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1 Introduction
In OCaml recursive functions are defined using the let rec opera-
tor, as in the following definition of factorial:

let rec fac x = if x = 0 then 1

else x * (fac (x - 1))

Beside functions, let rec can define recursive values, such as
an infinite list ones where every element is 1:

let rec ones = 1 :: ones

Note that this “infinite” list is actually cyclic, and consists of a single
cons-cell referencing itself.

However, not all recursive definitions can be computed. The
following definition is justly rejected by the compiler:

let rec x = 1 + x

Here x is used in its own definition. Computing 1 + x requires x to
have a known value: this definition contains a vicious circle, and
any evaluation strategy would fail.

Functional languages deal with recursive values in various ways.
Standard ML simply rejects all recursive definitions except function
values. At the other extreme, Haskell accepts all well-typed recur-
sive definitions, including those that lead to infinite computation.
In OCaml, safe cyclic-value definitions are accepted, and they are
occasionally useful.

For example, consider an interpreter for a programming language
with datatypes for ASTs and for values:

type ast = Fun of var * expr | . . .

type value = Closure of env * var * expr | . . .

The eval function builds values from environments and asts
let rec eval env = function

| . . .

| Fun (x, t) -> Closure(env, x, t)

Now consider adding an ast constructor FunRec of var * var * expr

for recursive functions: FunRec ("f", "x", t) represents the recur-
sive function let rec f x = t in f . Our OCaml interpreter can
use value recursion to build a closure for these recursive func-
tions, without changing the type of the Closure constructor: the
recursive closure simply adds itself to the closure environment
((var * value) list).

let rec eval env = function

| . . .

| Fun (x, t) -> Closure(env, x, t)

| FunRec (f, x, t) ->

let rec cl = Closure((f,cl)::env, x, t) in cl

Ournew check and its implementation Until recently, the static
check used by OCaml to reject vicious definitions relied on a syn-
tactic analysis, performed on an untyped intermediate language .
While we believe that the check as originally defined was correct, it
proved fragile and hard to extend to the interaction of new language
features with recursive definitions. Over the years, bugs were found
where the check was unduly lenient. In conjunction with OCaml’s
efficient recursive definition compilation scheme [Hirschowitz et al.
2009], this leniency led to segmentation faults.

Seeking to address these problems, we designed and imple-
mented a new check for recursive definition safety based on a
novel static analysis, formulated as a simple type system (which we
have proved sound with respect to an existing operational seman-
tics [Nordlander et al. 2008]), and implemented as part of OCaml’s
type-checking phase. Our check was merged into the OCaml distri-
bution in August 2018.

Moving the check from the middle end to the type checker re-
stores the desirable property that compilation of well-typed programs
does not go wrong. This property is convenient for tools that reuse
OCaml’s type-checker without performing compilation, such as
MetaOCaml [Kiselyov 2014] (which type-checks quoted code) and
Merlin [Bour et al. 2018] (which type-checks code during editing).
Furthermore, some aspects of the check have delicate interactions
with types, and so cannot be performed on an untyped IR (§4).

Our analysis We looked at reusing existing inference systems,
but they do not appear to suit our analysis: they have a finer-
grained handling of functions and functors than we need, but
coarser-grained handling of cyclic data, and most do not propose
effective inference algorithms. In return for a coarser analysis, our
system is noticeably simpler; furthermore, it scales cleanly to the
full OCaml language.

A key aspect of our approach is the idea of right-to-left (type to
environment) algorithmic interpretation, which reduces complexity
compared to a presentation designed for a left-to-right reading. It is
novel in this space and could inspire other inference rules designers.

2 Static and dynamic semantics
Syntax Figure 1 introduces a minimal subset of ML with the
interesting ingredients of OCaml’s recursive value definitions: a
multi-ary let rec binding let rec (xi = ti )

i in u, functions (λ-
abstractions) λx . t and applications tu, datatype constructorsK (t1, t2, . . . )
and shallow pattern-matching match t with (Ki (xi , j )

j → ui )
i .

Other ML constructs (non-recursive let, tuples, conditionals,
etc.) can be desugared into this core. In fact, the full inference rules
for OCaml (and our check) exactly correspond to the rules (and
check) derived from this desugaring.

Since ML’s types are largely orthogonal to our analysis, we
present the check using an untyped fragment. (In the full OCaml
language, there are some interactions with types — in particular,
with GADTs — see §4.) Although we ignore types, we do assume
that terms are well-scoped — n.b. in let rec (xi = vi )

i in u, the
(xi )

i are in scope of u but also of all the vi .

Access modes For each recursive binding x = e , our analysis
assigns an access modem representing the way that x is accessed
during evaluation of e .

Figure 2 defines the modes, their order structure, and the mode
composition operations. The modes are as follows:

Ignore : an expression is entirely unused during the evalua-
tion of the program. This is the mode of a variable in an
expression in which it does not occur.

1



Alban Reynaud, Gabriel Scherer, and Jeremy Yallop

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Terms ∋ t,u ::= x,y, z
| let rec b in u
| λx . t | t u
| K (ti )

i | match t with h

Bindings ∋ b ::= (xi = ti )
i

Handlers ∋ h ::= (pi → ti )
i

Patterns ∋ p,q ::= K (xi )
i

Figure 1. Core language syntax

Modes: Ignore ≺ Delay ≺ Guard ≺ Return ≺ Deref

Mode composition:
m [m′] Ignore Delay Guard Return Deref m

Ignore Ignore Ignore Ignore Ignore Ignore
Delay Ignore Delay Delay Delay Deref
Guard Ignore Delay Guard Guard Deref
Return Ignore Delay Guard Return Deref
Deref Ignore Delay Deref Deref Deref
m′

Figure 2. Access modes and operations
Γ ⊢ t :m m ≻m′

Γ ⊢ t :m′

Γ, x :mx ⊢ t :m [Delay]

Γ ⊢ λx . t :m
Γt ⊢ t :m [Deref] Γu ⊢ u :m [Deref]

Γt + Γu ⊢ t u :m

(Γi , (x j :mi , j )
j ∈I ⊢ ti : Return)i ∈I (mi , j ⪯ Guard)i , j

(Γ′i = Γi +
∑

(mi , j

[
Γ′j

]
)j )i

(xi : Γ′i )
i ∈I ⊢ rec (xi = ti )

i ∈I

(xi : Γi )i ⊢ rec b
(m′

i )
i def
= (max(mi ,Guard))i Γu , (xi :mi )

i ⊢ u :m∑
(m′

i [Γi ])
i + Γu ⊢ let rec b in u :m

Figure 3.Mode inference rules (abridged)

Delay : a context can be evaluated (to Weak Normal Form)
without evaluating its argument. λx .□ is a delay context.

Guard : the context returns the value as a member of a data
structure (e.g. a variant or record). K (□) is a guard context.
The value can safely be defined mutually-recursively with
its context, as in let rec x = K (x)1.

Return : the context returns its value without further inspec-
tion. This value cannot be defined mutually-recursively with
its context, to avoid self-loops: in let recx = x and let recx =
let y = x in y, the last occurrence of x is in Return context.

Deref : the context inspects and uses the value in arbitrary
ways. Such a value must be fully defined at the point of
usage; it cannot be defined mutually-recursively with its
context. match □ with h is a Deref context.

The orderingm ≺ m′ places less demanding, more permissive
modes that do not involve dereferencing variables, below more
demanding, less permissive modes.

Each mode is closely associated with particular expression con-
texts. For example, t □ is a Deref context, since t may access its
argument in arbitrary ways, while λx .□ is a Delay context.

Mode composition corresponds to context composition: if an ex-
pression context E[□] uses its hole at modem, and a second context
E ′[□] uses its hole at modem′, then the composed context E[E ′[□]]

uses its hole at modem [m′]. Like context composition, mode com-
position is associative, but not commutative:Deref [Delay] isDeref,
but Delay [Deref] is Delay.

Continuing the example above, the context t (λx .□), formed by
composing t □ and λx .□, is a Deref context: the intuition is that
the function t may pass an argument to its input and then access the
result in arbitrary ways. In contrast, the context λx . (t □), formed
by composing λx .□ and t □, is a Delay context: the contents of
the hole will not be touched before the abstraction is applied.

1Guard is also used for terms whose result is discarded by the context. For example,
□ is in a Guard context in let x = □ in u , if x is not used in u . Such terms cannot
create self-loops, so we consider them guarded.

Finally, Ignore is the absorbing element of mode composition
(m [Ignore] = Ignore = Ignore [m]),Return is an identity (Return [m] =

m =m [Return]), and composition is idempotent (m [m] =m).

A right-to-left inference system Figure 3 gives a representative
sample of the inference rules for a judgment of form Γ ⊢ t : m
for term t , access modem and environment Γ that maps term vari-
ables to access modes. Modes classify terms and variables, playing
the role of types in usual type systems. The example judgment
x : Deref,y : Delay ⊢ (x + 1, lazy y) : Guard can be read either

left-to-right: If x can safely be used in Deref mode, and y in
Delaymode, then (x + 1, lazy y) can safely be used at Guard.

right-to-left: If a context accesses the term (x+1, lazyy) under
mode Guard, then x is accessed at Deref, and y at Delay.

This judgment uses access modes to classify both variables
and the constraints imposed on a term by its surrounding context.
If C[□] uses its hole □ at the mode m, then any derivation for
C[t] : Return will contain a sub-derivation of the form t :m.

Mode composition features in each term rule: if we try to prove
C[t] : m′, then the sub-derivation will check t : m′ [m], where
m′ [m] is the composition of the access-modem under a surround-
ing access modem′, and Return is neutral for composition.

Our judgment Γ ⊢ t : m can be directed into an algorithm
following our right-to-left interpretation. Given a term t and an
modem as inputs, our algorithm computes the least demanding
environment Γ such that Γ ⊢ t :m holds.

For example, the rule for abstraction in Figure 3 has the follow-
ing right-to-left reading: to compute the constraints Γ on λx . t in a
context of modem, it suffices to check the body t under the weaker
modem [Delay], and remove the variable x from the collected con-
straints – its mode does not matter. If t is a variable y and m is
Return, the resulting environment is y : Delay.

Given a family ofmutually-recursive definitions let rec (xi = ti )
i ∈I ,

we run our algorithm on each ti at the mode Return, and ob-
tain a family of environments (Γi )i ∈I such that all the judgments

2
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A right-to-left type system for value recursion

(Γi ⊢ ti : Return)i ∈I hold. The definitions are rejected if any Γi con-
tains one of the mutually-defined x j under the mode Deref or
Return rather than Guard or Delay.

Subsumption We have a subtyping/subsumption rule; for example,
if we want to check t under the mode Guard, it is always sound to
attempt to check it under the stronger mode Deref. More generally,
m ≻ m′ means thatm is more demanding thanm′, which means
(in the usual subtyping sense) that it classifies fewer terms; a proof
of Γ ⊢ t :m suffices to conclude Γ ⊢ t :m′. Our algorithmic check
does not use this rule; it is here for completeness.

Abstraction and application The rule for abstraction is discussed
above. The application rule checks both function and argument in a
Deref context, and merges the two resulting environments, taking
the most demanding mode on each side; a variabley is dereferenced
by t u if it is dereferenced by either t or u. The constructor rule
(elided; it may be found in the full paper) is similar, but constructor
parameters appear in Guard context, rather than Deref.

Recursive definitions The rule for mutually-recursive definitions
let rec b in u is split into two parts with disjoint responsibilities.
First, the binding judgment (xi : Γi )i ⊢ rec b computes, for each
definition xi = ei in a recursive binding b, the usage Γi of the
ambient context before the binding – we detail its definition below.

Second, the let rec b in u rule of the term judgment takes
these Γi and uses them under a compositionm′

i [Γi ], to account for
the actual access mode of the variables. (Herem [Γ] denotes the
pointwise lifting of composition for each mode in Γ.) The access
modem′

i is a combination of the access mode in the body u and
Guard, used to indicate that our eager language will compute the
values now, even if they are not used in u, or only under a delay.

Binding judgment and mutual recursion The binding judgment
(xi : Γi )i ∈I ⊢ rec b is independent of the ambient context and
access mode; it checks recursive bindings in isolation in the Return
mode, and relates each name xi introduced by the binding b to an
environment Γi on the ambient free variables.

In the first premise, for each binding (xi = ti ) in b, we check the
term ti in a context split in two parts, some usage context Γi on
the ambient context around the recursive definition, and a context
(x j :mi , j )

j ∈I for the recursively-bound variables, wheremi , j is the
mode of use of x j in the definition of xi .

The second premise checks that the modesmi , j are ⪯ Guard, to
ensure that these mutually-recursive definitions are valid.

The third premise makes mutual-recursion safe by turning the Γi
into bigger contexts Γ′i taking transitive mutual dependencies into
account: if a definition xi = ei uses the mutually-defined variable
x j under the modemi , j , then we ask that the final environment Γ′i
for ei contains what you need to use ej under the modemi , j , that
ismi , j

[
Γ′j

]
. This set of equations corresponds to the fixed point of

a monotone function, so it has a unique least solution.
Note: because themi , j must be below Guard, we can show that

mi , j
[
Γj
]
⪯ Γj . In particular, if we have a single recursive binding,

we have Γi ⪰ mi ,i [Γi ], so the third premise is equivalent to just
Γ′i

def
= Γi : the Γ′i and Γi only differ for non-trivial mutual recursion.
The full paper develops meta-theoretic properties of our infer-

ence rules, such as principality.

3 Meta-theory: soundness
The full paper connects our inference rules to the operational se-
mantics of Nordlander, Carlsson, and Gill [2008], with a more de-
tailed consideration of what it means for a term to go wrong (which
turns out to be quite subtle).

We define a notion of forcing context — a context that really
accesses the value of its hole — and a vicious term as one with a
forcing context containing a variable whose definition has not been
evaluated. Then we show soundness via the following theorems:

Lemma 3.1 (Forcing-deref). If, for a forcing context Ef , Γ, x :m ⊢

Ef[x] : Return is derivable, thenm is Deref.

Theorem 3.2 (Vicious). ∅ ⊢ t : Return never holds for t ∈ Vicious.

Theorem 3.3 (Subj.red.). If Γ ⊢ t :m and t → t ′ then Γ ⊢ t ′ :m.

Corollary 3.4. Return-typed programs cannot go vicious.

4 Extension to a full language: GADTs
The combination of efficient compilation, non-uniform value rep-
resentation, and features (GADTs, first-class modules) with subtle
interactions between types and values introduces several challenges
for checking recursive definitions in the full OCaml language. We
sketch how our system naturally extends to one such challenge.

At the point where the original syntactic check took place, on
an untyped IR quite late in the compiler pipeline, exhaustive single-
clause matches such as match t with () -> . . .) had been trans-
formed into direct substitutions. With this design, programs of the
following form are accepted:

type t = Foo

let rec x = match x with Foo -> Foo

This appears innocuous, but it becomes unsound with the addi-
tion of GADTs to the language [Dolan 2016]:

type (_, _) eq = Refl : ('a, 'a) eq

let all_eq (type a b) : (a, b) eq =

let rec (p: (a,b) eq) = match p with Refl -> Refl in p

For the GADT eq, matching against Refl is not a no-op: it brings a
type equality into scope that increases the number of types that can
be assigned to the program [Garrigue and Rémy 2013]. It is there-
fore necessary to treat matches involving GADTs as inspections
to ensure that a value of the appropriate type is actually available;
without that change definitions such as all_eq violate type safety.

5 Closing remarks
We have presented a new static analysis for recursive value decla-
rations, designed to solve a fragility issue in the OCaml language
semantics and implementation. It is less expressive than previous
works that analyze function calls in a fine-grained way; in return,
it remains fairly simple, despite its ability to scale to a fully-fledged
programming language, and the constraint of having a direct cor-
respondence with a simple inference algorithm.

We believe that this analysis may be of use for other functional
languages, both typed and untyped. It seems likely that the tech-
niques we have used will apply to other systems — type parameter
variance, type constructor roles, and so on. Our hope in describ-
ing our system is that we will eventually see a pattern emerge for
designing “things that look like type systems” in this way.

For reasons of space we refer the reader to the full paper [Rey-
naud et al. 2018] for a discussion of related work.
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