
A One-Pass CPS Transform with Simulation on
the Nose

Pascal Y. Lasnier[0009−0009−9371−3467], Jeremy Yallop[0009−0002−1650−6340]1, and
Magnus O. Myreen[0000−0002−9504−4107]2,3

1 University of Cambridge
2 Chalmers University of Technology

3 University of Gothenburg

Abstract. Danvy & Nielsen’s one-pass CPS transform has a straight-
forward definition, but clashes between the names of variables it intro-
duces make it difficult to mechanically prove correct. Existing mechani-
cal proofs either side-step the issue by using nameless representations, or
rely on tedious 𝛼-equivalence relations between target terms. This paper
presents a new formulation of the transform using evaluation contexts
that allows deterministic introduction of fresh names, eliminating the
need to work up to 𝛼-equivalence. We use our formulation to present a
new and straightforward simulation proof of the correctness of the one-
pass CPS transform, which we have mechanised in the HOL4 theorem
prover.

1 Introduction

Continuation-passing style (CPS) transforms have many useful properties: they
make evaluation order explicit, turn all calls into tail calls, name intermediate
computations, and support simulation of non-standard control flow. These prop-
erties make the CPS transform a key technique in many applications, from defin-
ing control operator semantics [7] to intermediate representation in functional
languages compilers [12] and languages with first-class continuations [2,13,22].

The classic CPS transform developed by Plotkin [18] introduces many ad-
ministrative redexes, i.e. function applications which are trivial to evaluate and
do not correspond to source program reductions. For example, the program frag-
ment 𝑥1 𝑥2 (𝑥3 𝑥4 𝑥5) CPS-transforms into the following:

𝜆𝑘.(𝜆𝑘.(𝜆𝑘.𝑘 𝑥1) (𝜆𝑚.(𝜆𝑘.𝑘 𝑥2) (𝜆𝑛.𝑚 𝑛 𝑘)))
(𝜆𝑚.(𝜆𝑘.(𝜆𝑘.(𝜆𝑘.𝑘 𝑥3) (𝜆𝑚.(𝜆𝑘.𝑘 𝑥4) (𝜆𝑛.𝑚 𝑛 𝑘)))

(𝜆𝑚.(𝜆𝑘.𝑘 𝑥5) (𝜆𝑛.𝑚 𝑛 𝑘)))
(𝜆𝑛.𝑚 𝑛 𝑘))

Reducing applications of the form (𝜆𝑘.𝑘 𝑥)(𝜆𝑦.𝑒), to [𝑥/𝑦]𝑒 (i.e. 𝑒 with 𝑥 substi-
tuted for 𝑦) straightforwardly produces the following reduced term:

𝜆𝑘.(𝜆𝑘.𝑥1 𝑥2 𝑘) (𝜆𝑚.(𝜆𝑘.(𝜆𝑘.𝑥3 𝑥4 𝑘) (𝜆𝑚.𝑚 𝑥5 𝑘)) (𝜆𝑛.𝑚 𝑛 𝑘))



Source Source

Target Target

simulation

reduction

simulation

∗reductions

Fig. 1. Simulation as a commutative diagram.

There are three further administrative redexes that can be eliminated in this pro-
gram. However, reducing these redexes requires renaming one of the 𝑚 variables
to avoid clashes. After reduction and renaming, the result is as follows:

𝜆𝑘.𝑥1 𝑥2 (𝜆𝑚.𝑥3 𝑥4 (𝜆𝑚′.𝑚′ 𝑥5 (𝜆𝑛.𝑚 𝑛 𝑘)))

There are several optimised CPS transforms [4,9,21] that eliminate these
administrative redexes and produce CPS programs such as the final version
above. The state-of-the-art for the call-by-value lambda calculus is the first-
order one-pass CPS transform by Danvy & Nielsen [9].

Proof of correctness of the CPS transform, which is typically formulated as a
simulation proof, involves establishing a relation between source programs and
CPS programs which the CPS transform satisfies, and proving that the relation
is closed under source and target reductions. Fig. 1 portrays this statement
as a commutative diagram. Simulation is simple to prove for the classic CPS
transform, but the name clashes seen in the example above introduce challenges
in the proofs for the optimised variants.

In their hand-written correctness proof, Danvy & Nielsen simply assert that
introduced variables are unique [9]. In contrast, in a typical mechanised proof,
binders require explicit reasoning. A naive fresh binder naming scheme will result
in CPS programs that do not strictly reduce in the simulation diagram, but
instead reduce to 𝛼-equivalent programs [15], complicating the simulation proof
with a new notion of equivalence.

Paraskevopoulou & Grover [16] summarise the accumulated literature on the
variable binder issue for mechanised proofs of the optimised CPS transform.
Proofs which represent variable binders with explicit names require establishing
some notion of equivalence over programs in CPS, with Minamide & Okuma [15]
using an 𝛼-equivalence relation, and Paraskevopoulou & Grover [16] developing
a more general logical relation over CPS terms. These approaches complicate
verified implementation of the CPS transform, since constructing an equiva-
lence relation and proving it for a target language involves significant additional
verification work, especially if the target language is complex. Other develop-
ments use nameless variable binding system such as de Bruijn indices [10,19] or
higher-order abstract syntax [3,23].

This paper contributes a new approach to the problem of name generation in
an optimised CPS transform, with a mechanised simulation proof that both uses

2



named variable binders and completes the simulation diagram without requiring
an additional notion of equivalence. Our approach to the problem consists of
three components:

Evaluation-context-based optimised CPS transform. We refactor Danvy
& Nielsen’s optimised CPS transform [9] using evaluation contexts, follow-
ing Sabry & Felleisen’s non-compositional optimised transform [21], but pre-
serving compositionality. Reframing the transform in this way highlights a
critical feature of variable name introduction: name clashes are local to the
lexical scope of source language terms. This observation is an instance of a
general principle that freshness should not be treated as a global property,
but determined relative to some local context [17]. We apply the principle
to the challenge at hand, using it to design a name generation strategy that
is deterministically dependent only on the evaluation context of the local
scope.

Modified CEK-machine with lexical scopes. Using the insight that vari-
able binder names may be allocated locally to the lexical scope of the source
language, we modify the CEK-machine small-step semantic definition of the
call-by-value lambda calculus by rephrasing evaluation contexts as a nested
sequence of scopes, where each scope has a distinct, local environment and
evaluation context. At the top level of the semantic state, the new abstract
machine operates on a sequence of scopes, with the innermost evaluation
context containing the control string in its hole.

Simulation. We construct a simulation relation between semantic states of the
modified CEK-machine for the call-by-value lambda calculus to CPS terms
through our evaluation-context-based optimised CPS transform, using the
evaluation context of the local scope from the semantic state directly in the
transform. Because variable binder names are deterministic from the local
lexical scope, the exact variable name can be deduced directly from the
simulation relation, and simulation can be easily proven without requiring a
notion of equivalence.

We have mechanised our proof in the HOL4 theorem prover, and include the
development as supplementary material.

2 Call-by-value lambda calculus CEK-machine

𝑒 ∶∶= 𝑡 ∣ 𝑠 ∈ Exp
𝑡 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑒 ∈ Triv
𝑠 ∶∶= 𝑒1 𝑒2 ∈ Comp
𝑥 ∈ Ide

Fig. 2. Lambda calculus grammar

3



We first present the lambda calculus which we use in our mechanised proof
(Fig. 2). Terms 𝑒 are either trivial terms 𝑡, which include variables 𝑥 and ab-
stractions 𝜆𝑥.𝑒, or serious terms 𝑠, which are applications 𝑒1 𝑒2.

𝑣 ∶∶= Λ𝑥.{𝜌}𝑒 ∈ Val
𝜌 ∶ Ide ⇀ Val

𝐸 ∶∶= [] ∣ 𝐸 {𝜌}𝑒 ∣ 𝑣 𝐸 ∈ Cont
𝑐 ∶∶= {𝜌}𝑒 ∣ 𝑣 ∈ Ctrl

Cont[Ctrl] ⟶ Cont[Ctrl]

𝐸[{𝜌}𝑥] ⟶ 𝐸[𝜌(𝑥)]
𝐸[{𝜌}𝜆𝑥.𝑒] ⟶ 𝐸[Λ𝑥.{𝜌}𝑒]
𝐸[{𝜌}𝑒1 𝑒2] ⟶ 𝐸[[{𝜌}𝑒1] {𝜌}𝑒2]

𝐸[[𝑣] {𝜌}𝑒] ⟶ 𝐸[𝑣 [{𝜌}𝑒]]
𝐸[(Λ𝑥.{𝜌}𝑒) [𝑣]] ⟶ 𝐸[{𝜌[𝑥 ↦ 𝑣]}𝑒]

Fig. 3. CEK-machine

Fig. 3 shows the call-by-value semantics for the calculus as a small-step CEK-
machine semantics. The CEK-machine operates on control strings which may
be either terms with an attached environment, which we denote similarly to
substitution {𝜌}𝑒, or values 𝑣, which may only be closures which capture an
environment Λ𝑥.{𝜌}𝑒. Environments 𝜌 simply map variables to values.

The semantic state of the CEK-machine includes an evaluation context 𝐸,
which is a nested sequence of stack frames. There are two types of stack frame: fn
frames 𝐸 {𝜌}𝑒 enclose an unevaluated function term in an application, where the
evaluation context holds the argument term and associated environment {𝜌}𝑒,
and arg frames 𝑣 𝐸 enclose an unevaluated argument term, where the evaluation
context holds the previously evaluated function value 𝑣.

The complete definition of the CEK-machine is a relation between semantic
states consisting of an evaluation context 𝐸 with its hole filled by a control
string 𝑐. We denote the type of a filled evaluation context by figuratively filling
the hole of the Cont type, i.e. the type Cont[Ctrl] is that of evaluation contexts
with their holes filled by control strings 𝐸[𝑐].

3 Revisiting the optimised CPS transform

3.1 Classic transform

Fig. 4 shows Plotkin’s classic CPS transform [18]. To distinguish the source and
target domains, we write target terms in bold. The proof of Plotkin’s classic
simulation theorem is simple and well-understood, and has been mechanised by
Minamide & Okuma [15] and Dargaye & Leroy [10].

A simulation proof technique which has proven quite effective is to relate
CEK-machine source semantic states to CPS terms in the target domain. This
relation is not arbitrary, but rather arises from the nature of small-step semantics

4



⟦𝑥⟧ = 𝜆𝑘.𝑘 𝑥𝜆𝑘.𝑘 𝑥𝜆𝑘.𝑘 𝑥
⟦𝜆𝑥.𝑒⟧ = 𝜆𝑘.𝑘 (𝜆𝑥.𝜆𝑘.𝑘 (𝜆𝑥.𝜆𝑘.𝑘 (𝜆𝑥.⟦𝑒⟧)))
⟦𝑒1 𝑒2⟧ = 𝜆𝑘.𝜆𝑘.𝜆𝑘.⟦𝑒1⟧ (𝜆𝑚.(𝜆𝑚.(𝜆𝑚.⟦𝑒2⟧ (𝜆𝑛.𝑚 𝑛 𝑘))(𝜆𝑛.𝑚 𝑛 𝑘))(𝜆𝑛.𝑚 𝑛 𝑘))

Fig. 4. Plotkin’s classic CPS transform

as a defunctionalisation of the continuation-passing style [1,5,6,8,20], and it un-
derscores the nature of CPS as a simulation of control structures (i.e. evaluation
contexts in a small-step semantics) by terms in a target domain. This relation
generalises to larger source languages: Lasnier, Yallop, & Myreen [14] use the
relation to prove simulation for Scheme, including first-class continuations.

3.2 One-pass transform
Fig. 5 shows Danvy & Nielsen’s first-order, compositional, one-pass formulation
of the optimised CPS transform [9], with an explicit naming scheme we motivate
in the following sections. The subscript 𝐾𝐾𝐾 in the expression transform E corre-
sponds to the top-level continuation of a given scope: it may be only either the
identity continuation III or a continuation variable 𝑘𝑘𝑘. In contrast, in the serious
transform S , the continuation argument 𝐾𝐾𝐾 may be an arbitrary continuation.
The complete transform of a program 𝑝 is EIII⟦𝑝⟧.

EIII⟦𝑡⟧ = T ⟦𝑡⟧
E𝑘𝑘𝑘⟦𝑡⟧ = 𝑘𝑘𝑘 T ⟦𝑡⟧

E𝐾𝐾𝐾⟦𝑠⟧ = S ⟦𝑠⟧0 𝐾𝐾𝐾

T ⟦𝑥⟧ = 𝑥𝑥𝑥
T ⟦𝜆𝑥.𝑒⟧ = 𝜆𝑥𝑘.𝜆𝑥𝑘.𝜆𝑥𝑘.E𝑘𝑘𝑘⟦𝑒⟧

S ⟦𝑡1 𝑡2⟧𝑖 𝐾𝐾𝐾 = T ⟦𝑡1⟧ T ⟦𝑡2⟧𝐾𝐾𝐾
S ⟦𝑡1 𝑠2⟧𝑖 𝐾𝐾𝐾 = S ⟦𝑠2⟧𝑖 (𝜆𝑛.(𝜆𝑛.(𝜆𝑛.T ⟦𝑡1⟧𝑛 𝐾)𝑛 𝐾)𝑛 𝐾)
S ⟦𝑠1 𝑡2⟧𝑖 𝐾𝐾𝐾 = S ⟦𝑠1⟧𝑖 (𝜆𝑚𝑖.𝑚𝑖(𝜆𝑚𝑖.𝑚𝑖(𝜆𝑚𝑖.𝑚𝑖 T ⟦𝑡2⟧𝐾)𝐾)𝐾)
S ⟦𝑠1 𝑠2⟧𝑖 𝐾𝐾𝐾 = S ⟦𝑠1⟧𝑖 (𝜆𝑚𝑖.(𝜆𝑚𝑖.(𝜆𝑚𝑖.S ⟦𝑠2⟧𝑖+1 (𝜆𝑛.𝑚𝑖 𝑛 𝐾))(𝜆𝑛.𝑚𝑖 𝑛 𝐾))(𝜆𝑛.𝑚𝑖 𝑛 𝐾))

Fig. 5. Danvy & Nielsen’s one-pass CPS transform

3.3 Clash of variable names and 𝛼-equivalence
Minamide & Okuma [15] observe that it is not possible to implement Danvy &
Nielsen’s optimised transform without variable renaming, since it may introduce
multiple conflicting instances of the variable 𝑚𝑚𝑚. They highlight this property
with the example transform for 𝑥1 𝑥2 (𝑥3 𝑥4 𝑥5), in which one of the 𝑚𝑚𝑚 variables
must be renamed:

𝑥1 𝑥2 (𝜆𝑚.𝑥3 𝑥4 (𝜆𝑚′.𝑚′ 𝑥5 (𝜆𝑛.𝑚 𝑛 𝑘)))𝑥1 𝑥2 (𝜆𝑚.𝑥3 𝑥4 (𝜆𝑚′.𝑚′ 𝑥5 (𝜆𝑛.𝑚 𝑛 𝑘)))𝑥1 𝑥2 (𝜆𝑚.𝑥3 𝑥4 (𝜆𝑚′.𝑚′ 𝑥5 (𝜆𝑛.𝑚 𝑛 𝑘)))

5



Implementations of the optimised transform must consequently generate fresh
variable names. Minamide & Okuma [15] generate names via a counter 𝑖 attached
to the transform similarly to Fig. 5, and Paraskevopoulou & Grover [16] allocate
globally fresh names using a state monad. However, Danvy & Nielsen’s simu-
lation proof is complicated by these fresh variable name generation schemes,
which only fit the simulation diagram up to 𝛼-equivalence. Consider Danvy &
Nielsen’s simulation theorem, which states that if a serious source term reduces
to a new term, the CPS transform of the serious term must also reduce to the
CPS transform of the new term. Using our definition from Fig. 5 and splitting
cases for either a trivial or serious reduced source term, the theorem is formally
stated as follows:

𝑠 ⟶ 𝑡 ⟹ S ⟦𝑠⟧𝑖 𝐾𝐾𝐾 ⟶+ 𝐾𝐾𝐾 T ⟦𝑡⟧
𝑠 ⟶ 𝑠′ ⟹ S ⟦𝑠⟧𝑖 𝐾𝐾𝐾 ⟶+ S ⟦𝑠′⟧𝑖 𝐾𝐾𝐾

Decomposing 𝑠 into an evaluation context and a redex 𝐸[𝑡1 𝑡2], the proof [9]
follows by induction over 𝐸. This proof deals with the lambda calculus using
term rewriting with substitutions rather than an abstract machine with an en-
vironment, so the evaluation context does not contain environments 𝜌.

Let us consider the case for an fn stack frame 𝐸 𝑒 where the argument ex-
pression is also a serious term, so that our source term may be written as 𝑠1 𝑠2.
The CPS transform for this term is S ⟦𝑠1⟧𝑖 (𝜆𝑚𝑖.(𝜆𝑚𝑖.(𝜆𝑚𝑖. S ⟦𝑠2⟧𝑖+1(𝜆𝑛. 𝑚𝑖 𝑛 𝐾))(𝜆𝑛. 𝑚𝑖 𝑛 𝐾))(𝜆𝑛. 𝑚𝑖 𝑛 𝐾)).

If 𝑠1 reduces to a trivial term 𝑠1 ⟶ 𝑡, we may apply our induction hypothesis
for the reduction to a trivial term, so our CPS term reduces to (𝜆𝑚𝑖.(𝜆𝑚𝑖.(𝜆𝑚𝑖. S ⟦𝑠2⟧𝑖+1(𝜆𝑛. 𝑚𝑖 𝑛 𝐾))(𝜆𝑛. 𝑚𝑖 𝑛 𝐾))(𝜆𝑛. 𝑚𝑖 𝑛 𝐾)) T ⟦𝑡⟧,
then further to S ⟦𝑠2⟧𝑖+1(𝜆𝑛.(𝜆𝑛.(𝜆𝑛. T ⟦𝑡⟧𝑛 𝐾)𝑛 𝐾)𝑛 𝐾). This CPS term, though indeed the CPS
transform of the reduced source term 𝑡 𝑠2, does not satisfy the simulation theo-
rem, because the fresh variable name counter 𝑖 has been incremented.

It would be incorrect to increment the counter 𝑖 in the starting simulation the-
orem as a way to compensate for this mismatch, because applying the induction
hypothesis to the 𝑠1 𝑠2 case where 𝑠1 reduces to another serious term 𝑠1 ⟶ 𝑠′

1
results in the reduced CPS term S ⟦𝑠′

1⟧𝑖+1 (𝜆𝑚𝑖.(𝜆𝑚𝑖.(𝜆𝑚𝑖. S ⟦𝑠2⟧𝑖+1(𝜆𝑛. 𝑚𝑖 𝑛 𝐾))(𝜆𝑛. 𝑚𝑖 𝑛 𝐾))(𝜆𝑛. 𝑚𝑖 𝑛 𝐾)), which
is strictly not the CPS transform of 𝑠′

1 𝑠2 and breaks simulation.
It is therefore required, when proving simulation with explicit binder names,

to establish 𝛼-equivalence over the CPS transform for incrementing fresh variable
counters S ⟦𝑠⟧𝑖 =𝛼 S ⟦𝑠⟧𝑖+1 as described by Minamide & Okuma [15].

3.4 Optimised CPS transform as static reduction
The core issue with existing implementations of the optimised transform is that
fresh variable names of an arbitrary program fragment in simulation cannot be
determined by the simulation relation from the fragment alone, instead depend-
ing on a floating variable counter 𝑖 or some global fresh variable allocator. In
order to eliminate the need for an equivalence relation, we seek a transform with
a variable name generation method which is deterministic, whilst still avoiding
clashes.

With this aim in mind, we reformulate the optimised transform to more
closely correspond to the source semantics, with the goal of facilitating a suitable

6



simulation relation. Our starting point is the evaluation-context-based optimised
transform presented by Sabry & Felleisen [21]. Drawing on the observation that
the optimised transform reduces administrative redexes at the point of the trans-
form, we construct the optimised transform as a kind of partial evaluator based
on evaluation contexts like the CEK-machine source semantics, which is given
in Fig. 6. Whereas evaluation contexts in the source semantics carry values 𝑣
for arg frames, in the transform evaluation contexts carry trivial terms 𝑡𝑡𝑡 in the
target domain. We highlight this distinction by denoting evaluation contexts in
the transform with a star 𝐸⋆.

E𝐾𝐾𝐾⟦𝐸⋆[𝑥]⟧ = C𝐾𝐾𝐾⟦𝐸⋆⟧𝑥𝑥𝑥
E𝐾𝐾𝐾⟦𝐸⋆[𝜆𝑥.𝑒]⟧ = C𝐾𝐾𝐾⟦𝐸⋆⟧𝜆𝑥𝑘.𝜆𝑥𝑘.𝜆𝑥𝑘.E𝑘𝑘𝑘⟦𝑒⟧
E𝐾𝐾𝐾⟦𝐸⋆[𝑒1 𝑒2]⟧ = E𝐾𝐾𝐾⟦𝐸⋆[[𝑒1] 𝑒2]⟧

CIII⟦[]⟧ 𝑡𝑡𝑡 = 𝑡𝑡𝑡
C𝑘𝑘𝑘⟦[]⟧ 𝑡𝑡𝑡 = 𝑘 𝑡𝑘 𝑡𝑘 𝑡

C𝐾𝐾𝐾⟦𝐸⋆[[] 𝑒]⟧ 𝑡𝑡𝑡 = E𝐾𝐾𝐾⟦𝐸⋆[𝑡𝑡𝑡 [𝑒]]⟧
C𝐾𝐾𝐾⟦𝐸⋆[𝑡1𝑡1𝑡1 []]⟧ 𝑡2𝑡2𝑡2 = 𝑡1 𝑡2𝑡1 𝑡2𝑡1 𝑡2 K𝐾𝐾𝐾⟦𝐸⋆⟧

K𝐾𝐾𝐾⟦[]⟧ = 𝐾𝐾𝐾
K𝐾𝐾𝐾⟦𝐸⋆[[] 𝑒]⟧ = 𝜆𝑚𝑖.𝜆𝑚𝑖.𝜆𝑚𝑖.E𝐾𝐾𝐾⟦𝐸⋆[𝑚𝑖𝑚𝑖𝑚𝑖 [𝑒]]⟧ 𝑖 = fresh 𝐸⋆

K𝐾𝐾𝐾⟦𝐸⋆[𝑡𝑡𝑡 []]⟧ = 𝜆𝑛.𝑡 𝑛𝜆𝑛.𝑡 𝑛𝜆𝑛.𝑡 𝑛 K𝐾𝐾𝐾⟦𝐸⋆⟧

Fig. 6. Our evaluation-context-based optimised CPS transform

In viewing the optimised CPS transform as partial evaluation, we conceptu-
ally split continuation applications into static and dynamic variants. In a static
application C𝐾𝐾𝐾⟦𝐸⋆⟧ 𝑡𝑡𝑡, the argument is a trivial term in the target domain 𝑡𝑡𝑡
rather than a value, and is directly substituted into the continuation bodies at
the point of the transform. In a dynamic application 𝑘 𝑡𝑘 𝑡𝑘 𝑡, 𝑘𝑘𝑘 maps to a closure
evaluated from K𝐾𝐾𝐾⟦𝐸⋆⟧. The definitions of both these continuation transforms
derive from the continuation steps of the CEK-machine from Fig. 3, i.e. steps
from a value control string with a particular evaluation context.

The evaluation contexts used to form these static and dynamic continuations
are grown from the shape of the program by the expression transform E , which
operates on an evaluation context filled with an expression, and whose definition
is derived from the expression steps of the CEK-machine from Fig. 3.

One key distinction between our E transform and the transform by Sabry
& Felleisen [21] is that E explicitly recurses into the evaluation context 𝐸⋆ of
an expression, while Sabry & Felleisen’s transform does not. Sabry & Felleisen
instead implicitly arrive at an evaluation context via unique decomposition [24],
the same notion relating CEK-machines and term-rewriting systems [11], and in
effect squash our E and C transforms into a single C transform. A second distinc-
tion is that E is compositional, preserving the adjustments Danvy & Nielsen [9]
made to the transform.

7



Benefits of the new transform. As Section 5 shows, constructing the trans-
form using evaluation contexts benefits the simulation proof by allowing us to
directly relate the source language semantic evaluation state, including its eval-
uation context, to a CPS-transformed expression in the target language. We
believe that this same construction can be applied to more complex languages
with small-step semantics that use evaluation contexts, such as Scheme.

Constructing the transform as we have done also more clearly highlights the
name clash issue encountered by Minamide & Okuma [15]. Note the continu-
ation closure definition for an fn continuation K𝐾𝐾𝐾⟦𝐸⋆[[] 𝑒]⟧; this closure intro-
duces a variable 𝑚𝑚𝑚 containing the resultant value of application function term
to fill the hole in the evaluation context 𝐸⋆[[] 𝑒]. However, this variable is not
immediately dispatched, and is instead stashed into the new evaluation context
from which the next term 𝑒 is transformed. Consequently, there can be multiple
variables 𝑚𝑚𝑚 present in the evaluation context; for example the transform of the
𝑥1 𝑥2 (𝑥3 𝑥4 𝑥5) expands as follows:

E𝑘𝑘𝑘⟦𝑥1 𝑥2 (𝑥3 𝑥4 𝑥5)⟧ = 𝑥1 𝑥2 (𝜆𝑚.𝑥1 𝑥2 (𝜆𝑚.𝑥1 𝑥2 (𝜆𝑚.E𝑘𝑘𝑘⟦𝑚𝑚𝑚 [𝑥3 𝑥4 𝑥5]⟧)))
= 𝑥1 𝑥2 (𝜆𝑚.𝑥3 𝑥4 (𝜆𝑚.𝑥1 𝑥2 (𝜆𝑚.𝑥3 𝑥4 (𝜆𝑚.𝑥1 𝑥2 (𝜆𝑚.𝑥3 𝑥4 (𝜆𝑚.E𝑘𝑘𝑘⟦𝑚𝑚𝑚 [𝑚𝑚𝑚 [𝑥5]]⟧))))))

The result is multiple 𝑚𝑚𝑚 variables present in the same evaluation context, which
would clash in the result of the transform if not appropriately renamed.

As Minamide & Okuma state, this clash is not clear from the definition of the
optimised CPS transform presented by Danvy & Nielsen; our transform makes it
clear by how the introduced variables interact with continuations. This clarity is
important, as it enables us to thoughtfully design fresh variable name generation
which simplifies the simulation proof.

The transform of Fig. 6 introduces new variables in three places. The first,
the lambda abstraction 𝜆𝑥.𝑒 case for E , introduces 𝑘𝑘𝑘, which never clashes be-
cause the transform only ever considers at most one 𝑘𝑘𝑘 at a time, in the subscript
of the transform functions. The second, the arg continuation 𝐸⋆[𝑡𝑡𝑡 []] case for K ,
introduces 𝑛𝑛𝑛, which never clashes because it is immediately dispatched after its
introduction, rather than stashed in the transform parameters for later use. The
third, the fn continuation 𝐸⋆[[] 𝑒] case for K , introduces 𝑚𝑚𝑚, which is stashed in
the evaluation context 𝐸⋆[𝑚𝑚𝑚 []] passed to the next E transform, and hence may
only clash with other 𝑚𝑚𝑚 variables present in that evaluation context. What is
important is that, when transforming a lambda abstraction 𝜆𝑥.𝑒, we transform
its body without the surrounding evaluation context of the abstraction. Intu-
itively, this means that 𝑚𝑚𝑚 variables may only clash within a particular lexical
scope. Consequently, variable naming need only depend on the evaluation con-
text of the current scope, and the names of these introduced variables may also
be determined uniquely from a program fragment in simulation. We will use this
fact to build a simulation relation that can determine the name of introduced
variables without depending on an external variable counter or allocator.

The function fresh on the evaluation context 𝐸⋆ allocates names that are
fresh for the context, the simplest implementation being to count the number
of existing 𝑚𝑚𝑚 variables in the evaluation context 𝐸⋆. Including fresh variable

8



naming, the transform of 𝑥1 𝑥2 (𝑥3 𝑥4 𝑥5) becomes:

𝑥1 𝑥2 (𝜆𝑚0.𝑥3 𝑥4 (𝜆𝑚1.𝑚1 𝑥5 (𝜆𝑛.𝑚0 𝑛 𝑘)))𝑥1 𝑥2 (𝜆𝑚0.𝑥3 𝑥4 (𝜆𝑚1.𝑚1 𝑥5 (𝜆𝑛.𝑚0 𝑛 𝑘)))𝑥1 𝑥2 (𝜆𝑚0.𝑥3 𝑥4 (𝜆𝑚1.𝑚1 𝑥5 (𝜆𝑛.𝑚0 𝑛 𝑘)))

With this particular implementation of fresh, our transform (Fig. 6) is the
same as Danvy & Nielsen’s with an equivalent naming scheme (Fig. 5), as seen by
considering the expression transform on an expression in an empty evaluation
context E𝐾𝐾𝐾⟦𝑒⟧. We prove this property by induction over terms through the
mutually recursive definitions of Danvy & Nielsen’s transform functions E and
S , with an additional induction lemma establishing that our transform for an
application expression with an arbitrary evaluation context 𝐸⋆ is the same as
Danvy & Nielsen’s serious term S transform with a continuation generated by
our K transform, and an appropriate name counter index:

E𝐾𝐾𝐾⟦𝐸⋆[𝑒1 𝑒2]⟧ = S ⟦𝑒1 𝑒2⟧𝑖 K𝐾𝐾𝐾⟦𝐸⋆⟧ 𝑖 = fresh 𝐸⋆

We have mechanised this proof alongside our simulation proof.

4 Adjusting the semantics

Having analysed the nature of introduced variable name clashes in the optimised
transform, we now turn our attention back to the semantics which inspired the
analysis. In order to enable a suitable simulation relation from the side of the
source semantics, we divide the evaluation contexts of the source semantics ab-
stract machine into scopes, where environments are attached to particular scopes
rather than stack frames in an evaluation context.

This division reflects the structure of evaluation contexts in the optimised
CPS transform, where each transform function operates on a scoped evaluation
context 𝐸⋆ and an underlying continuation 𝐾𝐾𝐾 (which may be either the identity
continuation III or a continuation variable 𝑘𝑘𝑘). New scopes are introduced into CPS
by the transform for a lambda abstraction E𝐾𝐾𝐾⟦𝐸⋆[𝜆𝑥.𝑒]⟧ = C𝐾𝐾𝐾⟦𝐸⋆⟧𝜆𝑥𝑘.𝜆𝑥𝑘.𝜆𝑥𝑘.E𝑘𝑘𝑘⟦𝑒⟧,
where the expression transform is applied to the lambda body 𝑒 with an empty
evaluation context, but with an underlying continuation captured by variable 𝑘𝑘𝑘
which will eventually map to some continuation closure evaluated from K .

We hence may formulate evaluation contexts in the source semantics as a
nested sequence of scopes, where each scope has a distinct environment 𝜌 and
evaluation context 𝐸⋆. At the top level of the semantic state, the abstract ma-
chine operates on a sequence of scopes, with the innermost evaluation context
containing the control string in its hole 𝑂({𝜌}𝐸⋆[𝑐⋆]). We formalise this notion
of scopes and define the adjusted abstract machine semantics in Fig. 7. Each
step in the semantics corresponds to a step in the original CEK-machine with
the scopes flattened into one evaluation context, except for cbv-cont-id which
is a CEK-machine no-op.

We equip our new, environment-less evaluation contexts 𝐸⋆ with a parameter
𝛼, which corresponds to the class of terms that may reside in an arg stack
frame 𝑎 𝐸⋆, i.e. 𝛼 ranges over the term sets Val, Exp, etc. This parameterised

9



𝐸⋆
𝛼 ∶∶= []𝛼 ∣ 𝐸⋆

𝛼 𝑒 ∣ 𝑎 𝐸⋆
𝛼 ∈ Cont⋆

𝛼, 𝑎 ∈ 𝛼
𝑂 ∶∶= () ∣ {𝜌}𝐸⋆

Val 𝑂 ∈ Scope

𝑝 ∶∶= {𝜌}𝐸⋆
Val ∈ EnvCont

𝑐⋆ ∶∶= 𝑒 ∣ 𝑣 ∈ Ctrl⋆

Scope(EnvCont[Ctrl⋆]) ⟶⋆ Scope(EnvCont[Ctrl⋆])

𝑂({𝜌}𝐸⋆[𝑥]) ⟶⋆ 𝑂({𝜌}𝐸⋆[𝜌(𝑥)]) (cbv-exp-var)
𝑂({𝜌}𝐸⋆[𝜆𝑥.𝑒]) ⟶⋆ 𝑂({𝜌}𝐸⋆[Λ𝑥.{𝜌}𝑒]) (cbv-exp-lam)
𝑂({𝜌}𝐸⋆[𝑒1 𝑒2]) ⟶⋆ 𝑂({𝜌}𝐸⋆[[𝑒1] 𝑒2]) (cbv-exp-app)

𝑂({𝜌}𝐸⋆[[𝑣] 𝑒]) ⟶⋆ 𝑂({𝜌}𝐸⋆[𝑣 [𝑒]]) (cbv-cont-fn)
𝑂({𝜌}𝐸⋆[Λ𝑥.{𝜌′}𝑒 [𝑣]]) ⟶⋆ 𝑂({𝜌}𝐸⋆({𝜌′[𝑥 ↦ 𝑣]}[𝑒])) (cbv-cont-arg)

𝑂({𝜌′}𝐸⋆({𝜌}[𝑣])) ⟶⋆ 𝑂({𝜌′}𝐸⋆[𝑣]) (cbv-cont-id)

Fig. 7. Our adjusted semantics, defined on sequences of scopes

evaluation context allows us to share the same evaluation context construction
with the evaluation-context-based optimised transform, by instantiating it with
TrivTrivTriv, the set of trivial terms in the target domain, rather than Val, the set of
simple values used in the new source semantics. We may hence preserve our
optimised transform definition from Fig. 6 and assign the transform functions
types based on Cont, with types representing terms from the target domain in
bold to differentiate from source terms:

E𝐾𝐾𝐾 ∶ Cont⋆
TrivTrivTriv[Exp] → ExpExpExp

C𝐾𝐾𝐾 ∶ Cont⋆
TrivTrivTriv × TrivTrivTriv → ExpExpExp

K𝐾𝐾𝐾 ∶ Cont⋆
TrivTrivTriv → TrivTrivTriv

We will omit 𝛼 for the evaluation context 𝐸⋆ when it is clear from the context.

5 Simulation relation

Using our adjusted semantics, we construct a simulation relation between seman-
tic abstract machine states and CPS terms built from the optimised transform.
The relation is defined inductively over components of the semantic state.

Values and trivial terms. The aspect of the optimised transform that enables it
to eliminate administrative redexes is that it directly substitutes trivial terms
into continuation bodies, which corresponds to statically applying a continuation

10



to a trivial term at the point of transform through C𝐾𝐾𝐾⟦𝐸⟧𝑡𝑡𝑡. However, this static
substitution amounts to deferring of evaluation of these trivial terms until they
are used in a serious computation, whereas the corresponding reductions in the
source semantics involve the value evaluated from these terms. We must therefore
relate values from the source semantics to corresponding trivial terms in CPS to
prove simulation.

𝜌 ∼ 𝜌𝜌𝜌
cps-valΛ𝑥.{𝜌}𝑒 ∼ Λ𝑥.{𝜌}𝜆𝑘.Λ𝑥.{𝜌}𝜆𝑘.Λ𝑥.{𝜌}𝜆𝑘.E𝑘𝑘𝑘⟦𝑒⟧

∀𝑥 ∈ dom(𝜌).𝜌(𝑥) ∼ 𝜌𝜌𝜌(𝑥𝑥𝑥)
cps-env𝜌 ∼ 𝜌𝜌𝜌

𝑣 ∼ 𝜌𝜌𝜌(𝑥𝑥𝑥)
sim-triv-var𝑣 ; {𝜌}𝑥{𝜌}𝑥{𝜌}𝑥

𝜌 ∼ 𝜌𝜌𝜌
sim-triv-lamΛ𝑥.{𝜌}𝑒 ; {𝜌}𝜆𝑥𝑘.{𝜌}𝜆𝑥𝑘.{𝜌}𝜆𝑥𝑘.E𝑘𝑘𝑘⟦𝑒⟧

Fig. 8. Value relations.

Fig. 8 defines our simulation relations for values from the source seman-
tics. The ∼ relation, which we call CPS equivalence, relates equivalent semantic
constructs between the source and target semantics. The cps-val rule relates
closures to CPS closures, ensuring that their respective captured environments
are also related. The corresponding environment relation rule cps-env requires
all values mapped to by variables in the source semantics to be related to an
equivalently mapped value in the target semantics.

The simulation relation ;, which may be read as ‘simulated by’, relates
source semantics constructs to the target CPS terms that simulate those con-
structs. For values, the simulation relation is the relation described above be-
tween source semantic values and target semantic trivial terms. Whereas the
CPS equivalence relation ∼ on values is primarily used to ensure variables ap-
propriately map to CPS values that have already been evaluated and bound,
the simulation relation ; is used for values in the control string. Depending on
how the value was introduced, the relevant trivial term is either a variable by
sim-triv-var, or a literal lambda abstraction by sim-triv-lam. The simula-
tion relation ; includes the target semantics environment, in order to establish
the conditions for the simulating terms to evaluate to the correct values. It is
trivial to prove the lemma that these trivial terms evaluate under the included
environment to values satisfying the CPS equivalence relation:

Lemma 1 (Simulated values evaluate to CPS-equivalent values).

⊢ ∀ 𝑣𝜌 𝑡 𝑣𝜌 𝑡 𝑣𝜌 𝑡 𝑣 . 𝑣 ; {𝜌}𝑡{𝜌}𝑡{𝜌}𝑡 ⟹ ({𝜌}𝑡{𝜌}𝑡{𝜌}𝑡 ⟶ 𝑣𝑣𝑣 ∧ 𝑣 ∼ 𝑣𝑣𝑣)

Evaluation contexts. Our eventual simulation relation on semantic states is built
on the transform functions E , C , and K from Fig. 6, and these functions operate
on evaluation contexts parameterised by trivial terms in CPS 𝐸⋆

TrivTrivTriv. We must
therefore define a relation between the value-parameterised evaluation contexts

11



sim-cont-id[]Val ; {𝜌}{𝜌}{𝜌}[]TrivTrivTriv

𝐸⋆
Val ; {𝜌}{𝜌}{𝜌}𝐸⋆

TrivTrivTriv sim-cont-fn𝐸⋆
Val[[] 𝑒] ; {𝜌}{𝜌}{𝜌}𝐸⋆

TrivTrivTriv[[] 𝑒]

𝐸⋆
Val ; {𝜌}{𝜌}{𝜌}𝐸⋆

TrivTrivTriv 𝑣 ; {𝜌}𝑡{𝜌}𝑡{𝜌}𝑡
sim-cont-arg-triv𝐸⋆

Val[𝑣 []] ; {𝜌}{𝜌}{𝜌}𝐸⋆
TrivTrivTriv[𝑡𝑡𝑡 []]

𝐸⋆
Val ; {𝜌}{𝜌}{𝜌}𝐸⋆

TrivTrivTriv 𝑣 ∼ 𝜌𝜌𝜌(𝑚𝑖𝑚𝑖𝑚𝑖) 𝑖 = fresh 𝐸⋆
TrivTrivTriv sim-cont-arg-comp𝐸⋆

Val[𝑣 []] ; {𝜌}{𝜌}{𝜌}𝐸⋆
TrivTrivTriv[𝑚𝑖𝑚𝑖𝑚𝑖 []]

Fig. 9. Evaluation context relation.

of the source semantics 𝐸⋆
Val and the trivial CPS term-parameterised evaluation

contexts used by the transform (Fig. 9).
The empty context and fn stack frames 𝐸⋆[[] 𝑒] trivially relate to their coun-

terparts, as they do not contain any values. For arg stack frames 𝐸⋆[𝑣 []], there
are two possibilities for the stashed trivial term. The sim-cont-arg-triv rule
captures the case that the value was evaluated from a trivial term, and the re-
sultant arg context 𝐸⋆[𝑣 []] arises from a static application of a fn continuation
to a trivial term C𝐾𝐾𝐾⟦𝐸⋆[[] 𝑒]⟧ 𝑡𝑡𝑡.

The sim-cont-arg-comp rule instead captures the case that the value re-
sulted from a computation, i.e. an application. In this case, it is a dynamic ap-
plication of a fn continuation given by the closure evaluated from K𝐾𝐾𝐾⟦𝐸⋆[[] 𝑒]⟧
which gives rise to the resulting arg continuation. The computed value is bound
to the variable 𝑚𝑖𝑚𝑖𝑚𝑖 and, importantly, only depends on the context of the local
scope 𝐸⋆, as per the definition of K .

Note that, though the simulation relation ; usually relates source semantic
constructs to CPS terms with an attached environment, the relation on eval-
uation contexts only goes halfway, relating to similar evaluation contexts but
with CPS terms in their value slots. It is the CPS transform applied to these
evaluation contexts that produces the final simulating CPS terms, as we show
in the following sections.

Scopes. Consider how the value bound to 𝑚𝑖𝑚𝑖𝑚𝑖 in the relevant case of the evaluation
context relation above arises, as the result of a computation. In the optimised
transform, such values are bound to introduced variables such as 𝑛𝑛𝑛 and 𝑚𝑖𝑚𝑖𝑚𝑖 in
continuation closures evaluated from K , and arise from the application of an
underlying continuation 𝑘𝑘𝑘 being applied to a trivial term from the definition of C
for an empty evaluation context C𝑘𝑘𝑘⟦[]⟧ 𝑡𝑡𝑡 = 𝑘 𝑡𝑘 𝑡𝑘 𝑡. Note, then, that this application of
an underlying continuation must correspond to the case in the source semantics
of an empty evaluation context with an underlying scope:

𝑂({𝜌′}𝐸⋆({𝜌}[𝑣])) ⟶⋆ 𝑂({𝜌′}𝐸⋆[𝑣])
hence it is changing scope which results in a value becoming a computation. The
sim-scope-cont rule in Fig. 10 captures this correspondence by relating scopes
to underlying continuation closures evaluated from K which are bound to 𝑘𝑘𝑘.

12



sim-scope-id() ; {𝜌}I{𝜌}I{𝜌}I

𝑂 ; {𝜌′}𝐾{𝜌′}𝐾{𝜌′}𝐾
𝐸⋆

Val ; {𝜌′}{𝜌′}{𝜌′}𝐸⋆
TrivTrivTriv

𝜌′ ∼ 𝜌′𝜌′𝜌′

{𝜌′}{𝜌′}{𝜌′}K𝐾𝐾𝐾⟦𝐸⋆
TrivTrivTriv⟧ ⟶ 𝜌𝜌𝜌(𝑘𝑘𝑘)

sim-scope-cont𝑂({𝜌′}𝐸⋆
Val()) ; {𝜌}𝑘{𝜌}𝑘{𝜌}𝑘

Fig. 10. Scoping relation.

Semantic state relation. Combining the relations covered in this section, we
arrive at a full simulation relation which relates source semantic states to CPS
terms and an appropriate environment to simulate those semantic states. The
relation is given in Fig. 11.

𝑂 ; {𝜌}𝐾{𝜌}𝐾{𝜌}𝐾 𝜌 ∼ 𝜌𝜌𝜌 𝐸⋆
Val ; {𝜌}{𝜌}{𝜌}𝐸⋆

TrivTrivTriv sim-exp𝑂({𝜌}𝐸⋆
Val[𝑒]) ; {𝜌}{𝜌}{𝜌}E𝐾𝐾𝐾⟦𝐸⋆

TrivTrivTriv[𝑒]⟧

𝑂 ; {𝜌}𝐾{𝜌}𝐾{𝜌}𝐾 𝜌 ∼ 𝜌𝜌𝜌 𝐸⋆
Val ; {𝜌}{𝜌}{𝜌}𝐸⋆

TrivTrivTriv 𝑣 ; {𝜌}𝑡{𝜌}𝑡{𝜌}𝑡
sim-triv𝑂({𝜌}𝐸⋆

Val[𝑣]) ; {𝜌}{𝜌}{𝜌}C𝐾𝐾𝐾⟦𝐸⋆
TrivTrivTriv[]⟧ 𝑡𝑡𝑡

𝑂({𝜌′}𝐸⋆
Val()) ; {𝜌}𝑘{𝜌}𝑘{𝜌}𝑘 𝑣 ; {𝜌}𝑡{𝜌}𝑡{𝜌}𝑡

sim-comp𝑂({𝜌′}𝐸⋆
Val[𝑣]) ; {𝜌}𝑘 𝑡{𝜌}𝑘 𝑡{𝜌}𝑘 𝑡

Fig. 11. Semantic state relation.

The resultant CPS expressions of the simulation relation are constructed
from the definitions of the optimised CPS transform that we began with, each
rule corresponding to each transform function. The first, sim-exp, relates an
expression to its CPS transform by E in the corresponding evaluation context.
The last two rules relate values to either their static application by C (sim-triv)
or dynamic application (sim-comp) by the closure evaluated from K .

We choose to include sim-comp rather than attempt to use C with computed
values as well as trivial ones, because it allows us to always relate the control
string value to a directly related trivial term by the value simulation relation
instead of having to also consider the possibility of binding the related value
to an introduced variable such as 𝑛𝑛𝑛. As a result, this also allows us to ignore
introduced variables if they are not stashed in the evaluation context, i.e. we
never need to consider the presence of 𝑛𝑛𝑛 in the relation.

13



6 Simulation proof

Theorem 1 (Simulation).

⊢ ∀ 𝑂 𝑂′ 𝜌 𝜌′ 𝐸⋆ 𝐸⋆′ 𝑐⋆ 𝑐⋆′ 𝜌 𝑒𝜌 𝑒𝜌 𝑒 .
𝑂({𝜌}𝐸⋆[𝑐⋆]) ⟶⋆ 𝑂′({𝜌′}𝐸⋆′[𝑐⋆′]) ∧ 𝑂({𝜌}𝐸⋆[𝑐⋆]) ; {𝜌}𝑒{𝜌}𝑒{𝜌}𝑒
⟹
∃ 𝑛𝜌′ 𝑒′𝜌′ 𝑒′𝜌′ 𝑒′ . {𝜌}𝑒{𝜌}𝑒{𝜌}𝑒 ⟶𝑛 {𝜌′}𝑒′{𝜌′}𝑒′{𝜌′}𝑒′ ∧ 𝑂′({𝜌′}𝐸⋆′[𝑐⋆′]) ; {𝜌′}𝑒′{𝜌′}𝑒′{𝜌′}𝑒′

Static reductions. The majority of the cases of Theorem 1 for small steps in the
source semantics result in no reductions in the target semantics, which is consis-
tent with the nature of the optimised transform. For example, the cbv-exp-var
and cbv-exp-lam steps for evaluation of trivial terms to values correspond only
to expansions from the expression transform E𝐾𝐾𝐾⟦𝐸⋆[𝑡]⟧ to the static continuation
application transform C𝐾𝐾𝐾⟦𝐸⋆⟧ 𝑡𝑡𝑡 where the source trivial term 𝑡 evaluates to a
value which is simulated by the target trivial term 𝑣 ; {𝜌}𝑡{𝜌}𝑡{𝜌}𝑡. In effect, these steps
which do not involve dynamic reductions instead correspond to static reductions.

Another case where there are no reductions in the target semantics is for
the cbv-cont-id reduction, which is the application to a value of an empty
evaluation context with an underlying scope, as the simulation relation explic-
itly captures the introduction of a value as a computation by changing scope.
The semantic state 𝑂({𝜌′}𝐸⋆({𝜌}[𝑣])) relates either to {𝜌}{𝜌}{𝜌}C𝑘𝑘𝑘⟦[]⟧ 𝑡𝑡𝑡 which simply
expands {𝜌}𝑘 𝑡{𝜌}𝑘 𝑡{𝜌}𝑘 𝑡 without reduction, or to {𝜌+}𝑘 𝑡{𝜌+}𝑘 𝑡{𝜌+}𝑘 𝑡 with a different environment
which maps 𝑘𝑘𝑘 to the evaluation of K𝑘𝑘𝑘⟦[]⟧ under 𝜌𝜌𝜌, which is again just whatever
𝑘𝑘𝑘 maps do under 𝜌𝜌𝜌, hence we similarly arrive at {𝜌}𝑘 𝑡{𝜌}𝑘 𝑡{𝜌}𝑘 𝑡.

Computations. The simulation proof becomes interesting when considering a dy-
namic application of a continuation to a value, i.e. the value was a computation.
The starting point for such a step is from a semantic state under the sim-comp
rule, where the continuation closure in 𝑘𝑘𝑘 is applied to term. Let us consider the
case for the cbv-cont-fn step, where the evaluation context is 𝐸⋆[[] 𝑒]; by ap-
plying the corresponding closure in 𝑘𝑘𝑘, we arrive at the term E ⟦𝐸⋆[𝑚𝑖𝑚𝑖𝑚𝑖 [𝑒]]⟧ where
the value that the continuation was applied to is bound to 𝑚𝑖𝑚𝑖𝑚𝑖.

To satisfy the resultant simulation relation, we must ensure that the environ-
ment with the newly bound variable 𝜌𝜌𝜌[𝑚𝑖𝑚𝑖𝑚𝑖 ↦ 𝑣𝑣𝑣] is consistent with the conditions
on it imposed by the subrelations of the simulation relation, i.e. we need to
prove that various relations on values, evaluation contexts, etc. are monotonic
with respect to the additional binding to the introduced variable 𝑚𝑖𝑚𝑖𝑚𝑖. For the
environment CPS equivalence and value simulation relations, this is simple to
prove if the transform ensures that variables from the original semantics are
always distinct from introduced variables such as 𝑚𝑖𝑚𝑖𝑚𝑖, 𝑘𝑘𝑘, etc.

Lemma 2 (Environment relation monotonicity).

⊢ ∀ 𝜌𝜌 𝑥 𝑣𝜌 𝑥 𝑣𝜌 𝑥 𝑣 . (∀ 𝑥 .𝑥𝑥𝑥 ≠ 𝑥) ⟹ 𝜌 ∼ 𝜌𝜌𝜌 ⟹ 𝜌 ∼ 𝜌𝜌𝜌[𝑥𝑥𝑥 ↦ 𝑣𝑣𝑣]

14



Lemma 3 (Value simulation monotonicity).

⊢ ∀ 𝑣𝜌 𝑡 𝑥 𝑣𝜌 𝑡 𝑥 𝑣𝜌 𝑡 𝑥 𝑣 . (∀ 𝑥 .𝑥𝑥𝑥 ≠ 𝑥) ⟹ 𝑣 ; {𝜌}𝑡{𝜌}𝑡{𝜌}𝑡 ⟹ 𝑣 ; {𝜌{𝜌{𝜌[𝑥𝑥𝑥 ↦ 𝑣𝑣𝑣]}𝑡}𝑡}𝑡
Proof. Trivial.

Monotonicity for the scoping relation is similarly trivial, as that relation
depends only on the binding of 𝑘𝑘𝑘.
Lemma 4 (Scoping relation monotonicity).

⊢ ∀ 𝑂𝜌 𝐾 𝑥 𝑣𝜌 𝐾 𝑥 𝑣𝜌 𝐾 𝑥 𝑣 .𝑥𝑥𝑥 ≠ 𝑘𝑘𝑘 ⟹ 𝑂 ; {𝜌}𝐾{𝜌}𝐾{𝜌}𝐾 ⟹ 𝑂 ; {𝜌{𝜌{𝜌[𝑥𝑥𝑥 ↦ 𝑣𝑣𝑣]}𝐾}𝐾}𝐾
Proof. Trivial.

The interesting monotonicity lemma, and really the pin holding together
simulation for an optimised transform, is the monotonicity lemma for evaluation
contexts. Not only must introduced variables not clash with source variables, but
they must also not clash with the other introduced variables in the evaluation
contexts, i.e. other 𝑚𝑖𝑚𝑖𝑚𝑖 variables as per the sim-cont-arg-comp rule. Using the
implementation of fresh described in Section 3.4, which counts the number of 𝑚𝑚𝑚
variables in 𝐸⋆, the variable index must simply be at least fresh 𝐸⋆ to not clash.
We then arrive at the evaluation context lemma of monotonicity:
Lemma 5 (Evaluation context relation monotonicity).

⊢ ∀ 𝐸⋆
Val 𝜌𝜌𝜌 𝐸⋆

TrivTrivTriv 𝑥 𝑣𝑥 𝑣𝑥 𝑣 .
(∀ 𝑥 .𝑥𝑥𝑥 ≠ 𝑥) ∧ (∀ 𝑖 < fresh 𝐸⋆

TrivTrivTriv .𝑥𝑥𝑥 ≠ 𝑚𝑖𝑚𝑖𝑚𝑖)
⟹ 𝐸⋆

Val ; {𝜌}{𝜌}{𝜌}𝐸⋆
TrivTrivTriv ⟹ 𝐸⋆

Val ; {𝜌{𝜌{𝜌[𝑥𝑥𝑥 ↦ 𝑣𝑣𝑣]}}}𝐸⋆
TrivTrivTriv

Proof. By induction over the sim-cont rules.
This lemma is the crux of our proof. The deterministic nature of the in-

troduced variable names in the simulation relation, as a result of the local
evaluation-context-based fresh name generation in our reformulated transform,
enables us to prove monotonicity of the simulation relation with respect to the
binding of introduced variables, even with multiple 𝑚𝑚𝑚 variables already intro-
duced into the scope.

Application. The cbv-cont-arg step, on the evaluation context 𝐸⋆[𝑣 []], always
produces reductions in the target domain, regardless of if the continuation is
applied to a trivial or computed term. Indeed, to simulate the source semantics,
a completed reduction of an application expression in the source domain must
correspond to a reduction of an application in the target domain; the transform
produces the application 𝑡1 𝑡2𝑡1 𝑡2𝑡1 𝑡2 K𝐾𝐾𝐾⟦𝐸⋆⟧ in CPS which must be reduced.

By the simulation relation, 𝑡1𝑡1𝑡1 will always evaluate to a closure Λ𝑥.{𝜌}𝜆𝑘.Λ𝑥.{𝜌}𝜆𝑘.Λ𝑥.{𝜌}𝜆𝑘.E𝑘𝑘𝑘⟦𝑒⟧,
hence the application leads to the expression E𝑘𝑘𝑘⟦𝑒⟧ with 𝑥𝑥𝑥 and 𝑘𝑘𝑘 freshly bound
to the passed value and underlying continuation evaluated from K𝐾𝐾𝐾⟦𝐸⋆⟧ respec-
tively. The corresponding environment in the source semantics similarly has the
variable 𝑥 bound, and we may trivially prove that the environment relation is
preserved when binding a source variable.

15



Lemma 6 (Environment relation synchronisation).

⊢ ∀ 𝜌𝜌𝜌𝜌 𝑥 𝑣𝑣𝑣𝑣 . 𝑣 ∼ 𝑣𝑣𝑣 ⟹ 𝜌 ∼ 𝜌𝜌𝜌 ⟹ 𝜌[𝑥 ↦ 𝑣] ∼ 𝜌𝜌𝜌[𝑥𝑥𝑥 ↦ 𝑣𝑣𝑣]
Proof. Cases on 𝑥 ∈ dom(𝜌).

Before Lemma 6 may be applied, we must first apply the environment mono-
tonicity lemma, Lemma 2, to disregard the binding of 𝑘𝑘𝑘.

Note that, in the case that the continuation was applied to a computed
value, the value is bound to 𝑛𝑛𝑛 then very quickly dispatched. We must then also
apply the environment, scoping, and evaluation context monotonicity lemmas,
Lemmas 2, 4, and 5, to disregard the binding of 𝑛𝑛𝑛.

7 Conclusion

We have presented a reformulation of Danvy & Nielsen’s one-pass CPS trans-
form [9] in the style of Sabry & Felleisen’s optimised transform based on eval-
uation contexts [21]. Our transform highlights the nature of the name clashes
encountered in Minamide & Okuma’s mechanised correctness proof [15]: clashes
are local to the lexical scope, and may be reasoned about by the inclusion of
the offending variables in the local evaluation context. It is hence possible to use
a fresh variable generation method that depends only on the local evaluation
context, and allows introduced variable names to be uniquely determined by the
simulation relation.

We have proposed a modified CEK-machine to represent the source seman-
tics, with evaluation contexts rephrased as nested sequences of lexical scopes,
each with its own local environment and evaluation context. In combination
with our new transform, this semantics builds naturally into a simulation rela-
tion which can determine introduced variable names, that consequently enables
a straightforward simulation proof, with no need to consider 𝛼-equivalence. The
modified CEK-machine represents only a small departure from a typical CEK-
machine or alternative semantics and is easy to prove equivalent, hence we be-
lieve that it is a beneficial trade-off for the more difficult proof of 𝛼-equivalence.

The nature of our transform to use evaluation contexts from the semantics
should allow it to be applied more generally to richer languages. We would partic-
ularly like to investigate the use of an evaluation-context-based CPS transform
to languages with control operators such as call/cc or delimited continuations,
which would likely have interesting variable clashing and fresh naming challenges
for captured continuation variables.

Acknowledgments We thank the PADL 2026 reviewers for helpful comments.

References
1. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: A functional correspondence

between evaluators and abstract machines. In: Proceedings of the 5th ACM SIG-

16



PLAN International Conference on Principles and Practice of Declaritive Program-
ming. p. 8–19. PPDP ’03, Association for Computing Machinery, New York, NY,
USA (2003). https://doi.org/10.1145/888251.888254

2. Baker, H.G.: Cons should not cons its arguments, part ii: Cheney on the M.T.A.
SIGPLAN Not. 30(9), 17–20 (Sep 1995). https://doi.org/10.1145/214448.
214454

3. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: Proceedings of the 13th ACM SIGPLAN International Conference on Func-
tional Programming. p. 143–156. ICFP ’08, Association for Computing Machinery,
New York, NY, USA (2008). https://doi.org/10.1145/1411204.1411226

4. Danvy, O., Filinski, A.: Representing control: a study of the CPS transformation.
Mathematical Structures in Computer Science 2(4), 361–391 (1992). https://doi.
org/10.1017/S0960129500001535

5. Danvy, O.: On evaluation contexts, continuations, and the rest of computation (02
2004)

6. Danvy, O.: Defunctionalized interpreters for programming languages. In: Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional Program-
ming. p. 131–142. ICFP ’08, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1411204.1411206

7. Danvy, O., Filinski, A.: Abstracting control. In: Kahn, G. (ed.) Proceedings of the
1990 ACM Conference on LISP and Functional Programming, LFP 1990, Nice,
France, 27-29 June 1990. pp. 151–160. ACM (1990). https://doi.org/10.1145/
91556.91622, https://doi.org/10.1145/91556.91622

8. Danvy, O., Nielsen, L.R.: Defunctionalization at work. In: Proceedings of the 3rd
ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming. p. 162–174. PPDP ’01, Association for Computing Machinery, New
York, NY, USA (2001). https://doi.org/10.1145/773184.773202

9. Danvy, O., Nielsen, L.R.: A first-order one-pass CPS transformation. Theo-
retical Computer Science 308(1), 239–257 (2003). https://doi.org/10.1016/
S0304-3975(02)00733-8

10. Dargaye, Z., Leroy, X.: Mechanized verification of CPS transformations. In: Pro-
ceedings of the 14th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning. p. 211–225. LPAR’07, Springer-Verlag, Berlin, Heidel-
berg (2007)

11. Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine, and the λ-
calculus. In: Formal Description of Programming Concepts (1987), https://api.
semanticscholar.org/CorpusID:57760323

12. Kelsey, R.A.: A correspondence between continuation passing style and static single
assignment form. In: Papers from the 1995 ACM SIGPLAN Workshop on Interme-
diate Representations. p. 13–22. IR '95, Association for Computing Machinery, New
York, NY, USA (1995). https://doi.org/10.1145/202529.202532

13. Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., Adams, N.: Orbit: an op-
timizing compiler for Scheme. In: Proceedings of the 1986 SIGPLAN Symposium
on Compiler Construction. p. 219–233. SIGPLAN '86, Association for Computing
Machinery, New York, NY, USA (1986). https://doi.org/10.1145/12276.13333

14. Lasnier, P.Y., Yallop, J., Myreen, M.O.: Brack: A verified compiler for Scheme via
CakeML. In: Proceedings of the 15th ACM SIGPLAN International Conference on
Certified Programs and Proofs. CPP '26, Association for Computing Machinery, New
York, NY, USA (2026)

17

https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/214448.214454
https://doi.org/10.1145/214448.214454
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/773184.773202
https://doi.org/10.1016/S0304-3975(02)00733-8
https://doi.org/10.1016/S0304-3975(02)00733-8
https://api.semanticscholar.org/CorpusID:57760323
https://api.semanticscholar.org/CorpusID:57760323
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/12276.13333


15. Minamide, Y., Okuma, K.: Verifying CPS transformations in Isabelle/HOL. In: Pro-
ceedings of the 2003 ACM SIGPLANWorkshop on Mechanized Reasoning about Lan-
guages with Variable Binding. p. 1–8. MERLIN '03, Association for Computing Ma-
chinery, New York, NY, USA (2003). https://doi.org/10.1145/976571.976576

16. Paraskevopoulou, Z., Grover, A.: Compiling with continuations, correctly. Proc. ACM
Program. Lang. 5(OOPSLA) (Oct 2021). https://doi.org/10.1145/3485491

17. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Com-
put. 186(2), 165–193 (2003). https://doi.org/10.1016/S0890-5401(03)00138-X,
https://doi.org/10.1016/S0890-5401(03)00138-X

18. Plotkin, G.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science 1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

19. Pottier, F.: Revisiting the CPS transformation and its implementation (2006)
20. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.

In: Proceedings of the ACM Annual Conference - Volume 2. p. 717–740. ACM '72,
Association for Computing Machinery, New York, NY, USA (1972). https://doi.
org/10.1145/800194.805852

21. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. In:
Proceedings of the 1992 ACM Conference on LISP and Functional Programming.
p. 288–298. LFP '92, Association for Computing Machinery, New York, NY, USA
(1992). https://doi.org/10.1145/141471.141563

22. Steele, G.L.: Rabbit: A compiler for Scheme. Tech. rep., USA (1978)
23. Tian, Y.H.: Mechanically verifying correctness of CPS compilation. In: Proceedings

of the Twelfth Computing: The Australasian Theory Symposium - Volume 51. p.
41–51. CATS '06, Australian Computer Society, Inc., AUS (2006)

24. Xiao, Y., Sabry, A., Ariola, Z.M.: From syntactic theories to interpreters: Automating
the proof of unique decomposition. Higher Order Symbol. Comput. 14(4), 387–409
(Dec 2001). https://doi.org/10.1023/A:1014408032446

18

https://doi.org/10.1145/976571.976576
https://doi.org/10.1145/3485491
https://doi.org/10.1016/S0890-5401(03)00138-X
https://doi.org/10.1016/S0890-5401(03)00138-X
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/141471.141563
https://doi.org/10.1023/A:1014408032446

	A One-Pass CPS Transform with Simulation on the Nose

