Brack: A Verified Compiler for Scheme via CakeML

Pascal Lasnier
University of Cambridge
Cambridge, UK

Introduction. This talk introduces BRack!, a new veri-
fied compiler for a subset of Scheme including call/cc, de-
veloped in the HOL4 interactive theorem prover [13]. Com-
plete verification was achieved by building a compiler from
Scheme to ML and using the verified compiler CakeML [10]
for the remainder of compilation to machine code. Compil-
ing via CakeML is the approach taken by the recent Haskell-
like language compiler PureCake [9], and we see it as a
promising approach to verified compilation for other new
projects.

Features. BRACK features arithmetic, selection, mutable
variables, lambda expressions, letrecs, lists, and first-class
continuations with call/cc, making BrRAck the first ver-
ified compiler to support first-class continuations. With
these features, it is possible to implement recursive algo-
rithms such as factorial and the Fibonacci sequence, list op-
erations such as map and fold, and backtracking-based non-
deterministic algorithms implemented using call/cc [8,
Chap. 22]. BRACK is written in ~4000 non-whitespace lines
of HOL4 proof scripts.

CakeML and HOL4. CakeML [10] is a complete verified
compiler for ML. Verified compilers are written in proof as-
sistants such as HOL4 [13] and feature semantic preserva-
tion proofs to verify that the observable trace of program
execution is the same before and after it is compiled. Such
proofs are based on (1) a formal semantics of the source lan-
guage, (2) a formal semantics of the target language, and (3)
a definition of the compilation algorithm. HOL4 users tend
to write (1)—(3) as functional programs in the logic of HOL4
in order to maximise use of rewriting in proofs.

Even with significant use of rewriting in proofs, seman-
tic preservation proofs are difficult to develop, so verified
compilers often feature multiple compiler passes between
several intermediate languages (ILs), with separate seman-
tic preservation proofs for each pass which compose for the
whole compiler. BRack exploits CakeML'’s existing verifica-
tion for full compilation to machine code, and adds a single
pass from Scheme to CakeML which performs a CPS trans-
form.

Continuation-passing style. Like many Scheme com-
pilers, from Rabbit [15] onwards, BRACK uses a continuation-
passing style (CPS) transform in its compilation. CPS is a
natural program representation for one of Scheme’s most
distinctive features: first-class continuations, through the

Lhttps://github.com/CakeML/cakem|/tree/master/compiler/scheme

Jeremy Yallop
University of Cambridge
Cambridge, UK

Magnus Myreen
Chalmers University of Technology
Gothenburg, Sweden

control operator call/cc [7]. This natural representation
enables the compiler verification proof for call/cc, mak-
ing BrAck the first verified compiler to support first-class
continuations.

Semantic preservation. The verification of BrAcK re-
quires a semantic preservation proof from Scheme to
CakeML that composes with the CakeML compiler’s seman-
tic preservation theorem. To achieve this proof, BRACK takes
advantage of the fact that operational small-step semantics
are a defunctionalisation of the continuation-passing style, a
notion explored by Reynolds, Danvy, and others [1-4, 12].
Particularly, Ager et al. demonstrate that a CEK-machine
may be refunctionalised into a CPS interpreter, based on the
reduction steps corresponding to particular continuations
defined by the abstract machine [1].

The semantics of BRAcCk are based on the formal small-
step operational semantics described in the Sixth Revised
Report for Scheme (R°RS) [14]. Implementing the opera-
tional semantics as a CESK-machine [5, 6] allows us to apply
Ager et al’s refunctionalisation technique, thus producing a
CPS interpreter. Because HOL4 terms, which the interpreter
is written in, correspond to pure ML, the interpreter may be
further transformed into a CPS compiler to pure ML. We
then make additional optimisations, including direct compi-
lation of mutable Scheme variables into ML ref variables.

Proof of semantic preservation is a simulation argument,
derivative of the correctness proof in Plotkin’s work on the
CPS transform [11]. The nature of the CPS transform as a re-
functionalisation of the small-step semantics, however, re-
duces much of the simulation proof to a proof of correct-
ness of refunctionalisation [1]. As a result, the proof of se-
mantic preservation for BRACk went smoothly, and in fact
first-class continuations were surprisingly simple to verify,
despite their apparently complex behaviour.

Lessons. The feasibility of proving semantic preservation
for Brack, by deriving a CPS transform from its small-step
semantics and using a simulation argument, is a testament
to the value of the CPS transform for representing control
for the purposes of verification. Given the smooth compiler
verification experience our approach enabled, we recommend
that projects developing verified compilers for languages
with similar control features adopt a similar approach.

Acknowledgements. We thank the anonymous review-
ers and Michael Lee for helpful comments. Swedish Research
Council grant 2021-05165 funded Myreen.

References

(1]

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
2003. A functional correspondence between evaluators and abstract
machines. In Proceedings of the 5th ACM SIGPLAN International Con-
ference on Principles and Practice of Declaritive Programming (Upp-
sala, Sweden) (PPDP °03). Association for Computing Machinery, New
York, NY, USA, 8-19. https://doi.org/10.1145/888251.888254

Olivier Danvy. 2004. On Evaluation Contexts, Continuations, and the
Rest of Computation. (02 2004).

Olivier Danvy. 2008. Defunctionalized interpreters for programming
languages. In Proceedings of the 13th ACM SIGPLAN International Con-
ference on Functional Programming (Victoria, BC, Canada) (ICFP "08).
Association for Computing Machinery, New York, NY, USA, 131-142.
https://doi.org/10.1145/1411204.1411206

Olivier Danvy and Lasse R. Nielsen. 2001. Defunctionalization at
work. In Proceedings of the 3rd ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming (Florence,
Italy) (PPDP °01). Association for Computing Machinery, New York,
NY, USA, 162-174. https://doi.org/10.1145/773184.773202

Mattias Felleisen and D. P. Friedman. 1987. A calculus for as-
signments in higher-order languages. In Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (Munich, West Germany) (POPL ’87). Association for Comput-
ing Machinery, New York, NY, USA, 314. https://doi.org/10.1145/
41625.41654

Matthias Felleisen and Daniel P. Friedman. 1987. Control opera-
tors, the SECD-machine, and the A-calculus. In Formal Description of
Programming Concepts. https://api.semanticscholar.org/CorpuslD:
57760323

Matthias Felleisen, Daniel P Friedman, Eugene E Kohlbecker, and
Bruce F Duba. 1986. Reasoning with continuations. In LICS, Vol. 86.
131-141.

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

Pascal Lasnier, Jeremy Yallop, and Magnus Myreen

P. Graham. 1994. On Lisp: Advanced Techniques for Common Lisp.
Prentice Hall.

Hrutvik Kanabar, Samuel Vivien, Oskar Abrahamsson, Magnus O.
Myreen, Michael Norrish, Johannes Aman Pohjola, and Riccardo
Zanetti. 2023. PureCake: A Verified Compiler for a Lazy Functional
Language. Proc. ACM Program. Lang. 7, PLDI, Article 145 (June 2023),
25 pages. https://doi.org/10.1145/3591259

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. 2014. CakeML: a verified implementation of ML. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Diego, California, USA) (POPL ’14). As-
sociation for Computing Machinery, New York, NY, USA, 179-191.
https://doi.org/10.1145/2535838.2535841

G.D. Plotkin. 1975. Call-by-name, call-by-value and the A-calculus.
Theoretical Computer Science 1, 2 (1975), 125-159. https://doi.org/10.
1016/0304-3975(75)90017-1

John C. Reynolds. 1972. Definitional interpreters for higher-order
programming languages. In Proceedings of the ACM Annual Confer-
ence - Volume 2 (Boston, Massachusetts, USA) (ACM ’72). Associa-
tion for Computing Machinery, New York, NY, USA, 717-740. https:
//doi.org/10.1145/800194.805852

Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4.
In Proceedings of the 21st International Conference on Theorem Prov-
ing in Higher Order Logics (Montreal, P.Q., Canada) (TPHOLs ’08).
Springer-Verlag, Berlin, Heidelberg, 28-32. https://doi.org/10.1007/
978-3-540-71067-7_6

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten,
Robby Findler, and Jacob Matthews. 2009. Revised6 Report on the
Algorithmic Language Scheme. Journal of Functional Programming
19, S1 (2009), 1-301. https://doi.org/10.1017/S0956796809990074
Guy L. Steele. 1978. Rabbit: A Compiler for Scheme. Technical Report.
USA.

https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/773184.773202
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/41625.41654
https://api.semanticscholar.org/CorpusID:57760323
https://api.semanticscholar.org/CorpusID:57760323
https://doi.org/10.1145/3591259
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1017/S0956796809990074

	References

