
First-class modules: hidden power and tantalizing promises

Jeremy Yallop
Applicative Ltd

Oleg Kiselyov
FNMOC, Monterey, CA

Abstract
First-class modules introduced in OCaml 3.12 make type construc-
tors first-class, permitting type constructor abstraction and poly-
morphism. It becomes possible to manipulate and quantify over
types of higher kind. We demonstrate that as a consequence, full-
scale, efficient generalized algebraic data types (GADTs) become
expressible in OCaml 3.12 as it is, without any further exten-
sions. Value-independent generic programming along the lines of
Haskell’s popular “Generics for the masses” become possible in
OCaml for the first time. We discuss extensions such as a better im-
plementation of polymorphic equality on modules, which can give
us intensional type analysis (aka, type-case), permitting generic
programming frameworks like SYB.

1. Introduction
OCaml 3.12 introduced three major extensions to OCaml: nota-
tion for polymorphic recursion, scoped type variables, and first-
class modules. Whereas the former is mainly syntactic sugar (poly-
morphic recursion being already possible using polymorphic record
fields), the latter two are genuine extensions. First-class modules –
first-class functors – permit type constructor abstraction and poly-
morphism. Type constructor polymorphism makes it possible to en-
code genuine Leibniz equality. The latter, along with existentials
and polymorphic recursion (both of which can also be encoded us-
ing first-class modules), let us implement GADTs. We can now
work with “real” GADTs in OCaml, without the need for exten-
sions.

The complete code that implements and illustrates GADTs,
generic programming, and other uses of first-class modules is given
as supplemental material. Section titles refer to the corresponding
code by the file name, given in parentheses.

2. Leibniz equality (leibniz.ml)
The power of GADTs derives from their behaviour during pattern
matching. Each branch of a pattern match potentially exposes a
proof of equality between types, allowing the compiler to refine the
type of the scrutinee. In order to emulate this behaviour in OCaml,
we supply to each constructor an additional argument representing
an equality proof. This proof is represented as a value of type eq,
which has constructors corresponding to familiar equality axioms:

type (’a, ’b) eq
val refl : (’a, ’a) eq
val symm : (’a, ’b) eq -> (’b, ’a) eq
val trans : (’a, ’b) eq -> (’b, ’c) eq -> (’a, ’c) eq

In order to make use of these proof values, we also need a destructor
that turns an proof of type equality into a coercion between types:

val cast : (’a, ’b) eq -> ’a -> ’b

All versions of OCaml allow an implementation of eq as a straight-
forward isomorphism which supports all these operations:

type (’a, ’b) eq = (’a -> ’b) * (’b -> ’a)

However, for full generality we need a further axiom, corre-
sponding to Leibniz’s subsitutivity law. For every type constructor
tc we need a function that turns a proof that ’a is equal to ’b into
a proof that ’a tc is equal to ’b tc:

val subst = (’a, ’b) eq -> (’a tc, ’b tc) eq

It is possible to write this function for particular instances of tc
using the isomorphism implementation of eq. For example, if tc is
the list constructor then the map function is all we need:

let subst_list (f, g) = (map f, map g)

However, it is not possible to write such subst for every in-
stance of tc. There is no satisfactory way to write subst for ab-
stract or mutable types, for example. There is also no way to write a
single definition that suffices for all type constructors. Further, even
the definitions that are possible to write are inefficient: a cast based
on subst list traverses and copies its argument.

The only way to abstract over a parameterised type constructor
in OCaml is to use the module language. For example, in

module type TC = sig type ’a tc end

tc has the kind * -> *. But modules are not first class—until
OCaml 3.12.

With genuine Leibniz equality, we do not copy the list, we return
the original list as it was. No memory needs to be allocated.

Furthermore, refl, subst and cast are sufficient to implement
symm and trans. Here is a definition of trans:

let trans (type a) (type b) (type c) a_eq_b b_eq_c =
let module TC = Subst(struct type ’x tc = (a, ’x) eq end)
in cast (TC.subst b_eq_c) a_eq_b

We regard the type (’a,’b) eq as an instance of the type ’b tc
where the type “constructor” tc (of the kind * -> *) is a type-
level abstraction λx.(’a,x)eq. We then apply Leibniz’s law to
such interpreted ’b tc, substituting ’b with ’c as licensed by
the equality witness (’b,’c) eq. The result is the term of the
type (’a,’c) eq, witnessing the equality of ’a with ’c. The
expression for trans demonstrates that we take the notion of type
constructor quite broadly, as an arbitrary type-level abstraction.

As we show in accompanying code, symm can be defined analo-
gously.

3. Polymorphic recursion (polyrec.ml)
OCaml has supported polymorphic recursion for some time, via
record fields, object methods with polymorphic types, and recursive
modules. OCaml 3.12 adds a more convenient notation.

First-class modules give yet more encodings of polymorphic re-
cursion. One encoding uses functors to emulate the “big lambda”
of System F, similar to the treatment of polymorphism in Harper
and Stone’s semantics of Standard ML. Making functors first class
naturally leads to first-class polymorphism, which is sufficient to

encode polymorphic-recursive functions. Less verbosely, we can
simply wrap a polymorphic function in a module, which then be-
haves much the same as a record with a polymorphic field.

4. Existential types (existentials.ml)
It is well known that abstract types (as used in modules) can be used
to encode existential types. Indeed, Russo’s design for first class
modules, from which the OCaml design derives, is based directly
on extended forms of the open and pack forms for existentials.

Russo illustrates the connection with existentials using an im-
plementation of the sieve of Eratosthenes based on an abstract
stream type. A functor from streams to streams corresponds to one
step of the algorithm. Since the number of applications of the func-
tor depends on a runtime value, this encoding fundamentally de-
pends on first-class modules to eliminate the stratification between
the module and core languages.

As is also well known, existentials can be encoded using
parametric polymorphism. As we noted above, OCaml supports
polymorphism for record or object fields, and Russo’s example
translates straightforwardly without the need for first-class mod-
ules. However, the existentials arising from first-class modules are
strictly more powerful than the existentials encoded using poly-
morphic record fields: the former support higher-kinded existential
variables, which cannot be represented in the latter encoding. We
include a second example, also based on streams, adding a map
function which illustrates this additional power.

5. GADTs (gadts.ml)
We now have all the pieces needed to encode GADTs in OCaml.
Perhaps the most common example of a GADT is a well-typed
evaluator for an algebraic typed object language represented as an
algebraic datatype. In Haskell notation we might write it as follows:

data Exp :: * -> * where
Lft :: Int -> Exp Int -- Lift constants
Inc :: Exp (Int -> Int) -- Succ function
Lam :: (Exp u -> Exp v) -> Exp (u -> v) -- Lambda (HOAS)
App :: Exp (u -> v) -> Exp u -> Exp v -- Application

Internally, GHC represents this as a standard existential datatype
with explicit equality proofs :

data Exp a =
a ~ Int => Lft Int

| a ~ Int -> Int => Inc
| forall u v. a ~ u -> v => Lam (Exp u -> Exp v)
| forall u v. a ~ v => App (Exp (u -> v)) (Exp u)

Our OCaml encoding represents both the equality proofs and the
existential variables explicitly:

type ’a exp =
Lft of (’a,’a) eq * ’a

| Inc of (int -> int,’a) eq
| Lam of < m_lam : ’w. (’a,’w) lam_k -> ’w >
| App of < m_app : ’w. (’a,’w) app_k -> ’w >

and (’a,’w) lam_k =
{lam_k : ’u ’v. ((’u->’v),’a) eq * (’u exp->’v exp) -> ’w}

and (’a,’w) app_k =
{app_k : ’u ’v. (’v,’a) eq * (’u->’v) exp * ’u exp -> ’w}

During evaluation we unpack the existentials and use the equal-
ity proofs to coerce the results of each branch. The accompanying
file gives the full code, including smart constructors and example
terms. We also include a second example: a GADT representing a
formatting specification for use by both printf and scanf.

6. Generic programming (generics.ml)
Generic programming systems are typically designed around value-
level representations of types. Most work on generic programming

in ML uses value-dependent representations of types, in which a
type representation consists of one or more generic functions spe-
cialized to the type that is represented. For example, the following
type representation consists of a printing function and an equality
function.

type ’a repr = (’a -> string) * (’a -> ’a -> bool)
val unit : unit repr
val int : int repr
val (*) : ’a repr -> ’b repr -> (’a * ’b) repr

The representation type comes equipped with one constructor value
for each constructor of the type language: we can construct a
type representation value int * unit that can be used to print
or compare values of the type that is written in the same way.

In contrast, the more extensive work on generic programming
in Haskell is almost entirely based around value-independent type
representations, which have no inherent connection with any partic-
ular generic function. The modularity benefits of such approaches
are obvious, but they typically require advanced type system fea-
tures, such as GADTs or higher-kinded type variables, that are not
available in ML-family languages.

The introduction of first class modules make generic program-
ming based on value-independent type representations possible in
OCaml for the first time. We can specify the type representation
without committing to any particular implementation:

module type Interpretation : sig
type ’a tc
val unit : unit tc
val int : int tc
val (*) : ’a tc -> ’b tc -> (’a * ’b) tc

end

Our representation then abstracts over instances of this signature:

module type Repr = sig
type a
module Interpret (I : Interpretation) :
sig val result : a I.tc end

end
type ’a repr = (module Repr with type a = ’a)

A generic function takes a type representation s repr and sup-
plies the Interpretation argument to obtain a function whose type
involves s. For example, the generic printing function has the type:

val show : ’a. ’a repr -> ’a -> string

Its implementation unpacks the repr argument and applies its
Interpret functor to a suitable instance of Interpretation:

module Show : Interpretation with type ’a tc = ’a -> string

7. Proposal: Intensional type analysis
A truly usable OCaml generic programming library will need a
complete representation for “representable” types. Using OCaml’s
own representation of types would avoid the need to define a type
representation for every user-defined type—an enticing prospect.

First-class modules would make it possible to tap into OCaml’s
type representation, if the equality of first-class module values were
more principled. Currently, polymorphic equality compares run-
time representations of value components of the modules, ignoring
type components (which may raise soundness issues).

Also, this would be a chance to specify and compute the canon-
ical type representation for OCaml; currently, deciding if two types
are equal requires full-blown unification (and backtracking).

8. Future work (open gadts.ml)
Tantalizing promises include open GADTs, injectivity of GADTs,
first-class tagless final encodings and higher-order nested datatypes.

