
Submitted to:
ML 2017

c© R. Li & J. Yallop
This work is licensed under the
Creative Commons Attribution License.

Extending OCaml’s open

Runhang Li
Twitter, Inc

rli@twitter.com

Jeremy Yallop
University of Cambridge

jeremy.yallop@cl.cam.ac.uk

Abstract

We propose a harmonious extension of OCaml’s open construct.
OCaml’s existing construct open M imports the names exported by the module M into the current

scope. At present M is required to be the path to a module. We propose extending open to instead
accept an arbitrary module expression, making it possible to succinctly address a number of existing
scope-related difficulties that arise when writing OCaml programs.

1 Introduction: open vs include
Programming languages intended for large-scale, modular programming often include features for mak-
ing names defined in one scope available without qualification in another scope. OCaml provides two
such operations, via the keywords open and include:

open M include M

Both of these operations introduce the bindings exported by the module M into the current scope. Addi-
tionally, include re-exports the bindings from the current scope. This distinction is a useful one, since
it is not always appropriate to re-export the names used within a module.

A second difference between open and include concerns the form of the argument. In OCaml the
argument to open is a module path:

open A.B.C

In contrast, the argument to include can be any module expression, such as a functor application,
signature-constrained expression, or structure body:

include F(X)

include (M:S)

include struct. . .end

This distinction is less useful: there is no fundamental reason why include should accept arbitrary
module expressions, while open should not.

This paper explores the consequences of extending open to eliminate the second difference, so that
both open and include accept an arbitrary module expression as argument (Figure 1). In practice,
allowing the form open struct . . . end extends the language with a non-exporting version of every
type of declaration, since any declaration can appear between struct and end.

The extended open has many useful applications, as we illustrate with examples condensed from
real code (Section 2). Our design also resolves some problems in OCaml’s signature language (Sec-
tion 3). We touch briefly on restrictions and other design considerations (Section 4) before sketching the
implementation (Section 5) and comparing some alternative designs (Section 6).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Extending OCaml’s open

Current design:
Only basic paths are allowed

open M.N

Extended design (this paper):
Arbitrary module expressions are allowed

open M.N open F(M) open (M:S)

open struct . . . end

Figure 1: The open construct and our proposed extension

1.1 Status
Following the presentation of this proposal at the OCaml 2017 workshop [12], a variant of this design
was discussed at the Caml developers meeting and accepted for inclusion into OCaml 4.08. Section 7
gives more details.

2 Extended open in structures: examples
Effectively managing names and scope is a crucial part of structuring programs. The examples in this
section show how the lack of a facility for local (non-exporting) declarations can result in awkward struc-
ture or inappropriate scoping in OCaml programs, and further show how these problems are eliminated
by the extended open construct1.

2.1 Unexported top-level values
A straightforward use of the extended open construct is the introduction of local declarations that are
not exported. In the code on the left, x is available in the remainder of the enclosing module, but it is not
exported from the module, as shown in the inferred signature on the right:

open struct let x = 3 end

let y = x

(* no entry for x *)

val y : int

2.2 A workaround for type shadowing
One common programming pattern is to export a type t in each module. For example, the standard
library defines types Float.t, String.t, Complex.t, and many more. However, this style leads to
problems when the definition of one such t must refer to another. For example, in the following code,
renaming the s to t requires some care:

type s = A

module M = struct

type t = B of s | C

end

Since type definitions are recursive by default, naively renaming s to t in the definition of M.t changes
the meaning of the definition so that the argument of B now refers to the inner t:

type t = A

module M = struct

type t = B of t | C

end

1The reader familiar with Standard ML will recognise that the local construct in that language, an inspiration for this
proposal, can also solve the problems described here. We return to this point in Section 6.1.



R. Li & J. Yallop 3

The nonrec keyword, added in a recent version of OCaml (4.02.2, released June 2015), overrides this
default, making the definition of t non-recursive, and restoring the original meaning:

type t = A

module M = struct

type nonrec t = B of t | C

end

However, in cases where a single type definition must contain both recursive references and refer-
ences to another type of the same name, nonrec cannot help. For example, in the following code, t1 and
t2 cannot both be renamed t, since both names are used within a single scope, where all occurrences of
t must refer to the same type:

type t1 = A

module M = struct

type t2 = B of t2 * t1 | C

end

The extended open construct resolves the difficulty, making it possible to give an unexported local alias
for the outer t:

type t = A

module M = struct

open struct type t’ = t end

type t = B of t * t’ | C

end

Similarly, for GADT-style definitions [6] such as the following

type t = B : t’ → t

| C : t

nonrec can never be used, since every such definition refers to the definiendum in the return type of
each constructor2.

2.3 Local definitions scoped over several functions
A common pattern involves defining one or more local definitions for use within one more more ex-
ported functions3. Typically, the exported functions are defined using tuple pattern matching. Here is an
example, defining f and g in terms of an auxiliary unexported function, aux:

let f, g =

let aux x y =

. . .
in (fun p → aux p true),

(fun p → aux p false)

This style has several drawbacks. First, the names f and g are separated from their definitions by the
definition of aux. Second, the unsugared syntax for creating functions fun x → . . . must be used in
place of the more typical sugared syntax let f x = . . .. Finally, the definition allocates an intermediate
tuple. With the extended open construct, all of these these problems disappear:

2Mantis Issue 6934: nonrec misbehaves with GADTs https://caml.inria.fr/mantis/view.php?id=6934
3See draw_poly, draw_poly_line and dodraw in the OCaml Graphics module for an example. https:

//github.com/ocaml/ocaml/blob/4697ca14/otherlibs/graph/graphics.ml, lines 105–117

https://caml.inria.fr/mantis/view.php?id=6934
https://github.com/ocaml/ocaml/blob/4697ca14/otherlibs/graph/graphics.ml
https://github.com/ocaml/ocaml/blob/4697ca14/otherlibs/graph/graphics.ml


4 Extending OCaml’s open

include struct

open struct let aux x y = . . . end

let f p = aux p true

let g p = aux p false

end

The surrounding include struct . . . end delimits the scope of the local binding aux, so that aux is
only visible in the definitions of f and g, not in the code that follows.

2.4 Local exception definitions
OCaml’s let module construct supports defining exceptions whose names are visible only within a
particular expression. For example, in the following code, the Interrupt exception is only visible
within the body of the let module . . . in binding:

let module M = struct exception Interrupt end in

let rec loop () = ... raise M.Interrupt

and run () = match loop () with

| exception M.Interrupt → Error "failed"

| x → Ok x

in run ()

Since OCaml 4.04, a construct that supports local exceptions more directly is also available [4]:

let exception Interrupt in

let rec loop () = ... raise Interrupt

and run () = match loop () with

| exception Interrupt → Error "failed"

| x → Ok x

in run ()

Limiting the scope of exceptions supports a common idiom in which exceptions are used to pass infor-
mation between a raiser and a handler without the possibility of interception [7]. (This idiom is perhaps
even more useful for programming with effects [1], where information flows in both directions.)

Limiting the scope of exceptions can make control flow easier to understand and, in principle, easier
to optimize; in some cases, locally-scoped exceptions can be compiled using local jumps [4].

The extended open construct improves support for this pattern. While let module allows defining
exceptions whose names are visible only within particular expressions, the extended open also allows
limiting visibility to particular declarations. In the following snippet, the Interrupt exception is only
visible in the definitions of loop and run:

include struct

open struct exception Interrupt end

let rec loop () = ... raise Interrupt

and run () = match loop () with

| exception Interrupt → Error "failed"

| x → Ok x

end

As with the previous example, this style of local definition is supported in Standard ML by the local
construct discussed in Section 6.1.



R. Li & J. Yallop 5

2.5 Shared state
Similarly, the extended open supports limiting the scope of global state to a particular set of declarations:

open struct

open struct let counter = ref 0 end

let inc () = incr counter

let dec () = decr counter

let current () = !counter

end

Here the names inc, dec and current are accessible in the code that follows, but the shared refer-
ence counter is not.

2.6 Local names in generated code
It is common in OCaml to use low-level code generation in the implementation of libraries and programs.

Until recently, the most common system for compile-time code generation was the Camlp4 prepro-
cessor that performs transformations on the concrete syntax of programs. These transformations can
result in the generation of entirely new functions and modules as is the case with the deriving frame-
work that generates pretty-printers, serializers, and other functions from type definitions [18].

More recently, the ppx framework, which supports transformations on abstract syntax [17], has
become popular. Syntax transformers based on ppx, such as ppx_deriving (a reimplementation of
the deriving generic programming framework [18]), js_of_ocaml-ppx (an extension for manipulat-
ing JavaScript properties, distributed as part of the js_of_ocaml OCaml-to-JavaScript compiler [16]),
ppx_lwt (a syntax for constructing promise computations, part of the lwt lightweight concurrency
framework [15]) and ppx_stage (a preprocessor for typed multi-stage programming), may also gen-
erate large amounts of code.

The definitions introduced by Camlp4 and ppx extensions are often intended to be details of the
implementation, not exposed to the programmer, and with names that do not interact with the remainder
of the program. However, it is currently difficult to introduce completely anonymous declarations in
OCaml. A common solution is to generate instead a module with a “sufficiently unique” name — i.e. a
name that is unlikely to clash with names defined by the programmer. For example, here is a simple
expression, representing a function that generates a code fragment, written using ppx_stage:

fun x → [%code [%e x] ]

The ppx_stage extension transforms the function body to generate a module with various compo-
nents that implement the behaviour of the code fragment:

module Staged_349289618 =

struct

let staged0 hole’’_1 =

let contents’’_1 = hole’’_1 in

...

If, as is often the case, the user of ppx_stage does not provide an interface file, the generated module
Staged_349289618 will appear in the interface to the module, exposing the internal details of the code
generation scheme.



6 Extending OCaml’s open

2.7 Restricted open
It is sometimes useful to import a module under a restricted signature. For example, the following
statement

open (Option : MONAD)

imports only those identifiers from the Option module that appear in the MONAD signature.
There is a caveat here: besides excluding identifiers not found in MONAD, OCaml’s module ascription

also hides concrete type definitions behind abstract types, which is typically not the desired behaviour
for open. This behaviour can be avoided by adding an explicit constraint to the constraining MONAD

signature to maintain the equality between the type t in the signature and Option.t:

open (Option : MONAD with type ’a t = ’a Option.t)

However, this is rather verbose. The difficulty could be more succinctly addressed by extending
OCaml with a construct found in Standard ML, namely transparent signature ascription [8], a useful
feature in its own right.

3 Extended open in signatures: examples
In signatures, as in structures, the argument of open is currently restricted to a qualified module path
(Figure 1). As in structures, we propose extending open in signatures to allow an arbitrary module
expression as argument. However, while extended open in structures evaluates its argument, open in
signatures is used only during type checking.

This section presents examples of signatures that benefit from the extended open. Our examples all
involve type definitions, but it is possible to construct similar examples for other language constructs,
such as functors and classes.

3.1 Unwriteable, unprintable signatures
The OCaml compiler has a feature that is often useful during development: passing the -i flag when
compiling a module causes OCaml to display the inferred signature of the module. However, users are
sometimes surprised to find that a signature generated by OCaml is subsequently rejected by OCaml,
because it is incompatible with the original module, or even because it is invalid when considered in
isolation.

Here is an example of the first case. The signature on the right is the output of ocamlc -i for the
module on the left:

type t = T1

module M = struct

type t = T2

let f T1 = T2

end

type t = T1

module M : sig

type t = T2

val f : t → t

end

The input and output types of M.f are different in the module, but printed identically. That is, the printed
type for f is incorrect.

Here is an example of the second case, again with the original module on the left and the generated
signature on the right:



R. Li & J. Yallop 7

type t = T

module M = struct

type ’a t = S

let f T = S

end

type t = T

module M : sig

type ’a t = S

val f : t → t

end

This time the generated signature is ill-formed because the type M.t requires a type argument, but is
used without one.

If these problems arose from a shortcoming in the implementation of the -i flag then there would
be little cause for concern. In fact, they point to a more fundamental issue: many OCaml modules have
signatures that cannot be given a printed representation. It is impossible to generate suitable signatures;
more importantly, it is impossible even to write down suitable signatures by hand.

The problem in both cases is scoping: an identifier such as t always refers to the most recent defini-
tion, and there is no way to refer to other bindings for the same name. The nonrec keyword (Section 2.2),
solves a few special cases of the problem, by making it possible to refer to a single other definition for t
within the definition of t itself. But most such problems, including the examples above, are not solved
by nonrec.

The extended open solves the problem entirely, by making it possible to give internal aliases to
names. For example, here is a valid signature for the first case above using the extended open.

type t = T1

module M = struct

type t = T2

let f T1 = T2

end

type t = T1

open struct type t’ = t end

module M : sig

type t = T2

val f : t’ → t

end

The OCaml compiler might similarly insert a minimal set of aliases to resolve shadowing without
the need for user intervention. (At the time of writing, however, our implementation does not yet include
this improvement to signature printing.)

And, of course, the extended open also makes it possible for users to write those signatures that are
currently inexpressible.

3.2 Local type aliases in signatures
Even in cases with no shadowing, it is sometimes useful to define a local type alias in a signature4. In
the following code, the type t is available for use in x and y, but not exported from the signature.

open struct type t = int → int end

val x : t

val y : t

4 Restrictions and design considerations
4.1 Dependency elimination
OCaml’s applicative functors impose a number of restrictions on programs beyond type compatibility.
One such restriction arises in functor application: it must be possible to “eliminate” in the functor result

4For example, the functions comment, maintainer, run, cmd, user, workdir, volume, and entrypoint
in the Dockerfile module would benefit from such an alias. https://github.com/avsm/ocaml-dockerfile/blob/

e0dad1a/src/dockerfile.mli

https://github.com/avsm/ocaml-dockerfile/blob/e0dad1a/src/dockerfile.mli
https://github.com/avsm/ocaml-dockerfile/blob/e0dad1a/src/dockerfile.mli


8 Extending OCaml’s open

type each type defined in the functor argument [11]. For example, given the following functor definition

module F(X: sig type t val x: t end) =

struct

let x = X.x

end

the following application is valid:

module A = struct type t = T let x = T end

module B = F(A)

and B receives the following type:

module B : sig val x : A.t end

However, the following application is not allowed:

F(struct type t = T let x = T end)

since the result of the application cannot be given a type, as there is no suitable name for the type of x.
The extended open construct has a similar restriction. For example, the following program is rejected

by the type-checker because the only suitable name for the type of x, namely t, is not exported:

open struct type t = T end

let x = T

Here is the error message from the compiler:

1 | open struct type t = T end

^^^^^^^^^^^^^^^^^^^^^^^^^^

Error: The type t/89 introduced by this open appears in the signature

Line 2, characters 4-5:

The value x has no valid type if t/89 is hidden

Since the restriction for the extended open construct is the same as the existing functor restriction,
we can reuse the existing implementation of the check in the OCaml type checker. In particular we use
the Mtype.nondep_supertype function to check if introduced identifiers can be eliminated from rest
of the structure [11].

4.2 The Avoidance Problem
The avoidance problem [2] is closely connected with dependency elimination. The problem is as follows:
it is sometimes necessary to find a signature for a module that avoids mention of one of its dependencies;
however, it is not always possible to find a best, or principal (i.e. most-specific) such signature, since the
candidates may be incomparable.

Dreyer [2] gives the following example of the surprising behaviour that can arise from OCaml’s lack
of principal signatures. Suppose a signature S, and two functors F and G that each take an argument of
type S, as follows:

module type S = sig type t end

module F (X : S) = struct type u = X.t type v = X.t end

module G (X : S) = struct type u = X.t type v = u end



R. Li & J. Yallop 9

Semantically, F and G are equivalent: in both cases, the types u, v and X.t are all equal in the body of the
functor. If F and G are applied to a module denoted by a path, then the resulting signatures are equivalent.
For example, here is the result of applying F and G to the top-level module Char:

# module FC = F(Char);;

module FC : sig type u = Char.t type v = Char.t end

# module GC = G(Char);;

module GC : sig type u = Char.t type v = u end

Since the argument Char has a globally-visible name, OCaml is able to preserve all the equalities in the
output types.

However, when the module passed as argument is not denoted by a path then the result of applying F

is different from the result of applying G [10]:

# module FI = F(struct type t = int end : S);;

module FI : sig type u type v end

# module GI = G(struct type t = int end : S);;

module GI : sig type u type v = u end

This time OCaml cannot preserve all the equalities, since there is no way of naming the type mem-
ber of the module passed as argument in the output signature. Consequently, the type equalities that
syntactically involve X.t are discarded, making the types FI.u FI.v, and GI.u abstract.

A similar situation arises with the extended open construct, which inherits OCaml’s approach to-
wards elimination of modules in signatures.

In the following examples M is given a less general type than N, even though the two modules are
semantically equivalent:

module M = struct

open struct type t = T end

type u = t and v = t

end

module N = struct

open struct type t = T end

type u = t and v = u

end

Here are the types assigned by OCaml:

module M : sig

type u and v

end

module N : sig

type u and v = u

end

As with F and G, the type equalities syntactically involving t are discarded, even though the two modules
are semantically equivalent, since the types u, v and t are all equal in each case.

4.3 Evaluation of extended open in signatures
Here is a possible objection to supporting the extended open in signatures: although local type definitions
are useful within signatures, local value definitions are not, and so it would be better to restrict the
argument of open to permit only type definitions.

For example, the following runs without raising an exception:

module type S =

sig

(* no exception! *)

open struct assert false end

end



10 Extending OCaml’s open

Within a signature, open’s argument is used only for its type, and so the expression assert false is
not evaluated.

In fact, this behaviour follows an existing principle of OCaml’s design: module expressions in type
contexts are not evaluated. For example, the module type of construct, currently supported in OCaml,
also accepts a module expression that is not evaluated:

module type S = (* no exception! *)

module type of struct assert false end

And similarly, functor applications that occur within type expressions in OCaml are not evaluated:

module F(X: sig end) =

struct

assert false

type t = int

end

let f (x: F(List).t) = x (* no exception! *)

5 Implementation sketch
As the discussion in Sections 4.2 and 4.1 indicates, the subtleties in the static semantics of the extended
open also occur with OCaml’s functors. Our implementation takes advantage of this fact, reusing exist-
ing functions in OCaml’s type checker. In particular, the function nondep_supertype

val nondep_supertype: Env.t → Ident.t → module_type → module_type

is used in the OCaml type checker to eliminate identifiers without paths from the module types that arise
from functor applications; we use it a second time to eliminate identifiers without paths from the types of
the declarations that follow an occurrence of the extended open (Section 4.1). The interested reader may
find a fuller description of nondep_supertype in Leroy’s article on implementing module systems [11].

In more detail, the updated type-checker in our implementation behaves as follows on encounter-
ing the phrase open modexp; decl. First, modexp is type-checked using the function type_open,
which returns several components: a fresh name for the module of a form that cannot occur in programs
(M#1, say), a representation of the module type, and a corresponding typing environment. Next, decl
is type-checked in this extended typing environment. Finally, the type-checking procedure constructs
a representation of the extended type-checked program module M#1 = modexp; open M#1; decl.
This representation is ultimately used to generate code: OCaml’s compiler gives modules a run-time
representation and an entry in the parent module; this compilation scheme requires that modexp has such
a representation, too.

Following this step, the nondep_supertype function attempts to eliminate the generated identifier
M#1 from the type of decl, failing with a user-facing diagnostic if it cannot be eliminated. Finally, the
entry for M#1 is removed from the type of the enclosing module, so that it does not appear in types seen
by the user.

The sketch above covers the essence of the implementation. The full patch also supports local open
in signatures (Section 3), let bindings, and signatures. The interested reader may find the full details in
the GitHub pull request: https://github.com/ocaml/ocaml/pull/1506.

6 Alternative designs
The facilities provided by the extended open are frequently useful, as the examples in Sections 2 and 3
indicate, and so it is no surprise that other languages provide comparable facilities. This section compares
two of these alternatives, based on the keywords local and private.

https://github.com/ocaml/ocaml/pull/1506


R. Li & J. Yallop 11

6.1 local

The design in this paper draws inspiration from Standard ML’s local construct [13]:

local declarations1
in declarations2

end

As the keyword suggests, names introduced by the first set of declarations (declarations1) are in scope
only within the second set declarations2, not in the code that follows.

The original 1990 Definition of Standard ML [9] also allows local in specifications (signatures),
making it possible to similarly encode the examples of Section 3. The language defined in the 1997
revision of the Definition [13] no longer allows local in specifications. However, they are still supported
in the latest release of at least one implementation, Moscow ML [14].

To a first approximation5, the local construct can be defined straightforwardly in terms of open as
follows:

local d1 in d2 end  include open struct d1 end d2 end

The definition of the extended open in terms of local is slightly less straightforward:

open modexp; d  local structure M = modexp; open M in d end

(where M is not free in d)

Unlike the translation from local to open, this second translation makes use of the surrounding con-
text of the translated expression. First, the declarations d following the open statement are included on
the left hand side of the translation; this makes it possible to delimit the scope of the identifiers imported
from modexp. Second, and more significantly, the side condition requires that the name M introduced
on the right hand side of the translation does not appear free in d, to avoid shadowing definitions in the
surrounding context. In other words, while local is macro expressible [3] in terms of open, open is not
macro expressible in terms of local.

The reader may note the similarity between the translation of open into local and the elabora-
tion into a program with a freshly generated module name that occurs during type-checking of open
(Section 5). This generativity appears to be an essential part of the expressiveness enabled by the ex-
tended open. Unless the type checker is extended to generate fresh names (as in our implementation),
the expressive power can only be recovered if an equivalent step is performed by the user (as with the
free-variable check with the translation into local).

The translations show, then, that open is a little more expressive than local. In fact, the extra
expressiveness is sometimes useful in practice. Programs that generate code must be careful to avoid
name shadowing (Section 2.6). In OCaml, such programs are typically written as transformations on
untyped abstract syntax trees, for which it is often not possible to determine whether a variable is free6.
For such use cases, extended open is a little more convenient than local.

5There are some inessential differences: with Standard ML’s local, type names in declarations1 that cannot be
eliminated in the types of declarations2 become abstract, while the corresponding situation with open is treated as an
error in our proposal (Section 4.1).

6For example, in the expression let open M in x + y whether x and y are free depends on whether M exports
those identifiers — that is, it depends upon the type of M.



12 Extending OCaml’s open

6.2 private

Many object-oriented languages use a private keyword to mark non-exporting declarations. Indeed,
the object oriented part of early versions of OCaml supported private instance variables in classes with
this meaning:

class c = object val private x = 3 end

However, for the last two decades7 only private methods, not private instance variables are supported,
and private has a meaning closer to protected in other object-oriented languages, limiting scope to
the current class and its sub-classes.

As with local, it would be possible to support the examples in Sections 2 and 3 by adding support
for private annotations on declarations in structures and signatures. However, supporting private

annotations introduces additional syntactic considerations. In particular, it is natural to extend open

to allow arbitrary module expressions (since every form of module expression — functor application,
unnamed structure, ascription, etc. — is potentially useful as the argument to open), but it is less natural
to support private annotations on every type of declaration. For example, while private type aliases
in signatures are clearly useful (Section 3.2), there do not appear to be any uses for private exception
declarations in signatures. A design based around private therefore appears to bring a choice between
a uniform but loose grammar (i.e. with support for various useless constructs), or a complicated grammar
that allows private only for constructs where it is useful.

As with local, it is possible to define private in terms of the extended open:

private decl  open struct decl end

Once again, the definition of open in terms of private is a little less straightforward:

open modexp; decl  private module M = modexp; open M; decl

(where M is not free in decl)

And, as with the translation from open into local, the translation from open into private involves
determining the set of free identifiers in the declarations that follow, making private a less suitable
basis than open for code generation involving non-exporting declarations (Section 2.6).

6.3 Signature-local bindings
An alternative approach to supporting the use cases of Section 3 builds on another OCaml feature, de-
structive substitution [5]. Destructive substitution is an operation on signatures that simultaneously elim-
inates a type (or module) component within a signature and replaces each use of the component with a
compatible type (or module) expression.

For example, here is a definition for a module type T that defines a type component t and a value
component f whose type uses t:

module type T = sig type t val f : t → t end

7The following updates to the OCaml compiler and manual removed private instance variables and introduced private
methods with the current semantics:

• Jérôme Vouillon (June 24, 1998): Nouvelle syntaxe des classes
https://github.com/ocaml/ocaml/commit/87b17301

• Jérôme Vouillon (August 13, 1998):Mise a jour des classes,
https://github.com/ocaml/ocaml-manual/commit/63bea030

https://github.com/ocaml/ocaml/commit/87b17301
https://github.com/ocaml/ocaml-manual/commit/63bea030


R. Li & J. Yallop 13

The following code defines a module type S by eliminating t and replacing each occurrence of t with
int in the remainder of the module:

module type S = T with type t := int

The result of this destructive substitution is equivalent to the following direct definition of S:

module type S = sig val f : int → int end

Jacques Garrigue has proposed extending destructive substitution to local aliases in signatures, so
that a definition of the following form

type t := e

in a signature would behave equivalently to the following extended open code

open struct type t = e end

i.e. each occurrence of t in the remainder of the signature would be replaced by e.
This design supports the signature use cases in Section 3. For example, using local aliases, the

module on the left below can be given the signature on the right:

type t = T1

module M = struct

type t = T2

let f T1 = T2

end

type t = T1

type t’ := t

module M : sig

type t = T2

val f : t’ → t

end

Furthermore, like destructive substitution itself, this extended design is restricted to module and type
aliases, and so the syntactic concerns with private (Section 6.2) do not arise.

7 Status
A variant of the design proposed in this article was discussed at the Caml developers meeting and ac-
cepted for inclusion into OCaml 4.08. The subsequent GitHub pull request and further discussion may
be found at the following URL:

https://github.com/ocaml/ocaml/pull/1506

The design for extended open in structures has been incorporated directly, and so the use cases of
Section 2 can be used as written in OCaml 4.08.

Furthermore, open in signatures has been extended beyond simple paths to support functor applica-
tion (e.g. open F(X)), and it is anticipated that it will eventually be further extended to support transpar-
ent ascription (Section 2.7) and structures containing only aliases (e.g. open struct type t = int end).

However, OCaml 4.08 does not support arbitrary module expressions as the arguments of open in
signature contexts, so the examples of Section 3 cannot be written directly. Instead, the release also adds
support for signature-local bindings (Section 6.3), which covers those use cases.

Acknowledgments
We thank Leo White and the OCaml’17 workshop and post-proceedings reviewers for comments and
suggestions, and Alain Frisch and Thomas Refis for help with the implementation.

https://github.com/ocaml/ocaml/pull/1506


14 Extending OCaml’s open

References
[1] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop & Anil Madhavapeddy (2015): Effective

Concurrency through Algebraic Effects. OCaml Users and Developers Workshop 2015.
[2] Derek Dreyer (2005): Understanding and Evolving the ML Module System. Ph.D. thesis, CMU. Published

as technical report CMU-CS-05-131.
[3] Matthias Felleisen (1991): On the expressive power of programming languages. Science of Computer Pro-

gramming 17(1), pp. 35 – 75, doi:10.1016/0167-6423(91)90036-W.
[4] Alain Frisch (2016): Pull request: Turn local exceptions into jumps. https://github.com/ocaml/ocaml/

pull/638.
[5] Alain Frisch & Jacques Garrigue (2010): First-class modules and composable signatures in Objective Caml

3.12. ACM SIGPLAN Workshop on ML, Baltimore, MD.
[6] Jacques Garrigue & Didier Rémy (2013): Ambivalent Types for Principal Type Inference with GADTs. In

Chung-chieh Shan, editor: Programming Languages and Systems, Springer International Publishing, Cham,
pp. 257–272, doi:10.1007/978-3-319-03542-0 19.

[7] Robert Harper (2012): Exceptions are shared secrets. https://existentialtype.wordpress.com/

2012/12/03/exceptions-are-shared-secrets/.
[8] Robert Harper & Mark Lillibridge (1994): A Type-theoretic Approach to Higher-order Modules with Sharing.

In: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’94, ACM, New York, NY, USA, pp. 123–137, doi:10.1145/174675.176927.

[9] Robert Harper, Robin Milner & Mads Tofte (1990): The Definition of Standard ML. MIT Press, Cambridge,
MA, USA.

[10] Xavier Leroy (1995): Applicative Functors and Fully Transparent Higher-order Modules. In: Proceedings
of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’95,
ACM, New York, NY, USA, pp. 142–153, doi:10.1145/199448.199476.

[11] Xavier Leroy (2000): A modular module system. Journal of Functional Programming 10(3), pp. 269–303,
doi:10.1017/S0956796800003683.

[12] Runhang Li & Jeremy Yallop (2017): Extending OCaml’s open. OCaml Users and Developers Workshop.
[13] Robin Milner, Mads Tofte & David Macqueen (1997): The Definition of Standard ML (Revised). MIT Press,

Cambridge, MA, USA, doi:10.7551/mitpress/2319.001.0001.
[14] Sergei Romanenko, Claudio Russo & Peter Sestoft (2000): Moscow ML Language Overview, version 2.00

edition. Available at http://mosml.org/mosmlref.pdf.
[15] Jérôme Vouillon (2008): Lwt: A Cooperative Thread Library. In: Proceedings of the 2008 ACM SIGPLAN

Workshop on ML, ML ’08, ACM, New York, NY, USA, pp. 3–12, doi:10.1145/1411304.1411307.
[16] Jérôme Vouillon & Vincent Balat (2013): From Bytecode to JavaScript: the Js of ocaml Compiler. Software:

Practice and Experience, doi:10.1002/spe.2187.
[17] Leo White (2013): Extension Points for OCaml. OCaml Users and Developers Workshop.
[18] Jeremy Yallop (2007): Practical Generic Programming in OCaml. In: Proceedings of the 2007 Workshop

on Workshop on ML, ML ’07, ACM, New York, NY, USA, pp. 83–94, doi:10.1145/1292535.1292548.

http://dx.doi.org/10.1016/0167-6423(91)90036-W
https://github.com/ocaml/ocaml/pull/638
https://github.com/ocaml/ocaml/pull/638
http://dx.doi.org/10.1007/978-3-319-03542-0_19
https://existentialtype.wordpress.com/2012/12/03/exceptions-are-shared-secrets/
https://existentialtype.wordpress.com/2012/12/03/exceptions-are-shared-secrets/
http://dx.doi.org/10.1145/174675.176927
http://dx.doi.org/10.1145/199448.199476
http://dx.doi.org/10.1017/S0956796800003683
http://dx.doi.org/10.7551/mitpress/2319.001.0001
http://mosml.org/mosmlref.pdf
http://dx.doi.org/10.1145/1411304.1411307
http://dx.doi.org/10.1002/spe.2187
http://dx.doi.org/10.1145/1292535.1292548

	Introduction: [basicstyle=]open vs [basicstyle=]include
	Status

	Extended [basicstyle=]open in structures: examples
	Unexported top-level values
	A workaround for type shadowing
	Local definitions scoped over several functions
	Local exception definitions
	Shared state
	Local names in generated code
	Restricted open

	Extended [basicstyle=]open in signatures: examples
	Unwriteable, unprintable signatures
	Local type aliases in signatures

	Restrictions and design considerations
	Dependency elimination
	The Avoidance Problem
	Evaluation of extended open in signatures

	Implementation sketch
	Alternative designs
	[style=SML,basicstyle=]local
	[basicstyle=]private
	Signature-local bindings

	Status

