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In call-by-value languages, some mutually-recursive definitions can be safely evaluated to build recursive

functions or cyclic data structures, but some definitions (let rec x = x + 1) contain vicious circles and

their evaluation fails at runtime. We propose a new static analysis to check the absence of such runtime

failures.

We present a set of declarative inference rules, prove its soundness with respect to the reference source-

level semantics of Nordlander, Carlsson, and Gill [2008], and show that it can be directed into an algorithmic

backwards analysis check in a surprisingly simple way.

Our implementation of this new check replaced the existing check used by the OCaml programming

language, a fragile syntactic criterion which let several subtle bugs slip through as the language kept evolving.

We document some issues that arise when advanced features of a real-world functional language (exceptions

in first-class modules, GADTs, etc.) interact with safety checking for recursive definitions.
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1 INTRODUCTION
Recursion pervades functional programs. Functional programmers often start out by writing simple

recursive definitions such as the Fibonacci function, shown here in OCaml:

let rec fib = fun x -> if x <= 1 then x

else fib (x-1) + fib (x-2)

This definition is elegant but, alas, impractical: computing fib n takes time exponential in n. One
way to improve performance is to memoize: in place of a function, we might (recursively) define a

lazy list, lfibs, whose nth element represents fib n:

let rec lfibs = lazy (0 :: lazy (1 :: map2 (+) lfibs (tail lfibs)))

As these definitions show, recursion is useful for defining both functions and values. However,

lazy-list memoization is rarely used in eager languages, since elegance suffers from the need to

make all laziness explicit. Here is a more idiomatic memoized function mfib, mutually-defined with

a record mfibs, which pairs the function with a memo-table of its previously-computed values:
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let rec mfib = fun x -> if x <= 1 then x

else remember mfibs (x-1) + remember mfibs (x-2)

and mfibs = { f = mfib; values = empty_table () }

(The remember function retrieves previously-computed values and computes and stores new entries.)

This definition exposes both mfib and its table mfibs, risking inadvertent modification of the table.

A cautious programmer might avoid this danger by making mfibs local to mfib:

let rec mfib' = let mfibs' = { f = mfib'; values = empty_table () } in
fun x -> if x <= 1 then x

else remember mfibs' (x-1) + remember mfibs' (x-2)

1.1 Recursion: Expressiveness vs Safety
As this tapestry of fibs suggests, the usefulness of recursion is not limited to simple function

definitions: our examples build record values, call functions and bind local names. However, in

eager languages not all recursion is safe. For example, here is an unsafe eager variant of lfibs:

let rec efibs = 0 :: 1 :: map2 (+) efibs (tail efibs) (* unsafe! *)

Evaluation of efibs fails, since map2 and tail access efibs before it is fully constructed.

Existing functional languages incorporate various approaches to balancing usefulness and safety.

In some languages, such as Scheme [Sperber et al. 2009], mutually-recursive bindings are evalu-

ated immediately, and it is a run-time error for evaluation to encounter any identifier being bound.

Evaluating mfibs, which refers to mfib, would produce such an error.

Other languages, such as F♯, provide a kind of lazy evaluation for recursive value bindings [Syme

2006] (discussed in §8) which supports the construction of recursive objects. F♯’s approach allows

more programs to execute without error — it is sufficient to support mfib, though not mfib' — but

it does not entirely eliminate run-time errors from ill-formed recursive bindings. Consequently, an

additional syntactic check [Syme 2005] rejects some cases of self-reference that would result in

run-time errors. (However, even this additional check is not sufficient to eliminate all such errors.)

Finally, some languages, such as Standard ML [Milner et al. 1997], incorporate a more severe ap-

proach, permitting recursion only through syntactic function definitions such as fib, and statically

rejecting mfib, mfib' and efib. (Some implementations also support laziness, and allow lfibs.)
Of these design choices, Standard ML’s most fully embodies Milner’s dictum: well-typed programs

do not go wrong. However, as we show in this paper, StandardML’s treatment of recursive definitions

is unnecessarily restrictive: it is possible to define a much more permissive criterion for recursive

definitions that still ensures the absence of run-time errors. Our criterion allows useful definitions

such as lfibs, mfib and mfib', while rejecting incorrect programs such as efibs. We present the

criterion as a mode system (proved sound with respect to an operational semantics), suitable for

incorporating into a compiler — indeed, our implementation has already been merged into the

mainline OCaml compiler.

1.2 OCaml Needed Fixing
Before the work described in this paper, OCaml took an approach similar to F♯’s (although somewhat

more precise, and based on OCaml’s existing eager semantics rather than a translation into thunks),

checking for vicious recursive definitions via syntactic analysis of an intermediate representation

of programs. We believe OCaml’s check as originally defined
1
was correct, but it proved fragile and

difficult to maintain as the language evolved and new features interacted with recursive definitions.

Over the years, several bugs were found where the check was unduly lenient (§2.3). In conjunction

1
https://ocaml.org/releases/4.05/htmlman/extn.html#sec217
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with OCaml’s efficient compilation scheme for recursive definitions [Hirschowitz et al. 2009], this

leniency resulted in memory safety violations, and led to segmentation faults when definitions that

accessed recursively-defined objects before they were initialized were allowed through undetected.

1.3 Generalized Recursion in Practice
In order to determine whether generalized recursive definitions were used in practice, we searched

a large subset of packages in the OCaml software repository (OPAM) for instances of generalized

recursion (i.e. recursive definitions that Standard ML would reject). At the time of our analysis

in July 2020, we found 309 distinct examples of such definitions in around 74 packages. The

definitions variously made use of local bindings and other local constructs (such as local exception

definitions), evaluation of sub-terms, record and variant construction and laziness, in both singly-

andmutually-recursive bindings. Generalized recursion definitions are used in useful data structures

and important libraries that many other packages in turn depend on. We found that 1613 packages

out of 2819 in the repository at the time (57%) depend on at least one of those packages using

generalized recursion.

1.4 Our Analysis
The present document formally describes our analysis using a core ML language (§3). We present

inference rules (§4) and study the meta-theory of the analysis. We propose a source-level operational

semantics, refreshing semantics proposed in earlier works [Ariola and Felleisen 1997; Hirschowitz,

Leroy, and Wells 2009; Nordlander, Carlsson, and Gill 2008] with explicit substitutions using

reduction at a distance (§5), and show that our analysis is sound for this semantics. We also propose

a semantics that uses mutable updates to a global store, closer to production-compiler compilation

strategies (§6), for which our analysis is also sound. Finally, we discuss the challenges caused by

scaling the analysis to OCaml (§7), a full-fledged functional language, in particular the delicate

interactions with non-uniform value representations (§7.2), with exceptions and first-class modules

(§7.3), and with Generalized Algebraic Datatypes (GADTs) (§7.4).

1.5 Adoption in OCaml
The initial version of our new system was originally released in OCaml 4.06.0 (3 Nov 2017). We

formalised the new system after its release, and reworked the implementation to better match the

formalisation. The updated implementation was released in OCaml 4.08.0 (13 June 2019).

Before releasing our new system, we sought to determine whether it was significantly more

restrictive in practice than the previous check by running it over the packages in OPAM. This

investigation did not uncover any code that was accepted by the previous check but rejected by

our new system. Six major OCaml releases later there has been only one report of such a program

(#7767); it was straightforward to update our system to accept it.

Of course, since we looked only at existing OCaml code, our investigation could not uncover

definitions that were rejected by the previous check but accepted by our new system, which is

more permissive in some cases (§2.3). However, our goal was not to increase the expressivity of

OCaml’s value definitions, but to design a static check that was backwards-compatible with the

previous check, while being easier to reason about and evolve in tandem with the language (§7).

Our aim was to make the check as simple as possible within the constraints, not as expressive as

possible.

Furthermore, moving the check from the compiler middle end into the type checker has another

benefit: it is convenient for tools that reuse OCaml’s type-checker without performing compilation,

such as the multi-stage language MetaOCaml [Kiselyov 2014] (which type-checks code quotations)

and the Merlin language server [Bour et al. 2018] (which type-checks code during editing).
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1.6 Contributions
We claim the following contributions:

• We propose a new system of inference rules that captures the safety conditions for recursive

definitions in an eager language (§4), previously enforced in OCaml by ad-hoc syntactic

restrictions.

• We prove the analysis sound with respect to a source-level operational semantics: accepted

recursive terms evaluate without vicious-circle failures (§5). Our source-level semantics is

justified by a simulation result with lower-level backpatching semantics with a global store

(§6), for which our analysis is also sound.

• We have implemented a checker derived from the rules, scaled up to the full OCaml language

(§7) and integrated in the OCaml implementation.

• Our analysis is less fine-grained on functions than existing works (§8), thanks to a less

demanding problem domain (ML functions rather than ML functors), but in exchange it

provides finer-grained handling of cyclic data and an effective inference algorithm.

2 OVERVIEW
2.1 Access modes
Our analysis is based on the classification of each use of a recursively-defined variable using “access

modes” or “usage modes”m. These modes represent the degree of access needed to the value bound

to the variable during evaluation of the recursive definition.

For example, in the recursive function definition

let rec f = fun x -> . . . f . . .

the recursive reference to f in the right-hand-side does not need to be evaluated to define the

function value fun x ->. . . since its value will only be required later, when the function is applied.

We say that, in this right-hand-side, the mode of use of the variable f is Delay.
In contrast, in the vicious definition let rec x = 1 + x evaluation of the right-hand side

involves accessing the value of x; we call this usage mode a Dereference. Our static check rejects

mutually-recursive definitions that access recursively-bound names under this mode.

Some patterns of access fall between the extremes of Delay and Dereference. For example, in

the cyclic datatype construction let rec obj = { self = obj } the recursively-bound variable

obj appears on the right-hand side without being placed inside a function abstraction. However,

since it appears in a “guarded” position, within the record constructor {self = -}, evaluation only

needs to access its address, not its value. We say that the mode of use of the variable ones is Guard.
Finally, a variable x may also appear in a position where its value is not inspected, neither is it

guarded beneath a constructor, as in the expression x, or let y = x in y, for example. In such

cases we say that the value is “returned” directly and use the mode Return. As with Dereference,
recursive definitions that access variables at the mode Return, such as let rec x = x, would be

under-determined and are rejected.

We also use a last Ignore mode to classify variables that are not used at all in a term.

2.2 An Inference System (and Corresponding Backwards Analysis)
The central contribution of our work is a simple system of inference rules for a judgment of the

form Γ ⊢ t :m, where t is a program term,m is an access mode, and the environment Γ maps term

variables to access modes. Modes classify terms and variables, playing the role of types in usual

type systems. The example judgment x : Dereference,y : Delay ⊢ (x + 1, lazy y) : Guard can be

read alternatively
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forwards: If we know that x can safely be used in Dereference mode, and y can safely be used

in Delay mode, then the pair (x + 1, lazy y) can safely be used under a value constructor (in a

Guard-ed context).

backwards: If a context accesses the program fragment (x + 1, lazy y) under the mode Guard,
then this means that the variable x is accessed at the mode Dereference, and the variable y at

the mode Delay.
This judgment uses access modes for two purposes: to classify variables, and to classify the

constraints imposed on a subterm by its surrounding context. If a contextC[□] uses its hole □ at the
modem, then any derivation for the plugged context C[t] : Return will contain a sub-derivation of

the form t :m for the term t .
In general, we can define a notion of mode composition: if we try to prove C[t] :m′, then the

sub-derivation will check t :m′ [m], wherem′ [m] is the composition of the access-modem under

a surrounding usage modem′, and Return is neutral for composition.

Our judgment Γ ⊢ t :m can be directed into an algorithm following our backwards interpretation.

Given a term t and a modem as inputs, our algorithm computes the least demanding environment

Γ such that Γ ⊢ t :m holds.

For example, the inference rule for function abstractions in our system is as follows:

Γ, x :mx ⊢ t :m [Delay]

Γ ⊢ λx . t :m

The backwards reading of the rule is as follows. To compute the constraints Γ on λx . t in a context

of modem, it suffices to check the function body t under the weaker modem [Delay], and remove

the function variable x from the collected constraints — its mode does not matter. If t is a variable
y andm is Return, we get the environment y : Delay as a result.

Given a family of mutually-recursive definitions let rec (xi = ti )
i ∈I

, we run our algorithm

on each ti at the mode Return, and obtain a family of environments (Γi )
i ∈I

such that all the

judgments (Γi ⊢ ti : Return)i ∈I hold. The definitions are rejected if one of the Γi contains one of the
mutually-defined names x j under the mode Dereference or Return rather than Guard or Delay.

2.3 Issues with the Previous Check
Before this work, the safety criterion used by OCaml for recursive value definitions was an ad-hoc

grammatical restriction, formulated essentially as a context-free grammar of accepted definitions

(see its description in the reference manual). Furthermore, this syntactic check was not performed

on the source program directly, but on an intermediate representation (the Lambda code) — so that

it wouldn’t have to take into account various surface-language forms that desugar to the same

intermediate-language construct.

We list below some of the known issues with the previous check. They were solved by our work.

#7231: unsoundness with nested recursive bindings. The previous check accepted the following

unsafe program.

let rec r = let rec x () = r

and y () = x ()

in y ()

in r "oops" (* segfault *)

The problem is that while the declarations of x and y are “safe” (in some sense) with respect to

r, using y is not safe — it returns r itself. This subtlety was lost on the previous check. With the

current check, y () uses r at mode Return, which is stricter than Guard, so this program is rejected.
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#7215: unsoundness with GADTs. The previous check accepted the following unsafe program.

let is_int (type a) =

let rec (p : (int, a) eq) = match p with Refl -> Refl in p

This program uses a recursive value declaration of a GADT value to build a type-equality between

int and an arbitrary type a. Our check rejects the program because match p with Refl -> ...
is a dereferencing use of p. The previous check was run on an intermediate form, after various

optimizations, one of which would eliminate the single-case match away, resulting in the (unsound)

program passing the check.

#6939: unsoundness with float arrays.

let rec x = ([| x |]; 1.) in ()

This program defines x to be the floating-point value 1. after ignoring the value of the one-element

array [| x |]. Although the program was accepted by the previous check, OCaml’s non-uniform

value representation makes it unsafe, and it would fail with a segmentation fault when run, as

explained in Section 7.2 (Dynamic Representation Checks: Float Arrays). Our algorithm uses

typing information, which is needed to detect this case: construction of a float array is treated as a

Dereference context for its elements.

#4989: inconveniently rejected program.

let rec f = let g = fun x -> f x in g

This program, which gives a local name to an expression that accesses f at mode Delay, is perfectly
safe, but was rejected by the previous check. A grammar-based check lacks a form of composability

that would allow the use of local bindings to give names to sub-expressions in an analysis-preserving

way. This issue (#4989) dates back to 2010: this form of composability had been requested by users for

a long time as a convenience feature, but the previous check could not be extended to allow it. On the

contrary, proper handling of inner let-bindings falls out naturally from our type-system-inspired

approach.

3 A CORE LANGUAGE OF RECURSIVE DEFINITIONS
Family notation. Wewrite (. . .)i ∈I for a family of objects parametrized by an index i over finite set

I , and ∅ for the empty family. Furthermore, we assume that index sets are totally ordered, so that the

elements of the family are traversed in a predetermined linear order; we write

(
ti1

) i1∈I1 , (ti2 ) i2∈I2
for the combined family over I1 ⊎ I2, with the indices in I1 ordered before the indices of I2. We

often omit the index set, writing (. . .)i . Families may range over two indices (the domain is the

cartesian product), for example

(
ti , j

) i , j
.

Our syntax, judgments, and inference rules will often use families: for example, let rec (xi = ti )
i

is a mutually-recursive definition of families (ti )
i
of terms bound to corresponding variables (xi )

i
—

assumed distinct, following the Barendregt convention. Sometimes a family is used where a term is

expected, and the interpretation should be clear: when we say “(Γi ⊢ ti :mi )
i
holds”, we implicitly

use a conjunctive interpretation: each of the judgments in the family holds.

3.1 Syntax
Figure 1 introduces a minimal subset of ML containing the interesting ingredients of OCaml’s

recursive values:

• A multi-ary let rec binding let rec (xi = ti )
i in u.

• Functions (λ-abstractions) λx . t to write recursive occurrences whose evaluation is delayed.
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Terms ∋ t,u ::= x,y, z
| let rec b in u
| λx . t | t u
| K (ti )

i | match t with h

Bindings ∋ b ::= (xi = ti )
i

Handlers ∋ h ::= (pi → ti )
i

Patterns ∋ p,q ::= K (xi )
i

Fig. 1. Core language syntax

• Datatype constructors K (t1, t2, . . . ) to write (safe) cyclic data structures; these stand in both

for user-defined constructors and for built-in types such as lists and tuples.

• Shallow pattern-matching (match t with
(
Ki

(
xi , j

) j
→ ui

) i
), to write code that inspects

values, in particular code with vicious circles.

The following common ML constructs do not need to be primitive forms, as we can desugar them

into our core language. In particular, the full inference rules for OCaml (and our check) exactly

correspond to the rules (and check) derived from this desugaring.

Besides dispensing with many constructs whose essence is captured by our minimal set, we

further simplify matters by using an untyped ML fragment: we do not need to talk about ML types

to express our check, or to assume that the terms we are working with are well-typed.
2
However,

we do assume that our terms are well-scoped — note that, in let rec (xi = vi )i in u, the (xi )i are
in scope of u but also of all the vi .

Remark 1. Recursive values are a controversial feature as they break the assumption that structurally-

decreasing recursive functions will terminate on all inputs. The uses we found in the wild in OCaml

programs typically combine “negative” constructs (functions, lazy, records) rather than infinite lists

or trees. A possible design would be to distinguish an “inductive” sub-space of recursive types whose

recursive occurrences are forbidden in negative positions, and whose constructors are not given the

Guard mode in our system. In another direction, Jeannin, Kozen, and Silva [2017] propose language

extensions to make it easier to operate over cyclic structures.

4 A MODE SYSTEM FOR RECURSIVE DEFINITIONS
4.1 Access/Usage Modes
Figure 2 defines the access/usage modes that we introduced in Section 2.1, their order structure,

and the mode composition operations. The modes are as follows:

Ignore is for sub-expressions that are not used at all during the evaluation of the whole program.

This is the mode of a variable in an expression in which it does not occur.

Delay means that the context can be evaluated (to a weak normal-form) without evaluating its

argument. λx .□ is a delay context.

Guard means that the context returns the value as a member of a data structure, for example

a variant constructor or record. K (□) is a guard context. The value can safely be defined

mutually-recursively with its context, as in let rec x = K (x).
Return means that the context returns its value without further inspection. This value cannot

be defined mutually-recursively with its context, to avoid self-loops: in let rec x = x and

let rec x = let y = x in y, the rightmost occurrence of x is in Return context.

2
In more expressive settings, the structure of usage modes does depend on the structure of values, and checks need to be

presented as a refinement of a ML type system. We discuss this in Section 8. Our modes are a degenerate case, a refinement

of uni-typed ML.
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Modes ∋m ::= Ignore
| Delay
| Guard
| Return
| Dereference

Mode order:

Ignore ≺ Delay ≺ Guard ≺ Return ≺ Dereference

Mode composition rules :
Ignore [m] = Ignore = m [Ignore]
Delay [m ≻ Ignore] = Delay
Guard [Return] = Guard
Guard [m , Return] = m
Return [m] = m
Dereference [m ≻ Ignore] = Dereference

Mode composition as a table:

m [m′] Ignore Delay Guard Return Dereference m
Ignore Ignore Ignore Ignore Ignore Ignore
Delay Ignore Delay Delay Delay Dereference
Guard Ignore Delay Guard Guard Dereference
Return Ignore Delay Guard Return Dereference
Dereference Ignore Delay Dereference Dereference Dereference
m′

Fig. 2. Access/usage modes and operations

Dereference means that the context consumes, inspects and uses the value in arbitrary ways.

Such a value must be fully defined at the point of usage; it cannot be defined mutually-

recursively with its context. match □ with h is a Dereference context.

Remark 2 (Discarding). The Guard mode is also used for subterms whose result is discarded by

the evaluation of their context. For example, the hole □ is in a Guard context in (let x = □ in u), if x
is never used in u; even if the hole value is not needed, call-by-value reduction will first evaluate it and

discard it. When these subterms participate in a cyclic definition, they cannot create a self-loop, so we

consider them guarded.

Our ordering m ≺ m′ places less demanding, more permissive modes that do not involve

dereferencing variables (and so permit their use in recursive definitions), below more demanding,

less permissive modes.

Each mode is closely associated with particular expression contexts. For example, t □ is a

Dereference context, since the function t may access its argument in arbitrary ways, while λx .□ is

a Delay context.

Mode composition corresponds to context composition, in the sense that if an expression context

E[□] uses its hole at modem (to compute a result), and a second expression context E ′[□] uses
its hole at modem′, then the composition of contexts E[E ′[□]] uses its hole at modem [m′]. Like
context composition, mode composition is associative, but not commutative: Dereference [Delay]
is Dereference, but Delay [Dereference] is Delay.
Continuing the example above, the context t (λx .□), formed by composing t □ and λx .□, is a

Dereference context: the intuition is that the function t may pass an argument to its input and then

access the result in arbitrary ways. In contrast, the context λx . (t □), formed by composing λx .□
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Term judgment Γ ⊢ t :m

Γ, x :m ⊢ x :m

Γ ⊢ t :m m ≻m′

Γ ⊢ t :m′

Γ, x :mx ⊢ t :m [Delay]

Γ ⊢ λx . t :m

Γt ⊢ t :m [Dereference] Γu ⊢ u :m [Dereference]

Γt + Γu ⊢ t u :m

(Γi ⊢ ti :m [Guard])i∑
(Γi )

i ⊢ K (ti )
i :m

Γt ⊢ t :m [Dereference] Γh ⊢
cl h :m

Γt + Γh ⊢ match t with h :m

(xi : Γi )
i ⊢ rec b

(
m′i

) i def
= (max(mi ,Guard))i Γu , (xi :mi )

i ⊢ u :m∑ (
m′i [Γi ]

) i
+ Γu ⊢ let rec b in u :m

Clause judgments Γ ⊢cl h :m and Γ ⊢cl p → u :m(
Γi ⊢

cl pi → ui :m
) i∑

(Γi )
i ⊢cl (pi → ui )

i :m

Γ, (xi :mi )
i ⊢ u :m

Γ ⊢cl K (xi )
i → u :m

Binding judgment (xi : Γi )
i ⊢ rec b(

Γi ,
(
x j :mi , j

) j ∈I
⊢ ti : Return

) i ∈I (
mi , j ⪯ Guard

) i , j(
Γ′i = Γi +

∑ (
mi , j

[
Γ′j

] ) j ) i
(
xi : Γ

′
i
) i ∈I
⊢ rec (xi = ti )

i ∈I

Fig. 3. Mode inference rules

and t □, is a Delay context: the contents of the hole will not be touched before the abstraction is

applied.

Finally, Ignore is the absorbing element of mode composition (m [Ignore] = Ignore = Ignore [m]),
Return is an identity (Return [m] =m =m [Return]), and composition is idempotent (m [m] =m).

4.2 Inference Rules
Environment notations. Our environments Γ associate variables x with modes m. We write

Γ1, Γ2 for the union of two environments with disjoint domains, and Γ1 + Γ2 for the merge of two

overlapping environments, taking the maximum mode for each variable. We sometimes use family

notation for environments, writing (Γi )
i
to indicate the disjoint union of the members, and

∑
(Γi )

i

for the non-disjoint merge of a family of environments.

Inference rules. Figure 3 presents the inference rules for access/usage modes. The rules are

composed into several different judgments, even though our simple core language makes it possible
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to merge them. In the full system for OCaml the decomposition is necessary to make the system

manageable.

Section 4.3 (Examples) contains examples of mode judgments in our system, corresponding to

recursive definitions that are accepted or rejected. Looking at those examples in parallel may help

understand some of the inference rules, in particular for let rec.

Variable and subsumption rules. The variable rule is as one would expect: the usage mode of

x in anm-context ism. In this declarative presentation, we let the rest of the environment Γ be

arbitrary; we could also have imposed that it map all variables to Ignore. Our algorithmic check

returns the “least demanding” environment Γ for all satisfiable judgments, so it uses Ignore in any

case.

We have a subsumption rule; for example, if we want to check t under the mode Guard, it is
always sound to attempt to check it under the stronger mode Dereference. Our algorithmic check

will never use this rule; it is here for completeness. The direction of the comparison may seem

unusual. We can coerce a Γ ⊢ t : m into Γ ⊢ t : m′ whenm ≻ m′ holds, while we might expect

m ≤ m′. This comes from the fact that our backwards reading is opposite to the usual reading

direction of type judgments, and influenced our order definition. Whenm ≻ m′ holds,m is more

demanding thanm′, which means (in the usual subtyping sense) that it classifies fewer terms.

Simple rules. We have seen the λx . t rule already, in Section 2.2. Since λ delays evaluation,

checking λx . t in a usage contextm involves checking the body t under the weaker modem [Delay].
The necessary constraints Γ are returned, after removing the constraint over x3.

The application rule checks both the function and its argument in a Dereference context, and
merges the two resulting environments, taking the maximum (most demanding) mode on each

side; a variable y is dereferenced by t u if it is dereferenced by either t or u.
The constructor rule is similar to the application rule, except that the constructor parameters

appear in Guard context, rather than Dereference.

Pattern-matching. The rule for match t with h relies on a different clause judgment Γ ⊢cl h :m
that checks each clause in turn and merges their environments. On a single clause K (xi )

i → u, we
check the right-hand-side expressions u in the ambient modem, and remove the pattern-bound

variables (xi )
i
from the environment.

4

Recursive definitions. The rule for mutually-recursive definitions let rec b in u is split into two

parts with disjoint responsibilities. First, the binding judgment (xi : Γi )
i ⊢ rec b computes, for each

definition xi = ei in a recursive binding b, the usage Γi of the ambient context before the recursive

binding — we detail its definition below.

Second, the let rec b in u rule of the term judgment takes these Γi and uses them under a

compositionm′i [Γi ], to account for the actual usage mode of the variables. (Herem [Γ] denotes the
pointwise lifting of composition for each mode in Γ.) The usage modem′i is a combination of the

usage mode in the body u and Guard, used to indicate that our call-by-value language will compute

the values now, even if they are not used in u, or only under a delay — see Remark 2 (Discarding).

Deriving a simple let rule. Before we delve into the more general rule for mutually-recursive

definitions, let us mention the particular case of a single, non-recursive definition let x = t in u.

3
In situations where it is desirable to have a richer mode structure to analyze function applications, as considered by some

of the related work (Section 8), we could use the modemx in a richer return modemx →m.

4
If we wanted a finer-grained analysis of usage of the sub-components of our data, we would use the sub-modes (mi )

i
of

the pattern variables to enrich the datatype of the pattern scrutinee.
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The general rule simplifies itself into the following:

Γt ⊢ t : Return m′
def
= max(mx ,Guard) Γu , x :mx ⊢ u :m

m′ [Γt ] + Γu ⊢ let x = t in u :m

Binding judgment and mutual recursion. The binding judgment (xi : Γi )
i ∈I ⊢ rec b is independent

of the ambient context and usage mode; it checks recursive bindings in isolation in the Return
mode, and relates each name xi introduced by the binding b to an environment Γi on the ambient

free variables.

In the first premise, for each binding (xi = ti ) in b, we check the term ti in a context split in

two parts, some usage context Γi on the ambient context around the recursive definition, and a

context

(
x j :mi , j

) j ∈I
for the recursively-bound variables, wheremi , j is the mode of use of x j in

the definition of xi .
The second premise checks that the modesmi , j are Guard or less demanding, to ensure that

these mutually-recursive definitions are valid. This is the check mentioned at the end of Section 2.2

(An Inference System (and Corresponding Backwards Analysis)).

The third premise makes mutual-recursion safe by turning the Γi into bigger contexts Γ′i taking
transitive mutual dependencies into account: if a recursive definition xi = ei uses the mutually-

defined variable x j under the modemi , j , then we ask that the final environment Γ′i for ei contains

what you need to use ej under the mode mi , j , that is mi , j

[
Γ′j

]
. This set of recursive equations

corresponds to the fixed point of a monotone function, so in particular it has a unique least solution.

Note that because themi , j must be below Guard, we can show thatmi , j
[
Γj
]
⪯ Γj . In particular,

if we have a single recursive binding, we have Γi ⪰ mi ,i [Γi ], so the third premise is equivalent to

just Γ′i
def
= Γi : the Γ

′
i and Γi only differ for non-trivial mutual recursion.

Unique minimal environment. In Appendix A (Properties of our Typing Judgment) in the extended

version we develop some direct meta-theoretic properties of our inference rules. We summarize

here the key results. For each t :m, there exists a minimal environment Γ such that Γ ⊢ t :m holds.

Theorem 1 (Principal environments). Whenever both Γ1 ⊢ t : m and Γ2 ⊢ t : m hold, then

min(Γ1, Γ2) ⊢ t :m also holds.

We also define minimal derivations, which restrict the non-determinism in the variable and

binding rules, and the way subsumption may be used. Minimal derivations have minimal environ-

ments and a syntax-directed structure. They precisely characterize the behavior of our algorithm,

implemented in the OCaml compiler: given t :m, it constructs a minimal derivation of the form

Γ ⊢ t :m, and returns the environment Γ, which is minimal for t :m.

4.3 Examples
Our checker accepts a definition let rec x = t if there exists a mode judgment Γ ⊢ t : Return that

assigns a mode to x in Γ that is Guard or smaller. The definition is rejected if the mode of x in the

minimal judgment is Return or Dereference. Let us discuss various examples of definitions that are

accepted or rejected, along with the corresponding minimal judgments.

Separating Return from Guard,Delay. The definitions let rec x = Fixx or let rec f = λx . f x
are valid: the definitions admit the mode judgments x : Guard ⊢ Fixx : Return and f : Delay ⊢
λx . f x : Return. On the other hand, the definition let rec x = x is invalid, as the best judgment

for its body is x : Return ⊢ x : Return, with x : Return (stricter than Guard) in Γ.
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Separating Guard from Delay. In the valid example let rec f = λx . f x , the subterm f x is

dereferencing f ; the mode of f in the outer environment is still Delay thanks to the composition

Delay [Dereference] = Delay. On the other hand, if we had moved the application outside the delay,

let rec f = (λx . f ) u, this definition would be rejected, as we would have f : Dereference thanks
to the composition Dereference [Delay] = Dereference.

Guard behaves differently than Delay: our constructors are strict, so dereferencing inside a guard
is also a dereference. For example, considering a function д defined outside, both let rec x =
д (Fixx) and let rec x = Fix (д x) are rejected, as the mode of x is Dereference in the right-hand

side of the definition. In the first case this mode comes from the composition Dereference [Guard] =
Dereference, in the second case from Guard [Dereference] = Dereference.

Separating Delay from Ignore. Notice that if we have x : Delay ⊢ t[x] : Return then we have

x : Dereference,д : Dereference ⊢ д (t[x]) : Return but if we have x : Ignore ⊢ t[x] : Return then

we have x : Ignore,д : Dereference ⊢ д (t[x]) : Return. So a declaration of the form let rec x =
д (t[x]) is rejected if t uses the variable x at mode Delay, but accepted if x is not used (x : Ignore).

SeparatingReturn fromDereference. Similarly, if we have x : Return ⊢ t[x] : Return (for example

t[x] is x or (let y = x in y)), then we have x : Guard ⊢ Fix (t[x]) : Return, but if we have

x : Dereference ⊢ t[x] : Return then we have x : Dereference in the environment of Fix (t[x]). In
particular, let rec x = Fix (t[x]) is accepted in the first case and rejected in the second.

Simple let examples. (These examples are easier to follow by using the simple let rule than

the general let rec rule.). What is the mode x in let z = λy. Pair (x,y) in Fix z? The mode of x
in the definition λy. Pair (x,y) is Delay, and the mode of z in the body Fix z is Guard. The final
context (at global mode Return) is Guard [x : Delay], that is x : Delay.
In the case of let z = λy. Pair (x,y) in д z, the final context is Dereference [x : Delay] = x :

Dereference. Finally, the premisem′ = max (m,Guard) of the rule comes into play when the body

delays or ignores the defined variable: in the case of let z = д x in y, the mode of z in y is Ignore,
but the mode of x in the whole term is not Ignore [x : Dereference], which would be x : Ignore, but
rather max(Ignore,Guard) [x : Dereference], which is x : Dereference.

let rec examples. The delicate aspect of the (xi : Γi )
i ⊢ rec (xi = ti )

i
judgment is the fixpoint

of equations Γ′i = Γi +
∑ (

mi , j

[
Γ′j

] ) j
, which computes a “transitive closure” of usage modes of the

mutually-recursively-defined variables. Consider for example the term t defined as

t
def
= let rec x ′ = x and y = Fix (x ′) and z = д y in z

We index the three definitions by i ∈ I with I
def
= {x ′,y, z}. The contexts (Γi )

i
of the rule correspond

to the dependency of each right-hand-side on non-mutually-recursive variables. The

(
Γ′i

) i
are

defined by a system of recursive equations, depending on each Γj and the mode of use of the

variable j in the definition of i . We have:

Γx ′
def
= (x : Return)

Γy
def
= ∅

Γz
def
= (д : Dereference)

Γ′x ′
def
= Γx

Γ′y
def
= Γy + Guard

[
Γ′x ′

]
Γ′z

def
= Γ′z + Dereference

[
Γ′y

]
The smallest fixpoint solution has Γ′x ′ = (x : Return), Γ′y = (x : Guard), and Γ′z = (д :

Dereference, x : Dereference). In particular, notice how x is accessed at mode Dereference by

z, even though it does not syntactically appear in its definition. The whole term t , in the ambient

mode Return, is in the environment Γ′z = (д : Dereference, x : Dereference). If we had used a

simpler rec rule that would return the (Γi )
i
instead of the

(
Γ′i

) i
, immediate usage rather than
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transitive usage, t would typed in the environment Γz = д : Dereference, that is with x : Ignore.
This would be unsound, for example the vicious definition let rec x = t would be accepted.

4.4 Discussion
Declarative vs. algorithmic rules. A presentation of a type system can be more “algorithmic” or

more “declarative”, sitting on a continuous spectrum. More-declarative systems have convenient

typing rules corresponding to reasoning principles that are sound in the metatheory, but may be

harder to implement in practice. More-algorithmic systems have more rigid inference rules, that

are easier to implement as a checking or inference system (typically they may be syntax-directed);

some valid reasoning principles may not be available as rules but only as admissible rules (requiring

a global rewrite of the derivation) or not at all.

In our system, the variable and subsumption rules are typically declarative: the variable rule

has an undetermined Γ context, and the subsumption rule makes the system non-syntax-directed.

Without those two rules, it would not be possible to prove x : Guard,y : Dereference ⊢ y : Return,
but only the stronger judgment x : Ignore,y : Return ⊢ y : Return.
On the other hand, our binding rule has an algorithmic flavor: it introduces a family of

contexts

(
Γ′i

) i
that is uniquely determined as the solution of a system of recursive equations(

Γ′i = Γi +
∑ (

mi , j

[
Γ′j

] ) j ) i
, so its application requires computing a fixpoint. A more declarative

presentation would allow “guessing” any family (Γi )
i
that satisfies the inequations necessary for

soundness: (
Γi ,

(
x j :mi , j

) j ∈I
⊢ ti : Return

) i ∈I (
mi , j ⪯ Guard

) i , j(
Γi ⪰ Γi +

∑ (
mi , j

[
Γj
] ) j ) i

(xi : Γi )
i ∈I ⊢ rec (xi = ti )

i ∈I

Backwards type systems. Typing rules are a specialized declarative language to describe and

justify various computational processes related to a type system (type checking, type inference,

elaboration, etc.). Our mode system read “backwards” is one possible way to describe the static

analysis we are capturing, which could also be described in many other ways: as pseudocode, as a

fixpoint of equations, through a denotational semantics, etc. In general we believe that reading type

systems backwards can give a nice, compact, declarative presentation of certain demand analyses,

in a language that type designers are already familiar with.

Our terminology follows the “backward analysis” notion described for logic programming

languages by Genaim and Codish [2001], i.e. our algorithm answers the question (posed in that work)

“Given a program and an assertion at a given program point, what are the weakest requirements on

the inputs to the program which guarantee that the assertion will hold whenever execution reaches

that point?” For our analysis, the assertion is the mode under which an expression is checked, and

the requirements on the inputs correspond to the computed environment Γ.
Backward analyses for functional languages also appear in work by Hughes [Hughes 1987]. A

notable difference is that Hughes-style “demand analyses”
5
are typically presented in a denotational

style, using tools of domain theory. However, some recent work (such as the cardinality analysis

by Sergey et al. [2017b]) presents backward analyses in a syntactic style more similar to that used

in the present paper.

5
For a recent example, see the unpublished draft Sergey, Peyton-Jones, and Vytiniotis [2017a]. Thanks are due to Joachim

Breitner for the reference.
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Modes as modalities. Untyped or dynamically-typed languages can be seen as “uni-typed”, with

a “universal type” U of all values. Language constructions can be presented as section/retraction

pairs from U to a type that computes, such as U→ U for functions or U × U × · · · × U for tuples;

for example, the untyped term (λx . t) u can be explicitated into app (lam(λx . t)) u, for combinators

app : U→ (U→ U) and lam : (U→ U) → U such that app ◦ lam is the identity on U→ U — but

lam ◦ app gets stuck on non-functions.

Rather than types, it is more precise to see our modes as modalities on this universal type U. The
hypothesis x :m in a context would be a modal hypothesis x :m U, and the section combinators are

given modal types. Within the modal framework of Abel and Bernardy [2020] for example, writing

(m : A) → B for the modal function type, some of our typing rules could be modelled with lam :
(Delay : (Dereference : U) → U) → U, app : (Dereference : U) → (Dereference : U) → U, and for

datatypes something like packKd : (Guard : U) →d U, and unpackKd : (Dereference : U) → (U+Ud ),

where K is a constructor of arity d , the U+ return value of unpacking indicates an incompatible

constructor, and Ud
is U × U × . . . , d times.

This view naturally extends to supporting finer-grained analyses and abstraction of the sort

found in other work (e.g. the system introduced by Dreyer [2004]). In our system every function

argument has mode Dereference; a refinement that allowed types and modes to interact could

support a range of modes for functions that used their arguments in different ways. However, this

additional expressivity would require substantial changes to OCaml’s type system, and a proper

treatment of abstraction would require some form of mode polymorphism. (For example, in the

appliction function let h g x = g x, mode polymorphism is required to support applying the h
to all possible functions g, some of which dereference their argument, and some of which do not.)

Our aim of replacing OCaml’s existing syntactic check with a more principled version way did

not justify this substantial additional complexity. More generally, our view is that abstraction over

modes is more suited to module systems (for which the system described by Dreyer [2004] was

developed), where types are already explicit, than to the term languages that our system is designed

for. This view is supported by the fact that, as far as we know, although existing languages support

a variety of checks on well-formedness of recursive definitions, there has been (as far as we know)

no attempt in any of these to incorporate a system with support for mode abstraction.

5 META-THEORY: SOUNDNESS
5.1 Operational Semantics
Figure 4 presents our operational semantics, largely reused from Nordlander, Carlsson, and Gill

[2008] with extensions (support for algebraic datatypes) and changes (use of reduction at a distance).

Unless explicitly noted, the content and ideas in this Subsec 5.1 come from their work.

Weak values. As we have seen, constructors in recursive definitions can be used to construct

cyclic values. For example, the definition let rec x = Cons (One (∅), x) is normal for this reduction

semantics. The occurrence of the variable x inside the Cons cell corresponds to a back-reference,

the cell address in a cyclic in-memory representation.

This key property is achieved by defining a class of weak values, noted w , to be either (strict)

values or variables. Weak values occur in the definition of the semantics wherever a cyclic reference

can be passed without having to dereference.

Several previous works (see Section 8 (Related Work)) defined semantics where β-redexes have
the form (λx . t)w , to allow yet-unevaluated recursive definitions to be passed as function arguments.

OCaml does not allow this (a function call requires a fully-evaluated argument), so our redexes are

the traditional (λx . t)v . This is a difference from Nordlander, Carlsson, and Gill [2008]. On the other
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Values ∋ v ::= λx . t | K (wi )
i | L[v]

WeakValues ∋ w ::= x,y, z | v | L[w]

ValueBindings ∋ B ::= (xi = vi )
i

BindingCtx ∋ L ::= □ | let rec B in L

EvalCtx ∋ E ::= □ | E[F ]
EvalFrame ∋ F ::= □ t | t □

| K ((ti )
i ,□,

(
tj
) j
)

| match □ with h
| let rec b, x = □,b ′ in u
| let rec B in □

L[λx . t] v →hd L[t[v/x]]

∀(K ′
(
x ′j

) j
→ u ′) ∈ h, K , K ′

match L[K (wi )
i ] with (h | K (xi )i → u | h′) →hd L[u[wi/xi ]

i ]

t →hd t ′

E[t] → E[t ′]

(x = v)
ctx
∈ E

E[x] → E[v]

(x = v)
frame
∈ F ∨ (x = v)

ctx
∈ E

(x = v)
ctx
∈ E[F ]

(x = v) ∈ B

(x = v)
frame
∈ let rec B in □

(x = v) ∈ (b ∪ b ′)

(x = v)
frame
∈ let rec b,y = □,b ′ in u

Fig. 4. Operational semantics

hand, we do allow cyclic datatype values by only requiring weak values under data constructors:

the corresponding value form is K (wi )
i
.

Bindings in evaluation contexts. An evaluation context E is a stack of evaluation frames F under

which evaluation may occur. Our semantics is under-constrained (for example, t u may perform

reductions on either t or u), as OCaml has unspecified evaluation order for applications and

constructors, but making it deterministic would not change much.

One common aspect of most operational semantics for let rec, ours included, is that

let rec B in □ can be part of evaluation contexts, where B represents a recursive “value binding”,

an island of recursive definitions that have all been reduced to values. This is different from tra-

ditional source-level operational semantics of let x = v in u, which is reduced to u[v/x] before
going further. In letrec blocks this substitution reduction is not valid, since the value v may

refer to the name x , and so instead “value bindings” remain in the context, in the style of explicit

substitution calculi. We call these context fragments “binding contexts” L.

Head reduction. Head redexes, the sources of the head-reduction relation t →hd t ′, come from

applying a λ-abstraction or from pattern-matching on a head constructor. Following ML semantics,

pattern-matching is ordered: only the first matching clause is taken.

One mildly original feature of our head reduction is the use of reduction at a distance, where

binding contexts L are allowed to be presented in the middle of redexes, and lifted out of the

reduced term. This presentation is common in explicit-substitution calculi
6
, as it gives the minimal

amount of lifting of explicit substitutions required to avoid blocking reduction. In the calculus of

Nordlander, Carlsson, and Gill [2008], lifting was permitted in arbitrary positions by the Merge rule.

For example, the reduction sequence (let rec B in λx . t) v →∗ let rec B in t[u/x] is admissible

6
See for example Accattoli and Kesner [2010], which links to earlier references on the technique.
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in both systems, but the “useless” reduction (let rec B in x)v →∗ let rec B in x v is not present

in our system. Reduction at a distance tends to make definitions crisper and simplify proofs.
7

Reduction. Reduction t → t ′ may happen under any evaluation context. The first reduction rule

is standard: any redex H [v] can be reduced under an evaluation context E.
The second rule reduces a variable x in an evaluation context E by binding lookup: it is replaced

by the value of the recursive binding B in the context E which defines it. This uses the auxiliary

definition (x = v)
ctx
∈ E to perform this lookup.

The lookup rule hasworrying consequences for our rewriting relation: it makes it non-deterministic

and non-terminating. Indeed, consider a weak value of the formK (x) used, for example, in a pattern-

matching match K (x) with h. It is possible to reduce the pattern-matching immediately, or to first

lookup the value of x and then reduce. Furthermore, it could be the case that x is precisely defined

by a cyclic binding x = K (x). Then the lookup rule would reduce to matchK (K (x)) withh, and we
could keep looking indefinitely. Nordlander, Carlsson, and Gill [2008] discuss this in detail and prove

that the reduction is in fact confluent modulo unfolding. (Allowing these irritating but innocuous

behaviors is a large part of what makes their semantics simpler than previous presentations.)

Example. Consider the following program:

let rec∞ = (let rec x = Sx in x) in
match∞ with (Z→ None | Sy → Somey)

The first binding let rec x = Sx in x is not a value yet, only a weak value. The first reduction

this program can take is to lookup the right-hand-side occurence of x :

→ let rec∞ = (let rec x = Sx in Sx) in
match∞ with (Z→ None | Sy → Somey)

After this reduction∞, is bound to a value, so it can in turn be looked up in match∞:

→ let rec∞ = (let rec x = Sx in Sx) in
match (let rec x = Sx in Sx) with
(Z→ None | Sy → Somey)

At this point we have a match redex of the form match L[Sx], which gets reduced by lifting the

binding context L:

→ let rec∞ = (let rec x = Sx in Sx) in
let rec x = Sx in Somex

5.2 Failures
In this section, we are interested in formally defining dynamic failures. When can we say that a

term is “wrong”? — in particular, when is a valid implementation of the operational semantics

allowed to crash? This aspect is not discussed in detail by Nordlander, Carlsson, and Gill [2008], so

we had to make our own definitions; we found it surprisingly subtle.

The first obvious sort of failure is a type mismatch between a value constructor and a value

destructor: application of a non-function, pattern-matching on a function instead of a head con-

structor, or not having a given head constructor covered by the match clauses. These failures would

be ruled out by a simple type system and exhaustivity check.

The more challenging task is defining failures that occur when trying to access a recursively-

defined variable too early. The lookup reduction rule for a term E[x] looks for the value of x in

7
For an example of beneficial use of reduction-at-distance in previous work from the rewriting community, see the

at-a-distance presentation of the π -calculus in Accattoli [2013].
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a binding of the context E. This value may not exist (yet), and that may or may not represent a

runtime failure.

We assume that bound names are all distinct, so there may not be several v values. The only

binders that we reduce under are let rec, so x must come from one; however, it is possible that

x is part of a let rec block currently being evaluated, with an evaluation context of the form

E[let rec (x = t,y = E ′) in u] for example, and that x ’s binding has not yet been reduced to a

value.

However, in the presence of data constructors that permit building cyclic values not all such

cases are failures. For example the term let rec x = Pair (x, t) in x can be decomposed into E[x]
to isolate the occurrence of x as the first member of the pair. This occurrence of x is in reducible

position, but there is no v such that (x = v)
ctx
∈ E, unless t is already a weak value.

To characterize failures during recursive evaluation, we propose to restrict ourselves to forcing

contexts, denoted Ef , that must access or return the value of their hole. A variable in a forcing

context that cannot be looked up in the context is a dynamic failure: we are forcing the value of a

variable that has not yet been evaluated. If a term contains such a variable in lookup position, we

call it a vicious term. Figure 5 gives a precise definition of these failure terms.

HeadFrame ∋ H ::= □ v | match □ with h
ForcingFrame ∋ Ff ::= □ v | v □ | match □ with h

ForcingCtx ∋ Ef ::= L | E[Ff [L]]
Mismatch def

= {E[H [v]] | H [v]↛hd}

Vicious def
= {Ef [x] | �v, (x = v)

ctx
∈ Ef }

Fig. 5. Failure terms

Mismatches are characterized by head frames, context fragments that would form a β-redex if
filled with a value of the correct type. A term of the form H [v] that is stuck for head-reduction is a

constructor-destructor mismatch.

The definition of forcing contexts Ef takes into account the fact that recursive value bindings

remain, floating around, in the evaluation context. A forcing frame Ff is a context fragment that

forces evaluation of its variable; it would be tempting to say that a forcing context is necessarily of

the form □ or E[Ff ], but for example Ff [let rec B in □] must also be considered a forcing context.

Note that, due to the flexibility we gave to the evaluation order, mismatches and vicious terms

need not be stuck: they may have other reducible positions in their evaluation context. In fact, a

vicious term failing on a variable x may reduce to a non-vicious term if the binding of x is reduced

to a value.

5.3 Soundness
The proofs of these results are in Appendix B in the extended version.

Lemma 1 (Forcing modes). If Γ, x :mx ⊢ Ef [x] :m withm ⪰ Return, then alsomx ⪰ Return.

Theorem 2 (Vicious). ∅ ⊢ t : Return never holds for t ∈ Vicious.

Theorem 3 (Subject reduction). If Γ ⊢ t :m and t → t ′ then Γ ⊢ t ′ :m.

Corollary 1. Return-typed programs cannot go vicious.
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6 GLOBAL STORE SEMANTICS
In Section 5.1, we developed an operational semantics for letrec using explicit substitutions as
“local stores” for recursive values. This technique was first studied in more theoretical research

communities (pure lambda-calculus and rewriting), and imported in more applied programming-

language works in the 1990s [Felleisen and Hieb 1992] and in particular local-store presentations

of call-by-need and letrec [Ariola and Felleisen 1997].

Before local-store semantics were proposed, recursive values (and lazy thunks) were modelled us-

ing a “global store” semantics, more closely modelling the dummy-initialization-then-backpatching

approach used in real-world implementations.

Explicit-substitution, local-store semantics enjoy at least the following advantages over the

global-store semantics of letrec.

• Our explicit-substitution semantics is defined directly at the level of our term syntax, without

going through additional features (global store, initialization and setting of memory locations)

that are not part of the source language. Source-level semantics are typically more high-level

and more declarative than lower-level semantics; they allow to reason on the source directly,

without going through an encoding layer.

We can compare letrec to the problem of defining “tail calls”. One can teach tail-calls and

reason about them through a compilation to a machine with an explicit call stack. But there

is a source-level explanation of tail-calls, by reasoning on the size (and the growth) of the

evaluation context; this explanation is simpler and makes tail-calls easier to reason about.

• Our local-store semantics allows more local reasoning: reducing a subterm in evaluation

position only affects this subterm (which may contain explicit substitutions), instead of also

affecting a global store. This makes it easier to define program-equivalence relations that are

congruence (are stable under contexts), and generally to prove program-equivalence results.

Example 1 (Store duplication). For example, consider the two following programs, manipu-

lating infinite lists of ones:

let o = (let rec x = Cons(1, x) in x) in f o o

f (let rec x = Cons(1, x) in x) (let rec x = Cons(1, x) in x)

With our explicit-substitution semantics, it is trivial to show that these two terms are equivalent:

they reduce to the same term, namely

f (let rec x = Cons(1, x) in Cons(1, x)) (let rec x = Cons(1, x) in Cons(1, x))

(Note that (let rec x = Cons(1, x) in x) is not a value in our semantics, only a weak value;

one needs to lookup x once to get a value so that the o-binding can be reduced.)

In a global-store semantics, on the contrary, it is not at all obvious that the two programs are

equivalent; indeed, they reduce to configurations of the following forms:

([x 7→ Cons(1, x)], f x x) ([x1 7→ Cons(1, x1), x2 7→ Cons(1, x2)], f x1 x2)

These configurations are not equivalent by reduction; the equational theory would need a stronger

equivalence principle that could de-duplicate bisimilar fragments of the store.

However, since a large part of our community is unfamiliar with local-store semantics, in the

interest of accessibility, we also propose in this section a global-store semantics for our language.

We show that the soundness result for our analysis can be lifted to this semantics: Return-typed
programs cannot go vicious in the global-store semantics either. This is done by formalizing a

compilation pass from the local-store language to the global-store+backpatching language, and
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showing a backward simulation result — effectively redoing the compilation-correctness work of

Hirschowitz, Leroy, and Wells [2003, 2009] in our setting.

6.1 Target Language
The global-store language is called the “target” language as we will prove the correctness of a

compilation pass from the “source” (local-store) to “target” (global-store) languages. Its grammar

and operational semantics are given in Figure 6.

A store location is created uninitialized with the new x in t constructor, and can be defined

exactly once by the assignment expression x ← t ; the heap binds locations to “heap blocks” that

are either uninitialized (⊥) or a value. The write-once discipline is enforced by the x ← t reduction
rule, which requires the heap block to be ⊥. Trying to read an uninitialized memory location is the

dynamic error that our analysis prevents: it is the target equivalent of vicious terms, and we call

it a “segfault” by analogy with the unpleasant consequences of the corresponding error in most

compiled languages.

The reduction uses a distinguished data constructor, Done, playing the role of a unit value in our

untyped semantics: it is the value returned by the evaluation of an assignment expression x ← v .

Remark 3 (Variables as locations). We use variables as heap locations, an idea that goes back at

least to [Launchbury 1993]. This is equivalent to having a distinguished syntactic category of locations

thanks to the Barendregt convention — we work modulo α-equivalence and can thus always assume

that bound variables are distinct from free variables of the same term. Picking a “fresh enough” variable

x each time we encounter a new binder gives a new memory location. In particular, those variables do

not correspond to static binding positions in the program we started computing; each time a function is

called, the new binders in its body bind over α -equivalent fresh names. This technical choice will make

it easier to relate to the source language, where recursive values are bound to variables in scope.

6.2 Parallel or Order-Independent Evaluation
In Section 6.1 we chose a distinguished Done constructor to represent a unit value in our target

language. We now choose another distinguished constructor Par (t1, . . . , tn) to represent a product
of values to evaluate in an arbitrary order. We use a single constructor at arbitrary arities, but we

could just as well use a family of constructors Parn .
Definition 1 (Seqential and parallel evaluation).

We define the following syntactic sugar:

(t ;u)
def
= (match t with (Done→ u))

par (ti )i ∈I
def
= (match Par (ti )i ∈I with Par (xi )i ∈I → Done)

The term par(ti )i represents the evaluation of a family of Done-returning term, in an arbitrary

order. In particular, (□;u) and par((ti )i ∈I ,□,
(
tj
) j ∈J
) are evaluation contexts, and the following

reduction rules are derivable:

(∅, (Done;u)) →hd (∅,u) (∅, par(Done)i ∈I ) →hd (∅, Done)

6.3 Translation: Compiling letrec into Backpatching
We define in Figure 7 our translation JtK from source to target terms, explaining recursive value

bindings in terms of backpatching. The interesting case is Jlet rec b in uK, the others are just a
direct mapping on all subterms.

Jlet rec (xi = ti )
i in uK def

= new (xi )i in par
(
xi ← JtiK

) i
; JuK
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TTerms ∋ t,u ::= x,y, z
| λx . t | t u
| K (ti )

i | match t with h
| new x in t
| x ← t

Handlers, patterns:

as in the source language

TValues ∋ v ::= λx . t | K (wi )
i

TWeakValues ∋ w ::= x,y, z | v

ValueHeaps ∋ B ::= ∅ | B[x 7→ v]
Heaps ∋ H ::= ∅ | H [x 7→ v?]

HeapBlocks ∋ v? ::= v | ⊥

TEvalCtx ∋ E ::= □ | E[F ]
TEvalFrame ∋ F ::= □ t | t □

| K ((ti )
i ,□,

(
tj
) j
)

| match □ with h
| x ← □

TFEvalCtx ∋ Ef ::= □ | E[Ff ]
TForcingFrame ∋ Ff ::= □ t | t □

| match □ with h

ctx

(H□, th) →
hd (H ′□, t

′
h)

(HE ⊎ H□, E[th]) → (HE ⊎ H
′
□, E[t

′
h]) (∅, (λx . t) u) →hd (∅, t[u/x])

∀(K ′
(
x ′j

) j
→ u ′) ∈ h, K , K ′

(∅, match K (wi )
i with (h | K (xi )i → u | h′)) →hd (∅,u[wi/xi ]

i )

new

(∅, new x in t) →hd ([x 7→ ⊥], t)

set

([x 7→ ⊥], x ← v) →hd ([x 7→ v], Done)

lookup

([x 7→ v], x) →hd ([x 7→ v],v)
Segfault def

= (H [x 7→ ⊥], Ef [x])

Fig. 6. Syntax and reduction of the global-store (target) language

To compile let rec (xi = ti )
i inu, we create uninitialized store cells for each xi ,8 then we compute

the assignments xi ← JtiK in an arbitrary order, and finally we evaluate JuK. Note that all the xi are
in the scope of each JtjK: the translation respects the scoping of the let rec (xi = ti )

i
construct.

JxK def
= x

Jλx . tK def
= λx . JtK

Jt uK def
= JtK JuK

JK (ti )iK
def
= K

(
JtiK

) i
Jmatch t with (pi → ti )

iK def
= match JtK with

(
pi → JtiK

) i
Jlet rec (xi = ti )

i in uK def
= new (xi )i in par

(
xi ← JtiK

) i
; JuK

Fig. 7. Compiling letrec into store updates

8(new (xi )i∈I in □) denotes a sequence of (new xi in □) binders in an arbitrary order. In particular, (new ∅ in t ) is just t .
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6.4 Relating Target Terms back to Source Terms

Simple rules

x ∼ (∅, x) λx . t ∼ (∅, λx . JtK)

t ∼ (Ht , t
′) u ∼ (Hu ,u

′)

t u ∼ (Ht ⊎ Hu , t
′ u ′)(

ti ∼ (Hi , t
′
i )
) i ∈I

K (ti )
i ∈I ∼ ((Hi )

i ∈I ,K
(
t ′i
) i ∈I
)

t ∼ (H , t ′)

match t with h ∼ (H , match t ′ with JhK)

letrec rules

init

J , ∅

let rec (xi = ti )
i ∈I ,

(
x j = tj

) j ∈J in u
∼ ([xi 7→ ⊥]

i ∈I , new
(
x j

) j ∈J in par(xk ← tk )
k ∈I⊎J ; JuK)

write (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I (
ts , j ∼ (Hj , tt , j )

) j ∈J
let rec

(
xi = vs ,i

) i ∈I
,
(
yj = ts , j

) j ∈J in u
∼ ([xi 7→ vt ,i ]

i ∈I [yj 7→ ⊥]
j ∈J ⊎ (Bi )

i ∈I ⊎
(
Hj

) j ∈J
, par((Done)i ∈I ,

(
yj ← tt , j

) j ∈J
); JuK)

done (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I
let rec

(
xi = vs ,i

) i ∈I in u ∼ ([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I H , Done; JuK)

further (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I
us ∼ (H ,ut )

let rec
(
xi = vs ,i

) i ∈I in us ∼ ([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I ⊎ H ,ut )

Heap rules

heap-weaken

ts ∼ (H , tt ) ∀x ∈ dom(B), x < (H , tt )

ts ∼ (H ⊎ B, tt )

heap-copy

ts ∼ (H , tt )
ϕ compatible with H
dom(ϕ) ⊆ dom(H )

ts ∼ (ϕ(H ),ϕ(tt ))

Fig. 8. Head term relation t ∼ (H , t ′)

We want to prove that this translation scheme is safe; that source terms that do not go vicious

translate into target terms that do not segfault. This requires a backward simulation property:

any reduction path from a translation in the target (in particular, a reduction path that leads to a

segfault) needs to be simulated by a reduction path on the original source term (in particular, a

reduction path that goes vicious).

We define a head term relation t ∼ (H , t ′) that relates the parts of a term and a configuration that

are in reducible position. For non-reducible positions, we use the direct embedding JtK above. In
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this relation, H contains not all the locations that are bound in t ′, but only those that correspond to

letrec-binding found in t ; intuitively, H is the disjoint union of all the letrec-bindings in t , seen
as local store fragments.

The rules for the letrec constructs correspond to a decomposition of the various intermediate

states of the reduction of their backpatching compilation.

Finally, the “heap rules” give reasoning principles to bridge the difference between the way the

local and global stores evolve during reduction. In our source-level semantics, explicit substitutions

(local store) may be duplicated or erased during reductions involving the values they belong to. Store

duplication is expressed by a variable-renaming substitution ϕ, that “merges” different fragments

of the global store together; the side-condition (ϕ compatible with H ) guarantees that the resulting
store is well-formed.

For reasons of space, we moved the explanation of this relation, including the definition of

(ϕ compatible with H ), as well as the proofs of its properties, to Appendix C (Compilation to

Global Store: Simulation Proof) in the extended version. The two key results are mentioned here,

guaranteeing that our analysis is also sound for this global-store semantics.

Theorem 4 (Backward Simulation).

If

ts ∼ (H , tt ) (H , tt ) → (H
′, t ′t )

then ∃t ′s ,

ts →
? t ′s t ′s ∼ (H

′, t ′t )

Theorem 5 (Return-typed programs cannot segfault).

∅ ⊢ ts : Return ∧ (∅, JtsK) →∗ (H , t ′t ) =⇒ (H , t ′t ) < Segfault

Theorem 5 (Return-typed programs cannot segfault) guarantees that our analysis is sound for

both our source language and its backpatching translation. Theorem 4 (Backward Simulation)

also tells us that our source semantics has “enough” reduction rules compared to the global-store

semantics. For example, if the global-store semantics computes a value for a term, then the source

semantics would have computed a related value.

7 EXTENSION TO A FULL LANGUAGE
We now discuss the extension of our typing rules to the full OCaml language, whose additional

features (e.g. exceptions, first-class modules and GADTs) contain subtleties that need special care.

7.1 The Size Discipline
The OCaml compilation scheme, one of several possible ways of treating recursive declarations,

proceeds by reserving heap blocks for the recursively-defined values, and using the addresses of

these heap blocks (which will eventually contain the values) as dummy values: it adds the addresses

to the environment and computes the values accordingly. If no vicious term exists, the addresses

are never dereferenced during evaluation, and evaluation produces “correct” values. Those correct

values are then moved into the space occupied by the dummies, so that the original addresses

contain the correct result.

This strategy depends on knowing how much space to allocate for each value. Not all OCaml

types have a uniform size; e.g. variant types may contain constructors with different arities, resulting

in different in-memory sizes, and the size of a closure depends on the number of free variables.

After checking that mutually-recursive definitions are meaningful using the rules we described,

the OCaml compiler checks that it can realize them, by trying to infer a static size for each value. It

then accepts to compile each declaration if either:
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• it has a static size, or

• it doesn’t have a statically-known size, but its usage mode of mutually-recursive definitions

is always Ignore

(The second category corresponds to detecting some values that are actually non-recursive and

lifting them out. Such non-recursive values often occur in standard programming practice, when

it is more consistent to declare a whole block as a single let rec but only some elements are

recursive.)

This static-size test may depend on lower-level aspects of compilation, or at least value represen-

tation choices. For example,

if p then (fun x -> x) else (fun x -> not x)

has a static size (both branches have the same size), but

if p then (fun x -> x + 1) else (fun x -> x + offset)

does not: the second function depends on a free variable offset, so it will be allocated in a closure

with an extra field. (While not is also a free variable, it is statically resolvable to a global name.)

Relation to the mode system. The mode system corresponds to a correctness criterion on the

operational semantics of programs; it is independent of compilation schemes. In contrast, the

size discipline corresponds to a restrictive compilation strategy for value recursion that involves

rejecting certain definitions. The size discipline is formalized by Hirschowitz et al. [2009]; it would

be possible to incorporate it into our system, modelling it as a separate judgment to be checked

for well-moded definitions (rather than as an enrichment of the mode judgment). However, the

resulting system would be less portable to programming languages whose value representations

differ from OCaml’s, and which consequently would not use the same size discipline.

7.2 Dynamic Representation Checks: Float Arrays
OCaml uses a dynamic representation check for its polymorphic arrays: when the initial array

elements supplied at array-creation time are floating-point numbers, OCaml chooses a specialized,

unboxed representation for the array.

Inspecting the representation of elements during array creation means that although array

construction looks like a guarding context, it is often in fact a dereference. There are three cases

to consider: first, where the element type is statically known to be float, array elements will be

unboxed during creation, which involves a dereference; second, where the element type is statically

known not to be float, the inspection is elided; third, when the element type is not statically

known the elements will be dynamically inspected — again a dereference.

The following program must be rejected, for example:

let rec x = (let u = [|y|] in 10.5)

and y = 1.5

since creating the array [|y|] will unbox the element y, leading to undefined behavior if y — part

of the same recursive declaration — is not yet initialized.

7.3 Exceptions and First-Class Modules
In OCaml, exception declarations are generative: if a functor body contains an exception declaration

then invoking the functor twice will declare two exceptions with incompatible representations, so

that catching one of them will not interact with raising the other.

Exception generativity is implemented by allocating a memory cell at functor-evaluation time

(in the representation of the resulting module); and including the address of this memory cell as
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an argument of the exception payload. In particular, creating an exception value M.Exit 42 may

dereference the module M where Exit is declared.

Combinedwith another OCaml feature, first-classmodules, this generativity can lead to surprising

incorrect recursive declarations, by declaring a module with an exception and using the exception

in the same recursive block.

For instance, the following program is unsound and rejected by our analysis:

module type T = sig exception A of int end
let rec x = (let module M = (val m) in M.A 42)

and (m : (module T)) = (module (struct exception A of int end) : T)

In this program, the allocation of the exception value M.A 42 dereferences the memory cell gener-

ated for this exception in the module M; but the module M is itself defined as the first-class module

value (m : (module T)), part of the same recursive nest, so it may be undefined at this point.

(This issue was first pointed out by Stephen Dolan.)

7.4 GADTs
The original syntactic criterion for OCaml was implemented not directly on surface syntax, but

on an intermediate representation quite late in the compiler pipeline (after typing, type-erasure,

and some desugaring and simplifications). In particular, at the point where the check took place,

exhaustive single-clause matches such as match t with x -> . . . or match t with () -> . . .)
had been transformed into direct substitutions.

This design choice led to programs of the following form being accepted:

type t = Foo

let rec x = (match x with Foo -> Foo)

While this appears innocuous, it becomes unsound with the addition of GADTs to the language:

type (_, _) eq = Refl : ('a, 'a) eq

let universal_cast (type a) (type b) : (a, b) eq =

let rec (p : (a, b) eq) = match p with Refl -> Refl in p

For the GADT eq, matching against Refl is not a no-op: it brings a type equality into scope that

expands the set of types that can be assigned to the program [Garrigue and Rémy 2013]. It is

therefore necessary to treat matches involving GADTs as inspections to ensure that a value of the

appropriate type is actually available; without that change definitions such as universal_cast
violate type safety.

7.5 Laziness
OCaml’s evaluation is eager by default, but it supports an explicit form of lazy evaluation: the

programmer can write lazy e and force e to delay and force the evaluation of an expression.

The OCaml implementation performs a number of optimizations involving lazy. For example,

when the argument of lazy is a trivial syntactic value (variable or constant) for which eager and

lazy evaluation behave equivalently, the compiler eliminates the allocation of the lazy thunk.

However, for recursive definitions eager and lazy evaluation are not equivalent, and so the

recursion check must treat lazy trivialvalue as if the lazy were not there. For example, the

following recursive definition is disallowed, since the optimization described above nullifies the

delaying effect of the lazy

let rec x = lazy y and y = . . .

while the following definition is allowed by the check, since the argument to lazy is not sufficiently

trivial to be subject to the optimization:
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let rec x = lazy (y+0) and y = . . .

Our typing rule for lazy takes this into account: “trivial” thunks are checked in mode Return
rather than Delay.

8 RELATEDWORK
Degrees. Boudol [2001] introduces the notion of “degree” α ∈ {0, 1} to statically analyze recursion

in object-oriented programs (recursive objects, lambda-terms). Degrees refine a standard ML-style

type system for programs, with a judgment of the form Γ ⊢ t : τ where τ is a type and Γ gives both

a type and a degree for each variable. A context variable has degree 0 if it is required to evaluate the
term (related to our Dereference), and 1 if it is not required (related to our Delay). Finally, function
types are refined with a degree on their argument: a function of type τ 0 → τ ′ accesses its argument

to return a result, while a τ 1 → τ ′ function does not use its argument right away, for example a cur-

ried function λx . λy. (x,y)—whose argument is used under a delay in its body λy. (x,y). Boudol uses
this reasoning to accept a definition such as let rec obj = class_constructor obj params,
arising from object-oriented encodings, where class_constructor has a type τ 0 → . . . .

Our system of mode is finer-grained than the binary degrees of Boudol; in particular, we need to

distinguish Dereference and Guard to allow cyclic data structure constructions.

On the other hand, we do not reason about the use of function arguments at all, so our

system is much more coarse-grained in this respect. In fact, refining our system to accept

let rec obj = constr obj params would be incorrect for our use-case in the OCaml compiler,

whose compilation scheme forbids passing yet-uninitialized data to a function.

In a general design aiming for maximal expressiveness, access modes should refine ML types;

in Boudol’s system, degrees are interlinked with the type structure in function types τ α → τ ′,
but one could also consider pair types of the form τ1

α1 × τ2
α2
, etc. In our simpler system, there

are no interaction between value shapes (types) and access modes, so we can forget about types

completely, a nice conceptual simplification. Our formalization is done entirely in an untyped

fragment of ML.

Compilation. Hirschowitz, Leroy, andWells [2003, 2009] discuss the space of compilation schemes

for recursive value definitions. Their work is an inspiration for our own compilation result: they

provide a source-level semantics based on floating bindings upwards in the term (similar to explicit

substitutions or local thunk stores), and prove correctness of compilation to a global store with

backpatching.

Our source-level semantics is close to theirs in spirit (we would argue that the use of reduction at

a distance is an improvement), and our compilation scheme and its correctness proof are not novel

compared to their work — they are there to provide additional intuition. The main contribution of

our work is our mode system for recursive declarations, which is expressive enough to capture

OCaml value definitions, yet simple and easy to infer.

A natural question for our work is whether the access-mode derivations we build in our safety

check can inform the compilation strategy for recursive values. We concentrate on safety, but there

is ongoing work by others on the compilation method for recursive values, which partly goes in

this direction.

Fixing Letrec (Reloaded). Fixing Letrec (Reloaded) [Ghuloum and Dybvig 2009; Waddell, Sarkar,

and Dybving 2005] is a nice brand of work from the Scheme community, centered on producing

efficient code for recursive value declarations, even in presence of dynamic checks for the absence

of uninitialized-name reads. It presents a static analysis, both for optimization purposes (eliding

dynamic safety checks) and user convenience. The analysis is described by informal prose, but it is
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similar in spirit to our mode analysis (using modes named “protected”, which corresponds to our

Delay, “protectable” which sounds like Return and “unsafe” which is Dereference). We precisely

describe an analysis (richer, as it also has a Guard mode) and prove its correctness with respect to a

dynamic semantics.

Name access as an effect. Dreyer [2004] proposes to track usage of recursively-defined variables

as an effect, and designs a type-and-effect system whose effects annotations are sets of abstract

names, maintained in one-to-one correspondence with let rec-bound variables. The construction

let rec X▷x : τ = e introduces the abstract type-level name X corresponding to the recursive

variable x. This recursive variable is made available in the scope of the right-hand-side e : τ at the

type box(X,τ) instead of τ (reminding us of guardedness modalities). Any dereference of x must

explicitly “unbox” it, adding the name X to the ambient effect.

This system is very powerful, but we view it as a core language rather than a surface language:

encoding a specific usage pattern may require changing the types of the components involved, to

introduce explicit box modalities:

• When one defines a new function from τ to τ ′, one needs to think about whether it may be

later used with still-undefined recursive names as argument — assuming it indeed makes

delayed uses of its argument. In that case, one should use the usage-polymorphic type function

type ∀X .box(X , τ ) → τ ′ instead of the simple function type τ → τ ′. (It is possible to inject τ
into box(X , τ ), so this does not restrict non-recursive callers.)

• One could represent cyclic data such as let rec ones = 1 :: ones in this system, but it

would require a non-modular change of the type of the list-cell constructor from ∀α .α →
List(α) → List(α) to the box-expecting type ∀α .α → ∀X .box(X , List(α)) → List(α) .

In particular, one cannot directly use typability in this system as a static analysis for a source

language; this work needs to be complemented by a static analysis such as ours, or the safety has

to be proved manually by the user placing box annotations and operations. However, we believe

that any well-typed program that is accepted by our mode system could be encoded in Dreyer’s

system, roughly as follows:

• if in the context Γ of a derivation Γ ⊢ t : Return in our system, we have x : Dereference,
then in the encoding the corresponding effect variable X would be an ambient capability

(Γ ⊢ t : τ [T ] with X ∈ T )
• on the other hand, if we have x : Return or a more permissive mode, then we would give the

corresponding term variable in the encoding type box(X ,T )

So, for example, x : Dereference ⊢ x + 1 : Return would be encoded as X , x ⊢ x + 1 : Int[X ] but
x : Guard ⊢ {t = x} : Return would be encoded as X , x : box(X , τ ) ⊢ {t = x} : {t : τ }[∅].

The whole derivation of an encoding of a valid recursive definition would have a non-boxed

type on the right-hand side, without any of the effect variables of the recursively-defined variable

in the ambient context.

Strictness analysis. Our analysis can be interpreted as a form of strictness or demand analysis, with

modes above Return being non-strict and Dereference being the forcing mode. Note however that

we use a may-analysis (a Dereference variable may be dereferenced) while strictness optimizations

usually rely on a must-analysis (we only give Forcing when we know for sure that forcing happens);

to do this one should change our interpretation of unknown functions to be conservative in the

other direction, with mode Ignore rather than Dereference for their arguments. More importantly,

strictness analyses typically try to compute more information than our modes: besides the question

of whether a given subterm will be forced or not, they keep track of which prefixes of the possible
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term shapes will get forced — this is more related to the finer-grained spaces of “ranks” or “degrees”

for recursive functors.

Graph typing. Hirschowitz also collaborated on static analyses for recursive definitions in Bardou

[2005]; Hirschowitz and Lenglet [2005]. The design goal was a simpler system than existing work

aiming for expressiveness, with inference as simple as possible.

As a generalization of Boudol’s binary degrees they use compactified numbers N ∪ {−∞,∞}.
The degree of a free variable “counts” the number of subsequent λ-abstractions that have to be

traversed before the variable is used; x has degree 2 in λy. λz. x . A −∞ is never safe, it corresponds

to our Dereference mode. 0 conflates our Guard and Return mode (an ad-hoc syntactic restriction

on right-hand-sides is used to prevent under-determined definitions), the n + 1 are fine-grained
representations of our Delay mode, and finally +∞ is our Ignore mode.

Another salient aspect of their system is the use of “graphs” in the typing judgment: a use of y
within a definition let x = e is represented as an edge from y to x (labeled by the usage degree),

in a constraint graph accumulated in the typing judgment. The correctness criterion is formulated

in terms of the transitive closure of the graph: if x is later used somewhere, its usage implies that y
also needs to be initialized in this context.

One contribution of our work is to show that a more standard syntactic approach can replace the

graph representation. Note that our typing rule for mutual-recursion uses a fixpoint computation,

reminiscent of their transitive-closure computation but within a familiar type-system presentation.

Finally, their static analysis mentions the in-memory size of values, which needs to be known

statically, in the OCaml compilation scheme, to create uninitialized memory blocks for the recursive

names before evaluating the recursive definitions. Our mode system does not mention size at all, it

is complemented by an independent (and simpler) analysis of static-size deduction, which is outside

the scope of the present formalization, but described briefly in Section 7.1 (The Size Discipline).

F♯. Syme [2006] proposes a simple translation of mutually-recursive definitions into delay and

force constructions that introduce and eliminate lazy values. For example, let rec x = t and y = u
is turned into

let rec xthunk = lazy (t[force xthunk/x, force ythunk/y])

and ythunk = lazy (u[force xthunk/x, force ythunk/y])

let x = force xthunk and y = force ythunk

With this semantics, evaluation happens on-demand, which the recursive definitions evalu-

ated at the time where they are first accessed. This implementation is very simple, but it turns

vicious definitions into dynamic failures — handled by the lazy runtime which safely raises an

exception. However, this elaboration cannot support cyclic data structures: The translation of

let rec ones = 1 :: ones fails at runtime:

let rec onesthunk = lazy (1 :: force onesthunk)

Furthermore, the translation affects the semantics of programs in surprising ways: in particular,

the implicit introduction of laziness into definitions that start new threads can lead to unexpected

multiple execution of computations and to race conditions.

Nowadays, F♯ provides an ad-hoc syntactic criterion, the “Recursive Safety Analysis” [Syme 2012],

roughly similar to the previous OCaml syntactic criterion, that distinguishes “safe” and “unsafe”

bindings in a mutually-recursive group; only the latter are subjected to the thunk-introducing

translation.

Finally, the implementation also performs a static analysis to detect some definitions that are

bound to fail — it over-approximates safety by ignoring occurrences within delaying terms (function

abstractions or objects or lazy thunks) even if those delaying terms may themselves be used
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(i.e. respectively called or accessed or forced) at definition time. We believe that we could recover

a similar analysis by changing our typing rules for our constructions — but with the OCaml

compilation scheme we must absolutely remain sound.

Needed computations. Further connections between laziness and recursive call-by-value def-

initions may be drawn: for example, Chang and Felleisen [2012] characterize call-by-need by

introducing the idea of needed computations, which are similar in spirit to our idea of forcing

contexts. However, the set of computations characterized by the two ideas are different in practice:

for example, in our system f (fst -) is a forcing context, but the hole is not in “needed position”

for call-by-need.

Intuitively, needed computations correspond to positions at which any choice of reduction order

must force the computation to make progress, while forcing contexts correspond to positions where

some choice of reduction order may force the computation (and fail if the value is initialized).

Operational semantics. Felleisen and Hieb [1992] and Ariola and Felleisen [1997] propose local-

store semantics (for a call-by-value store and a call-by-need thunk store, respectively) that can

express recursive bindings. The source-level operational semantics of Hirschowitz, Leroy, and

Wells [2003, 2009] is more tailored to recursive bindings, manipulated as explicit substitutions,

although the relation to standard explicit-substitution calculi is not made explicitly. They also

provide a global-store semantics for their compilation-target language with mutable stores. Boudol

and Zimmer [2002] and Dreyer [2004] use an abstract machine. Syme [2006] translates recursive

definitions into lazy constructions, so the usual thunk-store semantics of laziness can be used

to interpret recursive definitions. Finally, Nordlander, Carlsson, and Gill [2008] give the simplest

presentation of a source-level semantics we know of; we extend it with algebraic datatypes and

pattern-matching, and use it as a reference to prove the soundness of our analysis.

Our own experience presenting this work is that local-store semantics has been largely forgotten

by the programming-language community, which is a shame as it provides a better treatment of

recursive definitions (or call-by-need) than global-store semantics.

One inessential detail in which the semantics often differ is the evaluation order of mutually-

recursive right-hand-sides. Many presentations enforce an arbitrary (e.g. left-to-right) evaluation

order. Some systems [Nordlander, Carlsson, and Gill 2008; Syme 2006] allow a reduction to block

on a variable whose definition is not yet evaluated, and go evaluate it in turn; this provides the

“best possible order” for the user. Another interesting variant would be to say that the reduction

order is unspecified, and that an uninitialized variable is a stuck term whose evaluation results

in a fatal error; this provides the “worst possible order”, failing as much as possible; as far as we

know, the previous work did not propose it, although it is a simple presentation change. Most static

analyses are evaluation-order-independent, so they are sound and complete with respect to the

“worst order” interpretation.

9 CONCLUSION
We have presented a new static analysis for recursive value declarations, designed to solve a fragility

issue in the OCaml language semantics and implementation. It is less expressive than previous

works that analyze function calls in a fine-grained way; in return, it remains fairly simple, despite

its ability to scale to a fully-fledged programming language, and the constraint of having a direct

correspondence with a simple inference algorithm.

We believe that this static analysis may be of use for other functional programming languages,

both typed and untyped. It also seems likely that the techniques we have used in this work will

apply to other systems — type parameter variance, type constructor roles, and so on. Our hope in
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carefully describing our system is that we will eventually see a pattern emerge for the design and

structure of “things that look like type systems” in this way.
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A PROPERTIES OF OUR TYPING JUDGMENT
The following technical results can be established by simple inductions on typing derivations,

without any reference to an operational semantics.

Lemma 2 (Ignore inversion). Γ ⊢ t : Ignore is provable with only Ignore in Γ.

Lemma 3 (Delay inversion). Γ ⊢ t : Delay holds exactly when Γ maps all free variables of t to
Delay or Ignore.

Lemma 4 (Dereference inversion). Γ ⊢ t : Dereference holds exactly when Γ maps all free

variables of t to Dereference.

Lemma 5 (Environment flow). If a derivation Γ ⊢ t :m contains a sub-derivation Γ′ ⊢ t ′ :m′,
then ∀x ∈ Γ, Γ(x) ⪰ Γ′(x).

Lemma 6 (Weakening). If Γ ⊢ t :m holds then Γ + Γ′ ⊢ t :m also holds.

(Weakening would not be admissible if our variable rule imposed Ignore on the rest of the

context.)

Lemma 7 (Substitution). If Γ, x :mu ⊢ t : m and Γ′ ⊢ u : mu hold, then Γ + Γ′ ⊢ t[u/x] : m
holds.

Lemma 8 (Subsumption elimination). Any derivation in the system can be rewritten so that the

subsumption rule is only applied with the variable rule as premise.

Theorem (1: Principal environments). Whenever both Γ1 ⊢ t : m and Γ2 ⊢ t : m hold, then

min(Γ1, Γ2) ⊢ t :m also holds.

Proof. The proof first performs subsumption elimination on both derivations, and then by

simultaneous induction on the results. The elimination phase makes proof syntax-directed, which

guarantees that (on non-variables) the same rule is always used on both sides in each derivation. □

This results tells us that whenever Γ ⊢ t :m holds, then it holds for a minimal environment Γ —

the minimum of all satisfying Γ.

Definition 2 (Minimal environment). Γ is minimal for t :m if Γ ⊢ t :m and, for any Γ′ ⊢ t :m
we have Γ ⪯ Γ′.

In fact, we can give a precise characterization of “minimal” derivations, that uniquely determines

the output of our backwards analysis algorithm.

Definition 3 (Minimal binding rule). An application of the binding rule is minimal exactly

when the choice of Γ′i is the least solution to the recursive equation in its third premise.

Definition 4 (Minimal derivation). A derivation is minimal if it does not use the subsumption

rule, each binding rule is minimal and, in the conclusion Γ ⊢ x :m of each variable rule, Γ is minimal

for x :m.

Definition 5 (Minimization). Given a derivation D :: Γ ⊢ t : m, we define the (minimal)

derivation minimal(D) by:
• Turning each binding rule into a minimal version of this binding rule — this may require applying

Lemma 6 (Weakening) to the let rec derivation below.

• Performing subsumption-elimination to get another derivation of Γ ⊢ t :m.

• Replacing the context of each variable rule by the minimal context for this variable — this does

not introduce new subsumptions.
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Fact 1 (Minimality). If D :: Γ ⊢ t :m and minimal(D) :: Γm ⊢ t :m, then Γm ⪯ Γ.

Lemma 9 (Stability). If D is a minimal derivation, then minimal(D) = D.

Lemma 10 (Determinism). If D1 :: Γ1 ⊢ t : m and D2 :: Γ2 ⊢ t : m, then minimal(D1) and

minimal(D2) are the same derivation.

Corollary 2 (Minimality eqivalence). The environment Γ of a derivation Γ ⊢ t :m is minimal

for t :m if and only if Γ ⊢ t :m admits a minimal derivation.

Proof. If Γ is minimal for t :m, then the context Γm ⪯ Γ obtained by minimization must itself

be Γ.
Conversely, if a derivation Dm :: Γ ⊢ t : m is minimal, then all other derivations Γ′ ⊢ t : m

have Dm as minimal derivation by Lemma 9 (Stability) and Lemma 10 (Determinism), so Γ ⪯ Γ′

holds. □

Theorem 6 (Localization). Γ ⊢ t :m′ impliesm [Γ] ⊢ t :m [m′].
Furthermore, if Γ is minimal for t :m′, thenm [Γ] is minimal for t :m [m′].

Proof. The proof proceeds by direct induction on the derivation, and does not change its

structure: each rule application in the source derivation becomes the same source derivation in the

result. In particular, minimality of derivations is preserved, and thus, by Corollary 2 (Minimality

equivalence), minimality of environments is preserved.

Besides associativity of mode composition, many cases rely on the fact that external mode

composition preserves the mode order structure: m′1 ≺ m′2 implies m
[
m′1

]
≺ m

[
m′2

]
, and

max(m
[
m′1

]
,m

[
m′2

]
) ism

[
max(m′1,m

′
2)

]
. □

B PROOFS FOR Section 5.3 (Soundness)
Lemma 11 (1: Forcing modes).

If Γ, x :mx ⊢ Ef [x] :m withm ⪰ Return, then alsomx ⪰ Return.

Proof. Ef may be of the form L or E[Ff [L]]
In the case of binding contexts L we havemx = Return by construction.

In the case with a forcing frame, Ef = E[Ff [L]], let us callmE the mode of the hole of E. It is
immediate that the mode imposed by L on its hole is Return, and that the mode imposed by Ff on

its own hole is Dereference, so the total modemx ismE [Dereference [Return]]. We can prove by

an easy induction on E thatmE is not Ignore or Delay – those are not evaluation contexts, so we

havemE ⪰ Guard. We conclude by monotonicity of mode composition:

mx =mE [Dereference [Return]] ⪰ Guard [Dereference [Return]] = Dereference

□

Theorem 7 (2: Vicious). ∅ ⊢ t : Return never holds for t ∈ Vicious.

Proof. Given ⊢ t : Return, let us assume that t is E[x] with no value binding for x in E, and
show that E is not a forcing context.

We implicitly assume that all terms are well-scoped, so the absence of value binding means that

x occurs in a let rec binding still being evaluated somewhere in E: E[x] is of the form

E[x] = Eout[trec] trec = (let rec b,y = Ein[x],b
′ in u)

where x is bound in b, b ′ or is y itself.
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Given our let rec typing rule (see Figure 3), the typing derivation for t contains a sub-derivation
for trec of the form (

Γi ,
(
x j :mi , j

) j
⊢ ti : Return

) i (
mi , j ⪯ Guard

) i , j(
Γ′i = Γi +

∑ (
mi , j

[
Γ′j

] ) j ) i
(
xi : Γ

′
i
) i
⊢ rec (xi = ti )

i

In particular, the premise for Ein[x] is of the form Γ,
(
x j :mj

) j
⊢ Ein[x] : Returnwith

(
x j ⪯ Guard

) j
,

and in particular x ⪯ Guard so x ⪰̸ Return.
By Lemma 1 (Forcing modes), Ein cannot be a forcing context, and in consequence E is not forcing

either. □

Theorem 8 (3: Subject reduction). If Γ ⊢ t :m and t → t ′ then Γ ⊢ t ′ :m.

Proof. We reason by inversion on the typing derivation of redexes, first for head-reduction

t →hd t ′ and then for reduction t → t ′.

Head reduction. We only show the head-reduction case for functions; pattern-matching is very

similar. We have:

Γt , x :mx ⊢ t :m [Dereference] [Delay]

Γt ⊢ λx . t :m [Dereference]

Γt ⊢ L[λx . t] :m [Dereference] Γv ⊢ v :m [Dereference]

Γt + Γv ⊢ L[λx . t] v :m

By associativity,m [Dereference] [Delay] is the same asm [Dereference].
By subsumption, Γt , x :mx ⊢ t :m [Dereference] implies Γt , x :mx ⊢ t :m.

To conclude by using Lemma 7 (Substitution), we must reconcile the mode of the argument

v :m [Dereference] with the (apparently arbitrary) mode x :mx of the variable. We reason by an

inelegant case distinction.

• If m [Dereference] is Dereference, then by inversion (Lemma 4) either mx is Dereference
(problem solved) or x does not occur in t (no need for the substitution lemma).

• Ifm [Dereference] is notDereference, thenmmust be Ignore orDelay. If it is Ignore, inversion
(Lemma 2) directly proves our goal. If it is Delay, then by inversion (Lemma 3)mx itself can

be weakened (subsuming the derivation of t ) to be below Delay.

Reduction under context. Reducing a head-redex under context preserves typability by the argu-

ment above. Let us consider the lookup case.

(x = v)
ctx
∈ E

E[x] → E[v]
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By inspecting the (x = v)
ctx
∈ E derivation, we find a value binding B within E with x = v , and a

derivation of the form(
xi : Γ

′
i
) i
⊢ rec B

(
m′i

) i def
= (max(mi ,Guard))i Γu , (xi :mi )

i ⊢ u :m∑ (
m′i

[
Γ′i

] ) i
+ Γu ⊢ let rec B in u :m(

Γi ,
(
x j :mi , j

) j
⊢ vi : Return

) i (
mi , j ⪯ Guard

) i , j(
Γ′i = Γi +

∑ (
mi , j

[
Γ′j

] ) j ) i
(xi : Γi )

i ⊢ rec (xi = vi )i

By abuse of notation, we will writemx , Γx and Γ′x to express themi , Γi and Γ′i for the i such that

xi = x .
The occurrence of x in the hole of E[□] is typed (eventually by a variable rule) at some modem□.

The declaration-side modemx was built by collecting the usage modes of all occurrences of x in

the let rec body u, which in particular contains the hole of E, so we havem□ ⪯ mx by Lemma 5

(Environment flow).

The binding derivation gives us a proof Γx , Γrec ⊢ v : Return that the binding x = v was correct

at its definition site, where Γrec has exactly the mutually-recursive variables (xi :mi )
i
. Notice that

this subderivation is completely independent of the ambient expected modem.

By Theorem 6 (Localization), we can compose this withinm□ to get a derivationm□ [Γx , Γrec] ⊢
v :m□, that we wish to substitute into the hole of E. First we weaken it (Lemma 6) into the judgment

mx [Γx , Γrec] ⊢ v :m□.
Plugging this derivation in the hole of E requires weakening the derivation of u (the part of

E[□] that is after the declaration of x ) to add the environmentmx [Γx , Γrec]. Weakening is always

possible (Lemma 6), but it may change the environment of the derivation, while we need to preserve

the environment of E[x]. Consider the following valid derivation:(
xi : Γ

′
i
) i
⊢ rec B

(
m′′i

) i def
= (max(max(mi ,mx [Γrec] (xi )),Guard))i

Γu +mx [Γx ] , (xi :mi )
i +mx [Γrec] ⊢ u[v/x] :m∑ (

m′′i
[
Γ′i

] ) i
+ Γu +mx [Γx ] ⊢ let rec B in u[v/x] :m

To show that we preserve the environment of E[x], we show that this derivation is not in a bigger

environment than the environment of our source term:∑ (
m′′i

[
Γ′i

] ) i
+ Γu +mx [Γx ] ⪯

∑ (
m′i

[
Γ′i

] ) i
+ Γu

By construction we havemx ⪯ m
′
x ⪯ m

′′
x and Γx ⪯ Γ′x , somx [Γx ] ⪯ m

′′
x

[
Γ′x

]
which implies∑ (

m′′i
[
Γ′i

] ) i
+ Γu +mx [Γx ] ⪯

∑ (
m′′i

[
Γ′i

] ) i
+ Γu

Then, notice that Γrec(xi ) is exactly mx ,i , so m′′i is max(m′i ,mx
[
mx ,i

]
). We can thus rewrite

m′′i
[
Γ′i

]
intom′i [Γ]

′
i +mx

[
mxi

] [
Γ′i

]
, which gives∑ (

m′′i
[
Γ′i

] ) i
+ Γu =

∑ (
m′i

[
Γ′i

] ) i
+mx

[∑ (
mx ,i

[
Γ′i

] ) i ]
+ Γu

The extra term

∑ (
mx ,i

[
Γ′i

] ) i
is precisely the term that appears in the definition of Γ′x from the

(Γi )
i
, taking into account transitive mutual dependencies – indeed, when we replace x by its valuev ,
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we replace transitive dependencies on its mutual variables by direct dependencies on occurrences

in v . We thus have ∑ (
mx ,i

[
Γ′i

] ) i
⪯ Γ′x

and can conclude with ∑ (
m′i

[
Γ′i

] ) i
+mx

[∑ (
mx ,i

[
Γ′i

] ) i ]
+ Γu

⪯
∑ (

m′i
[
Γ′i

] ) i
+mx

[
Γ′x

]
+ Γu

⪯
∑ (

m′i
[
Γ′i

] ) i
+ Γu

□

C COMPILATION TO GLOBAL STORE: SIMULATION PROOF
This section explains the definition of the relation in Figure 8, and develops the simulation result to

prove Theorem 4 (Backward Simulation) and Theorem 5 (Return-typed programs cannot segfault).

Remark 4 (α-eqivalence of configurations). In a configuration (H , t), the heap H binds the

variables of its domain in t . In particular, consistently renaming a variable in H and in t results in
an α-equivalent configuration; for example ([x 7→ ⊥], x) and ([y 7→ ⊥],y) are α-equivalent. Our
operations on configurations respect α-equivalence.

Fact 2 (Congruence). If (H , t) → (H ′, t ′) then (HE ⊎ H , E[t]) → (HE ⊎ H
′, E[t ′]).

Fact 3 (Relevant head reduction). If (H , t) →hd (H ′, t ′) then the domain of H contains only

free variables of t ; furthermore, t ′ and the domain of H ′ contain only free or bound variables of t .

C.1 Relating the Local-Store Term with Global-Store Configurations
C.1.1 Simple rules. The simple rules relate term-formers that exist in both the source and tar-

get language; they simply ask the evaluable subterms to be related and take the union of the

corresponding heaps.

C.1.2 letrec rules. The letrec rules relate the letrec construct in the source language to

store-update operations in the target. There are several rules, that correspond to distinct “moments”

in the computation of the translation of a let rec (xi = ti )
i ∈I in u binding, which initially gets

translated as new (xi )i in par(xi ← ti )
i ; JuK:

• In the first moment we are reducing the allocations new (xi )i in : some of them have already

been allocated in the heap, others are yet to be evaluated. The rest of the target term is not in

reducible position, so it is unchanged. This is the rule init.

• In the second moment, all store locations have been created, and we are evaluating the store

updates (xi ← ti )
i
. Some of them have been fully reduced to values and then written in the

store, others are still (partially evaluated) terms. This is the rule write.

• In the third moment, the store updates have been performed so the par . . . block reduced to

Done. This is the rule done.

• In the fourth and last moment, we are in the process of further evaluating the body of the

letrec-definition, u; the target is not restricted to the source translation JuK anymore, it

may be any target configuration related to u. This is the rule further.

Example 2. The following relations hold:

x (let rec y = Sy in y) ∼ (∅, x (new y in par(y ← Sy);y))

x (let rec y = Sy in y) ∼ ([y 7→ ⊥], x (par(y ← Sy);y))
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x (let rec y = Sy in y) ∼ ([y 7→ Sy], x y) (let rec y = Sy in x y) ∼ ([y 7→ Sy], x y)

C.1.3 Heap rules. Finally, the heap rules give more to relate local heaps and global heaps (than

simple disjoint union of all local heaps), to account for the fact that local heaps (explicit substitutions)

may be duplicated or erased during the reduction of our source terms, as demonstrated in our

Example 1.

When trying to prove that a source term is related to a target configuration, the heap-weaken

rule allows let us discard a fully-evaluated part of the global target store that is not referenced from

the rest of the heap or the target term. This lets us ignore, when relating two terms, the parts of

the global store that correspond to local stores that have been erased by β-reduction, for example

when reducing the source term (λx . Done) (let rec x = Foo in x) and its related target term.

Remark 5. The restriction that only value heaps B may be weakened, instead of arbitrary heap

fragments H ′, gives us a stronger inversion principle in Fact 7: in certain cases we can prove that the

heap of a related configuration must be a value heap, which would never be the case if one could

always weaken arbitrary heaps.

The heap-copy rule let us relate a source term and a target configuration even when the source

term contains several copies of a local store fragment that is included only once in the target global

store: by this rule it suffices to prove the relation on a larger global store that includes several

copies of some parts of the original store.

The rule is defined for any renaming ϕ from heap locations (variables) to locations, that may

“collapse” several locations from the larger heapH into the same location in the resulting heap ϕ(H ).
To apply this rule we require that ϕ be compatible with the heap H , which intuitively means that

locations x,y in H that are collapsed by ϕ into in the same location must have pointed to the same

value after ϕ-renaming. We also require ϕ be the identity on variables outside dom(H ); without
this restriction, applying ϕ could change the free variables of the target term.

Definition 6 (Finite renaming). A (finite) renaming ϕ is a total function from variables to

variables whose domain dom(ϕ), defined as the set {x | ϕ(x) , x}, is finite.
We write ϕ(t) for the replacement of each free variable x ∈ t by ϕ(x).

Definition 7 (Heap compatibility). We write (ϕ compatible with H ) if the following properties
hold:

functionality ∀x,y ∈ dom(H ), ϕ(x) = ϕ(y) =⇒ ϕ(H (x)) = ϕ(H (y))
definedness ∀x,y ∈ dom(H ), ϕ(x) = ϕ(y) ∧ H (x) = ⊥ =⇒ x = y

Functionality implies that ϕ(H )
def
= {ϕ(x) 7→ ϕ(t) | (x 7→ t) ∈ H } is well-defined as a finite map.

Definedness implies that ϕ is injective on the uninitialized locations of H : distinct uninitialized

locations cannot be collapsed together.

Example 3. The following relations hold:

x (let rec y = Sy in y) (let rec y ′ = Sy ′ in y ′)
∼ ([y 7→ Sy][y ′ 7→ Sy ′], x y y ′)

x (let rec y = Sy in y) (let rec y ′ = Sy ′ in y ′)
∼ ([y 7→ Sy], x y y)

The second relation is proved by using the heap-copy rule on the first one, with the heap function ϕ
defined by ϕ(y ′) = ϕ(y) = y and, for any z , y ′, ϕ(z) = z. This ϕ is compatible with the example heap

because ϕ(Sy) = ϕ(Sy ′) = Sy.
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Fact 4 (Union compatibility). If ϕ is compatible with H1 and H2, and ϕ(H1) and ϕ(H2) have

disjoint domains, then ϕ is compatible with H1 ⊎ H2.

Properties of the relation. The simple rules are syntax-directed. The others are not:

• The letrec-binding rules relate the same source term to several different target terms.

In the case of the rule further, the target term is exactly the one of a premise: any term

ut may be related to a term of the form let rec B in . . . if it is the result of a reduction
sequence that introduced B in the global heap.

• The heap rules act only on the target heap, not on the source or target terms. In particular,

they may occur at the conclusion of any relation derivation.

Fact 5. A related term and configuration have the same free variables.

Fact 6. For any source term t we have t ∼ (∅, JtK).

Proof. By immediate induction on t . In the letrec case, use the init rule with I = ∅ — no

location initialized yet. For all other term-formers, use the simple rules. □

Fact 7 (Target value inversion). If we have t ∼ (H ,vt ), a relation where the target term is a

value, then:

• t is a source value of the form L[vs ],
• H is a value heap B,
• vs ∼ (∅,vt ) are related by a simple rule in the derivation of L[vs ] ∼ (B,vt ).

Proof. By induction on the relation derivation.

The property is directly satisfied by the simple rules that may related a target value (λ-abstraction
and data constructor), with L = □ and B = ∅.

The only letrec-related rule whose target may be a value is further, and it preserves this property

(growing L and B with the recursive bindings).

The heap rules also preserve this property; they may only transform the value heap B into

another value heap. This is by definition for heap-weaken: it is restricted to weakening value heaps

only. In the case of heap-copy, remark that if ϕ(H ) is a value heap, then H must also be a value

heap: ϕ is a variable renaming, so we can only have ϕ(v?) = ⊥ if v? = ⊥. □

Note that we do not have such an inversion principle for source values: if we have vs ∼ (H , t),
then the target source term t need not be a value, as vs may contain value bindings that are not yet

evaluated in t . For example we have

let rec y = Sy in Sy ∼ ([y 7→ ⊥], par(y ← Sy); Sy)

where the source term is a value.

C.2 Backward Simulation
Lemma 12 (Relation substitution).

If

ts ∼ (H , tt ) us ∼ (B,ut ) H ,B disjoint

then

ts [us/x] ∼ (H ⊎ B, tt [ut/x])

Proof. If x does not occur in tt , then this is exactly the heap-weaken rule. Let us now consider

the case where there is at least one occurrence of x ∈ tt . Let (xi )
i ∈I

be the (non-empty) family of

occurrences of x in tt .
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Let us choose, for each xi , an α-equivalent copy (Bi ,ut ,i ) of (B,ut ), where Bi is fresh for (H , tt ).
From ts ∼ (H , tt ) we get a derivation of

ts [us/x] ∼ (H
⊎
i ∈I

Bi , tt [ut ,i/xi ]
i ∈I )

by replacing each sub-derivation x ∼ (∅, xi ) by our assumptions us ∼ (Bi ,ut ,i ).
We now consider the map ϕ that maps each yk ∈ Bk for some k to the corresponding y ∈ B, and

all other variables to themselves. By this definition we have that:

• dom(ϕ) ⊆
⊎

i Bi ;
• ϕ is the identity on H , so it is compatible with H ;

• ϕ(Bi ) = B and

(
ϕ(ut ,i ) = ut

) i
;

• ϕ is functional on

⊎
i Bi ; definedness trivially holds on value heaps, so ϕ is compatible with⊎

i Bi .

Furthermore,H and ϕ(
⊎

i Bi = B have disjoint domains, so by Fact 4 we have that ϕ is compatible

with H
⊎

i Bi .
As a consequence, from

ts [us/x] ∼ (H
⊎
i ∈I

Bi , tt [ut ,i/xi ]
i ∈I )

we can apply the heap-copy rule with ϕ to deduce

ts [us/x] ∼ (ϕ(H
⊎
i ∈I

Bi ),ϕ(tt [ut ,i/xi ]
i ∈I ))

that is our goal

ts [us/x] ∼ (H ⊎ B, tt [ut/x])

□
Theorem (4: Backward Simulation).

If

ts ∼ (H , tt ) (H , tt ) → (H
′, t ′t )

then ∃t ′s ,

ts →
? t ′s t ′s ∼ (H

′, t ′t )

Proof. We proceed by induction on the derivation of ts ∼ (H , tt ).
The “simple rules” are the easy cases, with the interesting cases coming heap-management or

letrec-related cases.

Simple rules. The cases of variables and λ-abstractions are immediate, as no reduction can occur.

For application, matching and constructors, the same reasoning works in all cases, so we will only

consider application.

fs ∼ (Hf , ft ) us ∼ (Hu ,ut )

fs us ∼ (Hf ⊎ Hu , ft ut )

We proceed by case analysis on the reduction (H , tt ) → (H
′, t ′t ) with tt = ft ut and H = Hf ⊎Hu .

The reduction is a ctx rule of the form

(H□, th) →
hd (H ′□, t

′
h)

(HE ⊎ H□, E[th]) → (HE ⊎ H
′
□, E[t

′
h])

Either E is the empty context □, which is the “head reduction” case, or E is non-empty, the

“non-head” case.
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Head reduction. The interesting case is when we have a head reduction in the target term: ft is
of the form (λx .дt ), and the reduction happens on the redex (λx .дt ) ut .
In this case ut must be a value vt , and ft is also a value (a λ-abstraction), so by Fact 7 (Target

value inversion) we know that:

• (Hu ,ut ) is a value configuration (Bv ,vt ) and us is a related value:

us = vs ∼ (Bv ,vt ).
• (Hf , ft ) is a value configuration (Bf , λx .дt ).

More precisely, we know that fs is of the form L[λx .дs ], and that the subderivation of λx .дs ∼
λx .дt within the derivation of fs ∼ (Hf , fs ) uses a simple rule. This is necessarily the λ-abstraction
rule, so we have JдsK = дt .
Note that if we replace this subderivation λx .дs ∼ (∅, λx . JдsK) by a derivation of дs ∼ (∅, JдsK)

(Fact 6), we obtain a derivation of L[дs ] ∼ (Bf , JдsK).
Our initial hypotheses

ts ∼ (H , tt ) → (H
′, t ′t )

became

L[λx .дs ] vs ∼ (Bf ⊎ Bv , (λx . JдsK) vt ) → (Bf ⊎ Bv , JдsK[vt/x])

We conclude this case of the proof with

L[λx .дs ] vs → L[дs [vs/x]] ∼ (Bf ⊎ Bv , JдsK[vt/x])
where the last relation is obtained from L[дs ] ∼ (Bf , JдsK) andvs ∼ (Bv ,vt ) by Lemma 12 (Relation

substitution).

Non-head reduction. If ft ut is not the main redex of the reduction, we want to proceed by

induction on ft or ut , depending on where the reduction happens. Our evaluation context E[□]
must be of the form Ef [□] ut or ft Eu [□]; the proof of both cases is symmetric, so we only discuss

the case Ef [□] ut .

fs ∼ (Hf , ft ) us ∼ (Hu ,ut )

fs us ∼ (Hf ⊎ Hu , ft ut )

(H□, th) →
hd (H ′□, t

′
h)

(HE ⊎ H□, Ef [th] ut ) → (HE ⊎ H
′
□, Ef [t

′
h]ut )

To proceed by induction on our premise fs ∼ (Hf , ft ) we need the fact that H□ is a sub-heap of

Hf (rather than Hu ). This is “obviously” the case, but we found it subtle to justify precisely.

For any variable x ∈ dom(H□), let us show that x belongs to the domain of Hf and not Hu — the

two heaps are disjoint. By Fact 3 (Relevant head reduction), we know that H□ is included in the

free variables of th , so in particular x is free in ft . Remember that we assume that, in each syntactic

object (term, configuration, derivation...), bound variables are distinct from free variables; this can

always be chosen to be the case by performing α-renamings appropriately. In the derivation of

fs us ∼ (Hf ⊎ Hu , ft ut ), if x was not in dom(Hf ) it would be free in (Hf , ft ); in particular, it could

not be bound in (Hu ,ut ), so we know x < dom(Hu ).

We thus have that Hf is of the form HEf ⊎ H□, so we can use our induction hypothesis on

fs ∼

(H□, th) →
hd (H ′□, t

′
h)

(Hf , Ef [th]) → (HEf ⊎ H
′
□, Ef [t

′
h])

to get a f ′s such that

fs →
? f ′s ∼ (HEf ⊎ H

′
□, Ef [t

′
h])

which lets us conclude our goal with

fs us →
? f ′s us ∼ (HEf ⊎ H

′
□ ⊎ Hu , Ef [t

′
h] ut )
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Letrec rules.
Simulating the letrec rules is fairly simple, because the relation was precisely designed to

correspond to the dynamic semantics of the translation of letrec in the target language, with

four rules init, write, done, further that correspond to four possible states of reduction of this

translation, with reductions from one state only to itself or to the next state in the list.

Rule. init

J , ∅

let rec (xi = ti )
i ∈I ,

(
x j = tj

) j ∈J in u
∼ ([xi 7→ ⊥]

i ∈I , new
(
x j

) j ∈J in par(xk ← tk )
k ∈I⊎J ; JuK)

Any reduction of this target term is of the form below, with J = 1⊎ J ′ where 1 is some singleton

set {⋆}:

([xi 7→ ⊥]
i ∈I , new x⋆ in new

(
x j

) j ∈J ′ in par(xk ← tk )
k ∈I⊎1⊎J ′ ; JuK)

→ ([xi 7→ ⊥]
i ∈I⊎1, new

(
x j

) j ∈J ′ in par(xk ← tk )
k ∈I⊎1⊎J ′ ; JuK)

If J ′ , ∅, we have ts ∼ (H
′, t ′t ) again an instance of the init rule. If J ′ = ∅ then new

(
x j

) j ∈J ′ in t
is just t , so our reduced term is of the form

([xi 7→ ⊥]
i ∈I⊎1, par(xk ← tk )

k ∈I⊎1; JuK)

which is related to the same source term by the write rule, with an empty set of committed values(
vs ,i ,vt ,i

) i ∈I
.

Rule. write (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I (
ts , j ∼ (Hj , tt , j )

) j ∈J
let rec

(
xi = vs ,i

) i ∈I
,
(
yj = ts , j

) j ∈J in u
∼ ([xi 7→ vt ,i ]

i ∈I [yj 7→ ⊥]
j ∈J ⊎ (Bi )

i ∈I ⊎
(
Hj

) j ∈J
, par((Done)i ∈I ,

(
yj ← tt , j

) j ∈J
); JuK)

There are three possible kinds of reduction for a related target term of this form:

(1) We may be doing a reduction within one of the

(
tt , j

) j ∈J
.

(2) If one of the

(
tt , j

) j ∈J
is a value vt , j , the write yj ← vt , j may be committed.

(3) If the set of uncommitted bindings

(
yj ← tt , j

) j ∈J
is empty, the subterm par(Done)i ∈I reduces

to Done.

In the first case, we have (Hj , tt , j ) → (H
′
j , t
′
t , j ).

9
By induction hypothesis we get t ′s , j ∼ (H

′
j , t
′
t , j ),

and can conclude by using the write rule again.

9
It is not immediate that the part of the global heap that is modified is precisely Hj , but it the same reasoning that we

detailed in the “Simple rules” case. We will omit discussing similar instances of this point in the rest of the proof.
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In the second case, we have J = 1 ⊎ J ′ where tt ,⋆ is a value vt ,⋆, and thus H⋆ a value heap B⋆

by Fact 7 (Target value inversion). The reduction is thus of the form(
[xi 7→ vt ,i ]

i ∈I [y⋆ 7→ ⊥][yj 7→ ⊥]
j ∈J ′ ⊎ (Bi )

i ∈I ⊎ B⋆ ⊎
(
Hj

) j ∈1⊎J ′
,

par((Done)i ∈I ,
(
y⋆ ← vt ,⋆

)⋆∈1
,
(
yj ← tt , j

) j ∈J ′
); JuK

)

→

(
[xi 7→ vt ,i ]

i ∈I [y⋆ 7→ vt ,⋆][yj 7→ ⊥]
j ∈J ′ ⊎ (Bi )

i ∈I ⊎ B⋆ ⊎
(
Hj

) j ∈J ′
,

par((Done)i ∈I , (Done)⋆∈1 ,
(
yj ← tt , j

) j ∈J ′
); JuK

)
and we can use the write rule again (with I + 1 and J ′) to relate to the same source term.

In the third case, the reduction is

([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I , par(Done)i ∈I ; JuK) → ([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I , Done; JuK)
and the reduced target term is related to the initial source term by done.

Rule. done (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I
let rec

(
xi = vs ,i

) i ∈I in u ∼ ([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I H , Done; JuK)

The only possible reduction of the target term is

([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I H , Done; JuK) → ([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I H , JuK)
The resulting target term is related to the initial source term by the rule further, using Fact 6 () to

relate u and JuK.

Rule. further (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I
us ∼ (H ,ut )

let rec
(
xi = vs ,i

) i ∈I in us ∼ ([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I ⊎ H ,ut )

The only possible reduction of the target term comes from a reduction (H ,ut ) → (H
′,u ′t ). The

proof in this case is by immediate induction hypothesis on us ∼ (H ,ut ).

Heap rules.

Rule. heap-weaken

ts ∼ (H , tt ) ∀x ∈ dom(B), x < (H , tt )

ts ∼ (H ⊎ B, tt )

By Fact 3 (Relevant head reduction), any head reduction (H□, th) →
hd (H ′□, th) has H□ included

in the free variables of tt , andH
′
□ in its free or bound variables. In particular, those two sub-heaps of

H ⊎B can be assumed disjoint from B, so they are sub-heaps of H , with H = HE ⊎H□ and HE ,H
′
□,B

disjoint.

We can conclude by induction: from

ts ∼ (HE ⊎ H□, E[th]) → (HE ⊎ H
′
□, E[t

′
h])

we have by induction a t ′s such that

ts →
? t ′s ∼ (HE ⊎ H

′
□, E[t

′
h])

and we can conclude (as H ′□ is disjoint from B) with the heap-weaken rule again (HE ,H
′
□,B are

disjoint)

ts →
?

t ′s ∼ (HE ⊎ H
′
□, E[t

′
h])

t ′s ∼ (HE ⊎ H
′
□ ⊎ B, E[t

′
h])
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Rule. heap-copy

ts ∼ (H , tt ) ϕ compatible with H dom(ϕ) ⊆ dom(H )

ts ∼ (ϕ(H ),ϕ(tt ))

This is the delicate case of proof, testing our definition of (ϕ compatible with H ).
Our reduction must be a ctx rule, so ϕ(tt ) is of the form E0[th,0]. Variable renamings preserve

the term structure, so the preimage by ϕ of E0[th,0] must itself be of the form E[th]. Without loss

of generality, we can thus assume that ϕ(tt ) is of the form ϕ(E)[ϕ(th)].
We then reason by case analysis on the possible head reduction rules involving ϕ(th). In each case,

we will refine this without-loss-of-generality reasoning by inverting ϕ on the specific structure of

the head reduction rule.

Rule case: pure reductions. Without loss of generality, we can assume that any pure reduction

from ϕ(H , tt ) must be of the form

(∅,ϕ(th)) →
hd (∅,u ′h)

(ϕ(H ),ϕ(E)[ϕ(th)]) → (ϕ(H ),ϕ(E)[u
′
h])

Substitutions preserve reductions: if t → t ′ in the λ-calculus then t[σ ] → t ′[σ ] for any variable-

to-terms substitution σ . In the case of variable renaming ϕ only, we have a converse property that

if ϕ(t) is reducible, then t itself is reducible (a variable-to-variable substitution cannot introduce a

redex). If ϕ(t) reduces to some u ′, then t reduces to some t ′; as substitutions preserve reductions
we furthermore have that ϕ(t ′) = u ′.

From our assumption (∅,ϕ(th)) →
hd (∅,u ′h)we thus have t

′
h such that ϕ(t ′h) = u

′
h and (∅, th) →

hd

(∅, t ′h). We thus have

ts ∼ (H , tt ) =

(∅, th) →
hd (∅, t ′h)

(H , E[th]) → (H , E[t
′
h])

which gives by induction hypothesis a t ′s such that

ts →
? t ′s ∼ (H , E[t

′
h])

which lets us conclude by applying heap-copy again:

ts →
?

t ′s ∼ (H , E[t
′
h])

t ′s ∼ (ϕ(H ),ϕ(E)[u
′
h])

Rule case: new

Without loss of generality, a new reduction of a configuration in the image of a variable renaming

ϕ must start from a term of the form ϕ(H , E[new x in u]). The bound variable x can be assumed

outside the domain of H and the free variables of E[new x in u], as well as outside their image

through ϕ. We have dom(ϕ) ⊆ dom(H ), so we know that x is also outside the domain of ϕ, which
gives ϕ(x) = x . Thus any such reduction can be assumed to be of the form

ts ∼

(∅,ϕ(new x in u)) →hd ([x 7→ ⊥],ϕ(u))

(ϕ(H ),ϕ(E)[ϕ(new x in u)]) → (ϕ(H )[x 7→ ⊥],ϕ(E[u]))

From our premise

ts ∼ (H , E[new x in u])
we have by induction hypothesis a t ′s such that

ts →
? t ′s ∼ (H [x 7→ ⊥], E[u])
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and we can conclude with the heap-copy rule again

ts →
?

t ′s ∼ (H [x 7→ ⊥], E[u]) ϕ compatible with H [x 7→ ⊥]

t ′s ∼ (ϕ(H [x 7→ ⊥]),ϕ(E[u]))

where the compatibility of ϕ withH [x 7→ ⊥] is a direct consequence of Fact 4 (Union compatibility).

Rule case: set

Without loss of generality, a set reduction from a term in the image of a variable renaming ϕ
must be of the form

ϕ(H [x 7→ ⊥], E[x ← v]) → ϕ(H [x 7→ v], E[Done])
We also have a premise ts ∼ (H [x 7→ ⊥], E[x ← v]) where the target reduces as

ts ∼ (H [x 7→ ⊥], E[x ← v]) → (H [x 7→ v], E[Done])
which gives by induction hypothesis a t ′s such that

ts →
? t ′s ∼ (H [x 7→ v], E[Done])

We can conclude by applying heap-copy again on this last relation,

ts →
?

t ′s ∼ (H [x 7→ v], E[Done])

t ′s ∼ ϕ(H [x 7→ v], E[Done])
provided that ϕ is compatible with H [x 7→ v]. It is (see Definition 7):

definedness is preserved from H [x 7→ ⊥]
functionality holds for any pair of references in H . For pairs containing x , we know by

definedness of ϕ on H [x 7→ ⊥] that z , x implies ϕ(z) , ϕ(x), which implies functionality.

Remark 6. This case is the reason why definedness was introduced in definition of compatible

renamings. Functionality is required for the notation ϕ(H ) to even make sense, but definedness is not

an obvious requirement. Here is it essential for set to preserve functionality.

Rule case: lookup

Without loss of generality, a lookup reduction of a configuration in the image of a variable

renaming ϕ must start from a term of the form

ϕ(H [x 7→ v], E[x]) → ϕ(H [x 7→ v], E[v])

we also have a premise ts ∼ (H [x 7→ v], E[x]) so we have the reduction

ts ∼ (H [x 7→ v], E[x]) → (H [x 7→ v], E[v])

and thus by induction hypothesis a t ′s such that

ts →
? t ′s ∼ (H [x 7→ v], E[v])

which lets us conclude by applying heap-copy again (we know by assumption that ϕ is compatible

with H [x 7→ v])

ts →
?

t ′s ∼ (H [x 7→ v], E[v])

t ′s ∼ ϕ(H [x 7→ v], E[v])

□

C.3 Viciousness and Segfaults
Besides showing a tight correspondence between our local and global store semantics, the backward

simulation result is intended to prove that this compilation strategy preserves safety: if our static

analysis accepts a source term, then its compilation will not fail due to undefined values. To establish

this, we relate the notions of failures in the target language (forcing contexts and Segfault terms

from Figure 6) to failures in the source language (forcing contexts and Vicious from Figure 5).
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Fact 8 (No value forcing).

A target value vt is never of the form Ef ,t [t] for any target forcing context Ef ,t .

Lemma 13 (Target forcing inversion).

If ts is related to a variable-forcing target configuration

ts ∼ (H , Ef ,t [x])

then

ts = Ef ,s [x]

for some source forcing context Ef ,s .

Proof. A target forcing context Ef ,s is defined as the identity□ or the composition of an ordinary

evaluation context E with a forcing frame Ff (see Figure 6).

The proof is by induction on the relation; for each layer of structure in the relation, it may be

part of E, then we proceed by induction, of the forcing frame Ff , then it is a base case.

• variable case: immediate.

• abstraction case: impossible.

• application case: by direct induction if part of E, and immediate if part of Ff .
• constructor case: by direct induction.

• match case: as the application case.

• init: impossible as new x in □ cannot be the prefix of a forcing context.

• write: the target term is a forcing context if the context goes into one of the

(
yj ← tt , j

) j
being evaluated – JuK is not in reducible position. The corresponding source term ts , j is in
reducible position in the source, so we proceed by induction.

• done: impossible.

• further: by direct induction.

• heap-weaken, heap-copy: by direct induction.

□

Lemma 14 (Definedness relation).

If

Es [□] ∼ctx (H , Et [□]) (z = v) ∈ Es
then H (z) is defined and distinct from ⊥.

Remark 7. By Es [□] ∼ctx (H , Et [□]) we mean the relation between contexts that extends ( ∼ ) with

the rule □ ∼ctx (∅,□), or equivalently Es [x] ∼ (H , Et [x]) for some variable x fresh for Es ,H , Et .

Proof. The proof is by induction on the derivation of Es [□] ∼ctx (H , Et [□]). Most cases are

immediate as they do not add bindings to the context.

• hole case □: immediate (there is no z such that (z = v) ∈ □).
• variable case: impossible (not of the form E[□]).
• application case: the holes must be on the same side in the source and target applications (as

a hole is only related to a hole), so we can proceed by direct induction.

• construction case: similar to the application case.

• match case: by direct induction.

• init, done: impossible (the target is not of the form E[□]).
• write and further: these are the interesting cases, proved below.

• heap-weaken, heap-copy: by direct induction.
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Rule. write (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I (
ts , j ∼ (Hj , tt , j )

) j ∈J
let rec

(
xi = vs ,i

) i ∈I
,
(
yj = ts , j

) j ∈J in u
∼ ([xi 7→ vt ,i ]

i ∈I [yj 7→ ⊥]
j ∈J ⊎ (Bi )

i ∈I ⊎
(
Hj

) j ∈J
, par((Done)i ∈I ,

(
yj ← tt , j

) j ∈J
); JuK)

In the target term, JuK is not in reducible position. The only related reducible subterms are the(
tt , j

) j ∈J
in the target, which correspond to an evaluation context frame F of the form let rec b, x = □,b ′ inu

in the source. We never have (x = v) ∈ F for this partly-evaluated frame, so z must come from the

corresponding Hj and we proceed by induction on the corresponding premise ts , j ∼ (Hj , tt , j ).

Rule. further (
vs ,i ∼ (Bi ,vt ,i )

) i ∈I
us ∼ (H ,ut )

let rec
(
xi = vs ,i

) i ∈I in us ∼ ([xi 7→ vt ,i ]
i ∈I ⊎ (Bi )

i ∈I ⊎ H ,ut )

If z is one of the (x)i ∈Ii , we have [z 7→ vt ,i ] in the target heap so H (z) , ⊥ as claimed. Otherwise z
must be in a BI or H , and we proceed by induction on the corresponding premise. □

Corollary 3 (Segfaults are Vicious).

ts ∼ (H , tt ) ∧ (H , tt ) ∈ Segfault =⇒ ts ∈ Vicious

Proof. (H , tt ) is in Segfault, so by definition it is of the form (H ′[x 7→ ⊥], Et ,f [x]) for some

target forcing context Et ,f (Figure 6). In particular, we have H (x) = ⊥.
By Lemma 13 (Target forcing inversion), the related source term ts must be of the form Es ,f [x]

for some source forcing context Es ,f .
We cannot have (x = v) ∈ Es ,f , as by Lemma 14 (Definedness relation) this would imply

H (x) , ⊥. Therefore ts is in Vicious (Figure 5). □

Theorem (5: Return-typed programs cannot segfault).

∅ ⊢ ts : Return ∧ (∅, JtsK) →∗ (H , t ′t ) =⇒ (H , t ′t ) < Segfault

Proof. The metatheory of our static analysis tells us that a Return-typed closed program ts
cannot reduce to a vicious term: if ts →

∗ t ′s , then t ′s < Vicious.
We have ts ∼ J∅Ktt ; by Theorem 4 (Backward Simulation), for any (∅, JtsK) →∗ t ′t there is a t ′s

such that ts →
∗ t ′s and t

′
s ∼ (H , t

′
t ). In particular, (H , t ′t ) cannot be in Segfault, as then the related t ′s

would be in Vicious by Corollary 3 (Segfaults are Vicious). □
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