type (’a,’b) t = (’a P.t,’b P.t) Sub.t
let refl = Sub.refl

end in f {L}
let (>:) x f = f {Function} x

Figure 5. First-class subtypes, an initial approach

The generality of the interface in Fig. 2 places constraints
on the implementation. Most notably, since lift can transport
subtyping evidence through any positive context, coercion must
pass values through unexamined. For example, lift might be used
to build a value of type (s list, t list) sub from a value of type
(s, t) sub:

let l : (s list, t list) sub = lift {List} s_sub_t

but applying l cannot involve list traversal, since the subtyping
interface says nothing about list structure. A polymorphic inter-
face thus ensures an efficient implementation.
Three implementations of subtyping Several implementa-
tions of Fig. 2 are possible. Fig. 3 gives an implementation based
on negative contexts that directly follows Liskov & Wing’s defini-
tion2. A value of type (s, t) sub is a proof that t can be replaced
with s in any negative context; operationally it must be the iden-
tity, as discussed above, and so the two constructors lift and refl
both correspond to the identity function. Fig. 4 gives a similar
but simpler implementation, based on positive contexts. Fig. 5
takes an alternative view, based on initiality: (’s,’t) sub is the
smallest contra/co-variant binary type constructor equipped with
an inhabitant refl : (’a, ’a) sub, from which there is a mapping
into any other such type constructor with refl. Despite the differ-
ent starting points, the three implementations are interdefinable
(§A.2).

All three implementations use the modular implicits extension
to OCaml [18] — not for implicit instantiation of arguments, but
because modular implicits support higher-kinded quantification
with propagation of variance information. Other approaches to
higher-kinded polymorphism could perhaps be used instead [20].
From subtyping to equality The variance annotations (+, -)
in Figs. 1–5, constrain the instantiation of each type construc-
tor. Without these annotations each representation of subtyping
collapses to a representation of equality for which additional prop-
erties such as symmetry become derivable. For example, stripping
the variance annotations turns Fig. 1 into the standard Leibniz
encoding [6, 2, 5, 17, 19], and Fig. 5 into a Church encoding of
the equality GADT [1].

3. First-class subtypes: further examples
Some of OCaml’s built-in type constructors, such as ref and array,
are invariant, and so interact poorly with subtyping. The situa-
tion may be improved by decomposing each invariant type param-
eter into a co/contra-variant pair [4], e.g. writing type (+’r,-’w) ref
rather than type ’a ref. With this decomposition, abstraction and
first-class subtypes may be combined to selectively expose capa-
bilities to different parts of a program: a function may be given
the ability to write to a reference, write at a particular subtype, or

2 Edward Kmett has used this approach in the magpie library [10], as
we discovered after writing this note.

not write at all (and similarly for read). Other types of capability
(e.g. for file descriptors) can be written similarly.

A second class of examples arises from selective abstraction,
where an abstract type comes with a proof of a property about
that type. For example, here is a module that exports a type t
along with a proof that t is a subtype of int:
module M: sig type t val t_sub_int: (t,int) sub (* . . . *) end

Outside the module, values of type t can be coerced to int, but not
vice versa. This approach supports a style similar to refinement
types, in which abstraction boundaries distinguish values of a
type for which some additional predicate has been shown to
hold. OCaml’s private types [9] provide direct language support
for this feature, but first-class subtypes allow more flexibility:
for example, they allow some of the methods of an object type
to be hidden from the exposed interface, and also support the
dual of private types (called invisible types [13]), and zero cost-
coercions [3], where coercions in both directions are available, but
actual type equality is not exposed.

Dual to abstraction, combining first-class subtypes with OCaml’s
first-class polymorphism encodes bounded quantification. For
example, the type ∀α ≤ t. α → t might be written like this:
type t = { f: ’a. (’a, t) sub → ’a → t }.

Finally, first-class subtypes can express proofs of variance. For
example, the covariance of list can be represented by a value of
type (’a,’b) sub → (’a list, ’b list) sub. Abstracting over proofs
of variance, we might build a Compose functor that generalizes
Compose+− and Compose++ (Fig. 1).

4. Limitations and further work
The encodings given here are useful for exploratory work, for
demonstrating soundness, and for showcasing OCaml’s expres-
sivity. However, direct language support would make first-class
subtypes more usable. Scherer and Rémy [13] discuss design is-
sues and related work (e.g. [8, 15]).

The encodings suffer from some awkwardness, since contexts
must be applied explicitly, unlike the equalities revealed by pat-
tern matching with gadts, which the type checker applies im-
plicitly. With language support for subtype witnesses, coercions
would still be explicit, but constraints in scope could be implicitly
lifted through contexts.

First-class subtypes might be added to OCaml by extending
the interpretation of the existing notation for GADTs, so that
indexes with variance annotations carry subtyping constraints
rather than equality constraints. For example, the sub type (Fig. 2)
might be defined as follows:

type (-’a, +’b) sub = Sub : (’a, ’a) sub

so that when a value of type (a,b) sub matches a pattern Sub the
type checker knows that a is a subtype of b.

Extending an ML dialect centred around subtyping, such as
MLsub [7], might prove even more fruitful.



A. Additional definitions
A.1 Lifting through negative contexts
The minimal interface (Fig. 2) supports the definition of several
additional functions. The lift function in the interface lifts sub-
typing witnesses through positive contexts. The elements of the
interface can be used to construct a companion function, lift−,
that lifts subtyping witnesses through negative contexts:

val lift− : {N:NEG} →(’a, ’b) sub → (’b N.t, ’a N.t) sub

As with trans, implementing lift− is a matter of finding a suitable
implementation of POS to pass to lift:

let lift− (type a b) {N:NEG} (x: (a,b) sub) : (b N.t,a N.t) sub =
let module M = struct type +’b t = (’b N.t, a N.t) sub end in
refl >: lift {M} x

A.2 Converting between encodings
The minimal interface (Fig. 2) is sufficiently rich that, given two
implementations of the interface A and B, any subtyping witness of
type (’a,’b) A.t can be converted to a witness of type (’a,’b) B.t.
The SUB module type contains the four elements of (Fig. 2) (t,
refl, lift, >:):

module type SUB =
sig

include DIAG
val lift : {P:POS} → (’a, ’b) t → (’a P.t, ’b P.t) t
val (>:) : ’a → (’a, ’b) sub → ’b

end

The function conv takes two implementations of SUB, A and B, and
converts a value in A.t to a value of B.t:

val conv : {A:SUB} → {B: SUB} → (’a, ’b) A.t → (’a, ’b) B.t

As often, implementing conv is a matter of finding a suitable
implementation of POS to pass to lift:

let conv (type a b) {A:SUB} {B:SUB} (x : (a,b) A.t) =
let module M = struct type ’a t = (a, ’a) B.t end in
A.(>:) B.refl (A.lift {M} x)

References
[1] R. Atkey. Relational parametricity for higher kinds. In P. Cégielski

and A. Durand, editors, Computer Science Logic (CSL’12), vol-
ume 16 of LIPIcs, 2012.

[2] A. I. Baars and S. D. Swierstra. Typing dynamic typing. In
Proceedings of the 7th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’02. ACM, 2002.

[3] J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe
zero-cost coercions for haskell. In Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming,
ICFP ’14. ACM, 2014.

[4] L. Cardelli. Typeful programming. In Formal Description of
Programming Concepts, IFIP State of the Art Reports Series.
Springer, Feb. 1989.

[5] J. Cheney and R. Hinze. First-Class Phantom Types. Technical
report, Cornell University, 2003.

[6] A. Church. A formulation of the simple theory of types. The
Journal of Symbolic Logic, 5(2), 1940.

[7] S. Dolan and A. Mycroft. Polymorphism, subtyping, and type in-
ference in MLsub. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL
2017. ACM, 2017.

[8] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and gener-
alized constraints for C# generics. In Proceedings of the 20th Eu-
ropean Conference on Object-Oriented Programming, ECOOP’06.
Springer-Verlag, 2006.

[9] J. Garrigue. Private row types: Abstracting the unnamed. In
N. Kobayashi, editor, Programming Languages and Systems: 4th

Asian Symposium, APLAS 2006. Springer Berlin Heidelberg,
2006.

[10] E. Kmett. Magpie. https://github.com/ekmett/magpie/. See also
https://issues.scala-lang.org/browse/SI-4040, Dec 2010.

[11] X. Leroy. Manifest types, modules, and separate compilation. In
Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’94. ACM, 1994.

[12] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6), Nov. 1994.

[13] G. Scherer and D. Rémy. GADTs meet subtyping. In M. Felleisen
and P. Gardner, editors, 22nd European Symposium on Program-
ming, ESOP 2013, volume 7792 of Lecture Notes in Computer
Science. Springer, 2013.

[14] T. Sheard and E. Pasalic. Meta-programming with built-in type
equality. Electronic Notes in Theoretical Computer Science, 199,
2008. Proceedings of the 4th International Workshop on Logical
Frameworks and Meta-Languages (LFM 2004).

[15] B. Vaugon. Subtyping by Constraint Saturation, Theory and
Implementation. Theses, Université Paris-Saclay, Mar. 2016.

[16] P. Wadler. Propositions as types. Commun. ACM, 58(12), Nov.
2015.

[17] S. Weirich. Functional pearl: type-safe cast. Journal of Functional
Programming, 14, 2004.

[18] L. White, F. Bour, and J. Yallop. Modular implicits. ACM
Workshop on ML 2014 post-proceedings, September 2015.

[19] J. Yallop and O. Kiselyov. First-class modules: hidden power
and tantalizing promises. ACM SIGPLAN Workshop on ML,
September 2010. Baltimore, Maryland, United States.

[20] J. Yallop and L. White. Lightweight higher-kinded polymorphism.
In Functional and Logic Programming - 12th International Sym-
posium, FLOPS 2014, Kanazawa, Japan. Proceedings, 2014.


