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Introduction. This talk introduces BRack!, a new veri-
fied compiler for a subset of Scheme including call/cc, de-
veloped in the HOL4 interactive theorem prover [13]. Com-
plete verification was achieved by building a compiler from
Scheme to ML and using the verified compiler CakeML [10]
for the remainder of compilation to machine code. Compil-
ing via CakeML is the approach taken by the recent Haskell-
like language compiler PureCake [9], and we see it as a
promising approach to verified compilation for other new
projects.

Features. BRACK features arithmetic, selection, mutable
variables, lambda expressions, letrecs, lists, and first-class
continuations with call/cc, making BrRAck the first ver-
ified compiler to support first-class continuations. With
these features, it is possible to implement recursive algo-
rithms such as factorial and the Fibonacci sequence, list op-
erations such as map and fold, and backtracking-based non-
deterministic algorithms implemented using call/cc [8,
Chap. 22]. BRACK is written in ~4000 non-whitespace lines
of HOL4 proof scripts.

CakeML and HOL4. CakeML [10] is a complete verified
compiler for ML. Verified compilers are written in proof as-
sistants such as HOL4 [13] and feature semantic preserva-
tion proofs to verify that the observable trace of program
execution is the same before and after it is compiled. Such
proofs are based on (1) a formal semantics of the source lan-
guage, (2) a formal semantics of the target language, and (3)
a definition of the compilation algorithm. HOL4 users tend
to write (1)—(3) as functional programs in the logic of HOL4
in order to maximise use of rewriting in proofs.

Even with significant use of rewriting in proofs, seman-
tic preservation proofs are difficult to develop, so verified
compilers often feature multiple compiler passes between
several intermediate languages (ILs), with separate seman-
tic preservation proofs for each pass which compose for the
whole compiler. BRack exploits CakeML'’s existing verifica-
tion for full compilation to machine code, and adds a single
pass from Scheme to CakeML which performs a CPS trans-
form.

Continuation-passing style. Like many Scheme com-
pilers, from Rabbit [15] onwards, BRACK uses a continuation-
passing style (CPS) transform in its compilation. CPS is a
natural program representation for one of Scheme’s most
distinctive features: first-class continuations, through the
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control operator call/cc [7]. This natural representation
enables the compiler verification proof for call/cc, mak-
ing BrAck the first verified compiler to support first-class
continuations.

Semantic preservation. The verification of BrAcK re-
quires a semantic preservation proof from Scheme to
CakeML that composes with the CakeML compiler’s seman-
tic preservation theorem. To achieve this proof, BRACK takes
advantage of the fact that operational small-step semantics
are a defunctionalisation of the continuation-passing style, a
notion explored by Reynolds, Danvy, and others [1-4, 12].
Particularly, Ager et al. demonstrate that a CEK-machine
may be refunctionalised into a CPS interpreter, based on the
reduction steps corresponding to particular continuations
defined by the abstract machine [1].

The semantics of BRAcCk are based on the formal small-
step operational semantics described in the Sixth Revised
Report for Scheme (R°RS) [14]. Implementing the opera-
tional semantics as a CESK-machine [5, 6] allows us to apply
Ager et al’s refunctionalisation technique, thus producing a
CPS interpreter. Because HOL4 terms, which the interpreter
is written in, correspond to pure ML, the interpreter may be
further transformed into a CPS compiler to pure ML. We
then make additional optimisations, including direct compi-
lation of mutable Scheme variables into ML ref variables.

Proof of semantic preservation is a simulation argument,
derivative of the correctness proof in Plotkin’s work on the
CPS transform [11]. The nature of the CPS transform as a re-
functionalisation of the small-step semantics, however, re-
duces much of the simulation proof to a proof of correct-
ness of refunctionalisation [1]. As a result, the proof of se-
mantic preservation for BRACk went smoothly, and in fact
first-class continuations were surprisingly simple to verify,
despite their apparently complex behaviour.

Lessons. The feasibility of proving semantic preservation
for Brack, by deriving a CPS transform from its small-step
semantics and using a simulation argument, is a testament
to the value of the CPS transform for representing control
for the purposes of verification. Given the smooth compiler
verification experience our approach enabled, we recommend
that projects developing verified compilers for languages
with similar control features adopt a similar approach.
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