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We study the biased random walk where at each step of a random walk a “con-
troller” can, with a certain small probability, fix the next step. This model was
introduced by Azar et al. [STOC1992]; we extend their work to the time dependent
setting and consider cover times of this walk. We obtain new bounds on the cover
and hitting times and make progress towards resolving a conjecture of Azar et al.
on maximising values of the stationary distribution. We also consider the problem
of computing an optimal strategy for the controller to minimise the cover time and
show this is NP-hard.

1 Introduction

Randomised algorithms have come to occupy a central place within theoretical computer science
and had a profound affect on the development of algorithms and complexity theory [14, 16].
Most randomised algorithms assume access to a source of unbiased independent random bits. In
practice, however, truly independent unbiased random bits are inconvenient, if not impossible,
to obtain. In practice we can generate pseudo-random bits on a computer fairly effectively [12]
but if computational resources are constrained the quality of these bits may suffer, in particular
they may be biased or correlated. Another reason to consider the dependency of randomised
algorithms on the random bits they use, other than imperfect generation, is that an adversary
may seek to tamper with a source of randomness to influence the output of a randomised
algorithm. This raises the natural question of whether relaxing the unbiased and independent
assumptions have a notable effect on the efficacy of randomised algorithms. This is a question
many researchers have studied since early in the development of randomised algorithms [3, 6, 19].

Motivated by this question Azar, Broder, Karlin, Linial and Phillips [4] introduced the ε-
biased random walk (ε-BRW). This process is a walk on a graph where at each step with
probability ε a controller can choose a neighbour of the current vertex to move to, otherwise a
uniformly random neighbour is selected. One can see this process from two different perspec-
tives. The first interpretation is to see the model as a simple random walk with adversarial noise,

Some results from this paper will appear in The 11th Innovations in Theoretical Computer Science Conference
(ITCS 2020), volume 151 of LIPIcs, pages 76:1–76:20 [11]
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that is with probability ε the random bits used to sample the next step become corrupted by
an adversary. In particular one may consider this as a toy model for any randomised algorithms
which uses their random bits to find a witness to the truth of a given statement, for example
[2, 18], here the objective of the adversary may be to prevent us finding a witness. For the
second interpretation on may view the ε-BRW as interpolating between a purely deterministic
routing algorithm and a purely random one. In particular say our task is to reach a given vertex
v, if ε = 1 and we have complete knowledge of the graph then can traverse a shortest path to v
in time at most |V |−1, if instead ε = 0 then the ε-BRW performs a simple random walk (SRW)
and the expected time to reach v is O

(
|V |3

)
. Otherwise if 0 < ε < 1 then we have a mix of the

two algorithms and our deterministic algorithm has to solve more difficult problem akin to the
single-destination shortest path problem with additional complexity added by being perturbed
by the random walk steps which occur with probability 1− ε.

Azar et al. consider two objectives for which a controller seeks to find an optimal strategy.
The first objective is to maximise weighted sums of stationary probabilities and the second
is to minimise the expected hitting time of a given set of vertices. The first problem can be
thought as assigning a payoff for the controller to be in a given state and a optimal strategy
maximises long term payoff. They were also interested in how much a controller can boost
elements of the stationary distribution and obtained bounds on the stationary probabilities
achievable. They also show that optimal strategies for maximising or minimising stationary
probabilities or hitting times can be computed in polynomial time. One can show, by appealing
to the theory of Markov Decision Processes (MDP) [8], that for both of these tasks there is an
optimal strategy which is independent of time, and indeed the stationary probabilities are only
well defined for time independent strategies. Thus Azar et al. only consider strategies which
are fixed at the start of the process.

We extend the work of Azar et al. [4] by studying the cover time of ε-biased random walks,
that is the expected time for the walk to visit every vertex of the graph. It is clear that for our
problem an optimal solution will often depend on the set of vertices already covered, and thus
unlike Azar et al. we are not in the time independent setting. To deal with this we introduce
the ε-time biased random walk (ε-TBRW) which is the same as the ε-BRW except that the
bias matrix may depend on the history of the process. Extending the second analogy for the
hitting time problem for the ε-BRW to the cover time problem for the ε-TBRW, if ε = 1 then
we can take a shortest walk visiting all vertices which has length at most 2(|V | − 1) and in the
ε = 0 case we have the cover time by a simple random walk which again takes O

(
|V |3

)
steps in

expectation. In contrast in the ε = 1 case the controller must now solve an NP-Hard problem
(shortest walk finds a Hamiltonian path if one exists) whereas before the controller solved the
shortest path problem, which is achievable in poly time. This motivates the difficulty of finding
an optimal strategy to cover the graph when 0 < ε < 1.

1.1 Our Results

In Section 3 we introduce a method we call the tree gadget, this is a representation of all paths
of a length of a given length from a fixed start vertex in a connected graph G by embedding
them into a tree. We also introduce a symmetric operator on real vectors which describes the
action of the ε-TBRW. The combination of the operator and tree gadget allows to us to show
that the ε-TBRW can increase the probabilities of rare events described by paths, that is:

(1) Let u ∈ V , t > 0, 0 6 ε 6 1 and S be a set of trajectories of length t from u. Then a
controller can increase the probability of being in S after t steps from u from p to p1−ε.
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This result can be applied to bound cover and hitting times in terms of the number of vertices
n, the maximum, minimum and average degrees dmax, dmin and davg, and trel := 1

1−λ2 which is
the relaxation time:

(2) For any vertex u there is a strategy so that the ε-TBRW started from u covers G in expected
time at most

O
(
n

ε
· davg
dmin

·
√
trel · log (trel log n)

)
.

(3) For any two vertices u, v ∈ V there is a strategy so that for the ε-TBRW the expected time
to reach v from u is at most

O

((
n · davg
dmin

)1−ε
· trel · lnn

)
.

In Section 4.1 we study how much the controller can affect the stationary distribution of any
vertex in our graph. Azar et al. [4] studied this problem and showed that for any bounded
degree graph a controller increase the stationary probability of any vertex from p to p1−Ω(ε).
By applying the results from Section 3 we can prove a stronger bound for graphs with small
relaxation time and subpolynomial degree ratio:

(4) In any graph a controller can increase the stationary probability of any vertex from p to
p1−ε+δ, where δ = ln (12 · trel · lnn) /| ln p|.

Motivated by a comment of Azar et al. stating that for regular graphs the interesting case is
when ε is not substantially larger than 1/d, we try to quantify the effect of a controller in this
regime. Establishing a number of bounds and counter-examples we conclude that:

(5) A controller cannot increase any entry in the stationary distribution of a uniformly dense
graph by more than a constant factor.

(6) In some regular graphs graphs of polynomial degree entries in the stationary distribution
can be increased by more than a polynomial factor, in others this is not possible.

In Section 5 we consider the complexity of finding an optimal stratgies to cover a graph in
minimum expected time. Azar et al. considered this problem for hitting times and showed that
there is a polynomial algorithm to determine an optimal strategy, we establish a dichotomy by
showing that the cover time problem is hard:

(6) Given the covered set X and position v of the walk at some time, it is NP-hard to choose
the next step from all neighbours of v so as to minimise the expected time for the ε-TBRW
to visit every vertex not in X, assuming an optimal strategy is followed thereafter.

Finally in Section 6 we conclude with some open problems.
We shall now formally describe the ε-Biased and ε-Time Biased random walk model and

introduce some notation.

2 Preliminaries

Thought this paper we shall always consider a connected n-vertex graph G = (V,E), which
unless otherwise specified, will be simple and unweighted.
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2.1 ε-Biased and ε-Time-Biased Random Walks.

Azar et al. [4], building on earlier work [5], introduced the ε-biased random walk (ε-BRW) on a
graph G. Each step of the ε-BRW is preceded by an (ε, 1−ε)-coin flip. With probability 1−ε a
step of the simple random walk is performed, but with probability ε the controller gets to select
which neighbour to move to. The selection can be probabilistic, but it is time independent.
Thus if P is the transition matrix of a random walk, then the transition matrix QεB of the
ε-biased random walk is given by

QεB = (1− ε)P + εB, (1)

where B is an arbitrary stochastic matrix chosen by the controller, with support restricted to
E(G). The controller of an ε-BRW has full knowledge of G.

Azar et al. focused on the problems of bias strategies which either minimise or maximise the
stationary probabilities of sets of vertices or which minimise the hitting times of vertices. Azar
et al. [4, Sec. 4] make the connection between Markov Decision processes and the ε-Biased walk,
in particular they observe that the two tasks they study can be identified as the expected average
cost and optimal first-passage problems respectively in this context [8]. The existence of time
independent optimal strategies for both objectives follow from Theorems 2 and 3 respectively
in [8, Ch. 3]. For this reason Azar et al. restrict to the class of unchanging strategies, where we
say that an ε-Bias strategy is unchanging if it is independent of both time and the history of
the walk.

It is clear that if we wish to consider optimal strategies to cover a graph (visit every vertex)
in shortest expected time then we must include strategies which depend on the set of vertices
already visited by the walk. Let Ht be the history of the random walk up to time t, that is the
sigma algebra Ht = σ (X0, . . . , Xt) generated by all steps of the walk up to and including time
t. Thus we consider a time-dependent version, where the bias matrix Bt may depend on the
time t and the history Ht; we refer to this as the ε-time-biased walk (ε-TBRW).

Proposition 2.1. For any connected graph G there is an optimal strategy for the ε-TBRW to
cover G which is fixed over any time interval between times when a new vertex is visited.

The result above, proven in Section 5, essentially says that there is an optimal strategy which
is unchanging between times when a new vertex is discovered. A consequence of Proposition
2.1 is the existence of an optimal strategy for covering the graph can be described by a set of
bias matrices {BU} where U is a connected subset of vertices, of which there are at most 2|V |.

Let CεTBv (G) denote the minimum expected time (taken over all strategies) for the ε-TBRW to
visit every vertex of G starting from v, and define the cover time tεTBcov (G) := maxv∈V C

εTB
v (G).

Similarly let HεB
x (y) denote the minimum expected time for the ε-biased walk to reach y, which

may be a single vertex or a set of vertices, starting from a vertex x. We do not need to provide
notation for the hitting times of the ε-TBRW since, as mentioned before, there is always a time-
independent optimal strategy for hitting a given vertex [4, Thm. 11], thus hitting times in the
ε-TBRW and ε-BRW are the same. We also define the hitting time tεBhit(G) := maxx,y∈V H

two
x (y).

Any unchanging strategy on a finite connected graph results in an irreducible Markov chain and
thus, when appropriate, we refer to its stationary distribution as π.

We shall introduce some more notation. For a graph G let dmax, dmin and davg denote the
maximum, minimum and average degree of G respectively. Let trel := 1

1−λ2 be the relaxation
time of G, where λ2 is the second largest eigenvalue of the transition matrix of the lazy random
walk (LRW) on G with loop probability 1/2.
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3 Hitting and Cover Times in Expanders

In this section we prove that the ε-TBRW has the power to increase the probability of certain
events. As a consequence of this result we obtain bounds on the cover and hitting times of the
ε-TBRW on a graph G in terms of n, the extremal and average degrees, and the relaxation
time.

To prove these results, we use the methods we developed in [10] to analyse the related choice
random walk (CRW). These methods will apply to the ε-TBRW with relatively minor changes;
the key additional contribution of the current paper is a new technical lemma which is specific
to the ε-TBRW and which appears in Section 3.1.

The basic approach used in [10] is, for a given graph G, to consider events which depend
only on the trajectory of the walker (that is, the sequence of vertices visited) up to some fixed
time t. We use a “tree gadget” to encode all possible trajectories. This then allows us to relate
the probability of a given event in the ε-TBRW to that for the SRW; the role of the technical
lemma is to recursively bound the effects of an optimal strategy for the ε-TBRW at each level
of the gadget.

Fix a vertex u, a non-negative integer t and a set S of trajectories of length t (here the length
is the number of steps taken). Write pu,S for the probability that running a SRW starting from
u for t steps results in a member of S. Let qu,S(ε) be the corresponding probability for the
ε-TBRW law, which depends on the particular strategy used. We prove the following result
relating qu,S(ε) to pu,S .

Theorem 3.1. Let G be a graph, u ∈ V , t > 0, 0 6 ε 6 1 and S be a set of trajectories of
length t from u. Then there exists a strategy for the ε-TBRW such that

qu,S(ε) > (pu,S)1−ε .

Here we typically think of S encoding such events as “the walker is in a set W ⊂ V at time t”
or “the walker has visited v ∈ V by time t”; however, the result applies to any event measurable
at time t. This theorem has the following consequences for the hitting and cover times of the
ε-TBRW.

Theorem 3.2. For any graph G, and any ε ∈ (0, 1),

tεTBcov (G) = O
(
n

ε
· davg
dmin

·
√
trel · log (trel log n)

)
.

Theorem 3.3. For any graph G, any x, y ∈ V and any ε ∈ (0, 1), we have

HεB
x (y) 6 12 · π(y)ε−1 · trel · lnn;

this bound also holds for return times. Consequently,

tεBhit(G) 6 12

(
n · davg
dmin

)1−ε
· trel · lnn.

Theorems 3.2 and 3.3 are analogues for the ε-TBRW of Theorems 6.1 and 6.2 of [10], and
their derivation from Theorem 3.1 follows that given in [10, Section 6.1] exactly.

The main difference between the two sets of results is that each relies on an operator which
describes the random walk process being studied. The operator used here is different to those
introduced in [10], and as a result so is the strength of the boosting obtainable. This highlights
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the versatility of the technique used to prove Theorem 3.1 in that it can be used to analyse
several different “non-deterministically” random processes such as the ε-TBRW and the CRW.

Theorem 3.2 has the following consequence for expanders; a sequence of graphs (Gn) is a
sequence of expanders if trel(Gn) = Θ(1).

Corollary 3.4. For every sequence (Gn)n∈N of n-vertex bounded degree expanders and any fixed
ε > 0, we have

tεTBcov (Gn) = O
(n
ε
· log logn

)
.

3.1 The ε-Max/Average Operation

In this subsection we shall introduce an operator which models the action of the ε-TBRW. We
shall then prove a bound on the output of the operator, this is used to show that the ε-TBRW
can boost probabilities indexed by paths.

For 0 < ε < 1 define the ε-max/average operator MAε : [0,∞)m → [0,∞) by

MAε (x1, . . . , xm) = ε · max
16i6m

xi +
1− ε
m
·
m∑
i=1

xi.

This can be seen as an average which is biased in favour of the largest element, indeed it is a
convex combination between the largest element and the arithmetic mean.

For p ∈ R \ {0}, the p-power mean Mp of non-negative reals x1, . . . , xm is defined by

Mp(x1, . . . , xm) =

(
xp1 + · · ·+ xpm

m

)1/p

,

and
M∞(x1, . . . , xm) = max{x1, . . . , xm} = lim

p→∞
Mp(x1, . . . , xm).

Thus we can express the ε-max/ave operator as MAε(·) = (1−ε)M1(·)+εM∞(·). We use a key
lemma, Lemma 3.5, which could be be described as a multivariate anti-convexity inequality.

Lemma 3.5. Let 0 < ε < 1, m > 1 and δ 6 ε/(1− ε). Then for any x1, . . . , xm ∈ [0,∞),

M1+δ (x1, . . . , xm) 6 MAε (x1, . . . , xm) .

Proof. We begin by establishing the following claim.

Claim. Let η ∈ (0, 1), and suppose a, b, c ∈ R+ with c = (1− η)a+ ηb. Then

Mc 6M
(1−η)a/c
a M

ηb/c
b . (2)

Proof of claim. Hölder’s inequality states for positive reals y1, . . . , ym and z1, . . . , zm that

y1z1 + · · ·+ ymzm 6
(
yp1 + · · ·+ ypm

)1/p(
zq1 + · · ·+ zqm

)1/q
,

where p, q > 1 satisfy 1/p+1/q = 1. The desired result follows by setting yi = x
(1−η)a
i , zi = xηbi ,

p = 1/(1− η), q = 1/η, dividing both sides by m and then taking cth roots. ♦
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Figure 1: Illustration of a (non-lazy) walk on a non-regular graph starting from u with the
objective of being at {y, z} at step t = 2. The probabilities of achieving this are given
in blue (left) for the SRW and in red (right) for the 1

3 -TBRW.

Applying (2), we have for any k > δ that

M1+δ 6M
1−δ/k
1+δ

1 M
(k+1)δ/k

1+δ

k+1

6
1− δ/k
1 + δ

M1 +
(k + 1)δ/k

1 + δ
M∞,

using the weighted AM-GM inequality and the fact that Mp 6M∞ for any p. Taking limits as
k →∞, noting that ε > δ/(1 + δ), gives the required inequality.

Remark. The dependence of δ on ε given in Lemma 3.5 is best possible. This can be seen by
setting x1 = 0 and xi = 1 for 2 6 i 6 m, and letting m tend to ∞.

3.2 The Tree Gadget for Graphs

In this section we show how the “tree gadget” of [10] can be used to prove Theorem 3.1. This
gadget encodes walks of length at most t from u in a rooted graph (G, u) by vertices of an
arborescence (Tt, r), i.e. a tree with all edges oriented away from the root r. Here we use bold
characters to denote trajectories, and r will be the length-0 trajectory consisting of the single
vertex u. The tree Tt consists of one node for each trajectory of length i 6 t starting at u, and
has an edge from x to y if x may be obtained from y by deleting the final vertex.

The proof of Theorem 3.1 will follow the corresponding proof in [10] closely, but we give a
full proof here in order to clarify the role played by the ε-max/average operator. As usual we
write d+(x) for the number of offspring in Tt of x, and Γ+(x) for the set of offspring of x. We
denote the length of the walk x by |x|. We shall extend our notation pu,S and qu,S(ε) to px,S
and qx,S(ε), defined to be the probabilities that extending x to a trajectory of length t, using
the laws of the SRW and ε-TBRW respectively, results in an element of S. Additionally, let
Wu(k) :=

⋃k
i=0{Xi} be the trajectory of a simple random walk Xi on G up to time k, with

X0 = u.

Proof of Theorem 3.1. For convenience we shall suppress the notational dependence of qx,S(ε)
on ε. To each node x of the tree gadget Tt we assign the value qx,S under the the ε-TB strategy
of biasing towards a neighbour in G which extends to a walk y ∈ Γ+(x) maximising qy,S . This
is well defined because both the strategy and the values qx,S can be computed in a “bottom
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up” fashion starting at the leaves, where if x ∈ V (Tt) is a leaf then qx,S is 1 if x ∈ S and 0
otherwise.

Suppose x is not a leaf. Then with probability 1 − ε we choose the next step of the walk
uniformly at random in which case the probability of reaching S from x is just the average of
qy,S over the offspring y of x, otherwise we choose a maximal qy,S . Thus the value of x is given
by the ε-max/average of its offspring, that is

qx,S = MAε

(
(qy,S)y∈Γ+(x)

)
. (3)

We define the following potential function Φ(i) on the ith generation of the tree gadget T :

Φ(i) =
∑
|x|=i

q1+δ
x,S · P [Wu(i) = x ] . (4)

Notice that if xy ∈ E(Tt) then

P [Wu(|y|) = y ] = P [Wu(|x|) = x ] /d+(x).

Also since each y with |y| = i has exactly one parent x with |x| = i− 1 we can write

Φ(i) =
∑
|x|=i−1

∑
y∈Γ+(x)

q1+δ
y,S ·

P [Wu(i− 1) = x ]

d+(x)
. (5)

We now show that Φ(i) is non-increasing in i. By combining (4) and (5) we can see that the
difference Φ(i−1) − Φ(i) is given by

∑
|x|=i−1

q1+δ
x,S −

1

d+(x)

∑
y∈Γ+(x)

q1+δ
y,S

P [Wu(i− 1) = x ] .

Recalling (3), to establish Φ(i−1)−Φ(i) > 0 it is sufficient to show the following inequality holds
whenever x is not a leaf:

MAε

(
(qy,S)y∈Γ+(x)

)1+δ
>

1

d+(x)

∑
y∈Γ+(x)

q1+δ
y,S .

By taking (1 + δ)th roots this inequality holds for any δ 6 ε/(1 − ε) by Lemma 3.5, and thus
for δ in this range Φ(i) is non-increasing in i.

Observe Φ(0) = q1+δ
u,S . Also if |x| = t then qx,S = 1 if x ∈ S and 0 otherwise, it follows that

Φ(t) =
∑
|x|=t

q1+δ
x,S · P [Wu(t) = x ] =

∑
|x|=t

1x∈S · P [Wu(t) = x ] = pu,S .

Thus since Φ(t) is non-decreasing q1+δ
u,S = Φ(t) > Φ(0) = pu,S . The result for the ε-TBRW follows

by taking δ = ε/(1− ε).
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4 Increasing and Decreasing Stationary Probabilities

In this section we shall consider a problem of how much an unchanging strategy can affect the
stationary probabilities in a graph. Azar et al. studied this question and made an appealing
conjecture. Our result on the hitting times of the ε-BRW will allows us to make progress towards
this conjecture. We also derive some more general bounds on stationary probabilities for classes
of Markov chains which include certain regimes for the ε-BRW, and tackle the question of when
the stationary probability of a vertex can be changed by more than a constant factor.

4.1 A Conjecture of Azar et al. for the ε-BRW

Azar, Broder, Karlin, Linial and Phillips make the following conjecture for the ε-BRW [4,
Conjecture 1].

Conjecture 4.1 (ABKLP Conjecture). In any graph, a controller can increase the stationary
probability of any vertex from p to p1−ε.

This conjecture fails for the graph K2, as no strategy for the ε-BRW can increase the station-
ary probability over that of a simple random walk. This motivates weakening the conjecture
by replacing p1−ε by p1−ε+on(1), however this fails for the star on n vertices, and non-bipartite
counterexamples may be obtained by adding a small number of extra edges to the star. In
each of these counter examples there is a vertex with constant stationary probability, for large
graphs this can only happen if there is a large degree discrepancy. We believe the following
should hold.

Conjecture 4.2. In any graph a controller can increase the stationary probability of any vertex
from p to p1−ε+δ, where δ = O(1/| log p|).

Azar et al. prove a weaker bound of p1−O(ε) for bounded-degree regular graphs. As a corollary
of Theorem 3.3 we confirm Conjecture 6.1 for any graph where trel is subpolynomial in n. Our
techniques are different to those of Azar et al. and allow us to cover a larger class of graphs,
including dense graphs as well as sparse ones, as well as getting closer to the conjectured bound.

Theorem 4.3. In any graph a controller can increase the stationary probability of any vertex
from p to p1−ε+δ, where δ = ln (12 · trel · lnn) /| ln p|.

Proof. By Theorem 3.3 for each vertex v there exists a strategy so that the return time to
v is at most 12 · π(v)ε−1 · trel lnn. Let q denote the stationary probability of v for this ε-
B walk. Then as stationary probability is equal to the reciprocal of the return time by [15,
Prop. 1.14] we have q > π(v)1−ε/(12trel lnn), for the simple random walk p = π(y). If we let
δ = ln (12trel lnn) /| lnπ(y)| then we have

q/p1−ε+δ >
π(v)1−ε

12trel lnn
· π(y)−δ

π(v)1−ε =
exp

(
− lnπ(y) · ln(12·trel·lnn)

| lnπ(y)|

)
12trel lnn

= 1.

The dependence of δ on | ln p| in Corollary 4.3 imposes the condition that any vertex you
wish to boost must have sub-polynomial degree. This condition is tight in some sense as no
stationary probability bounded from below can be boosted by more than a constant factor.
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4.2 Approximation by Edge-Weighted Graphs

Let G = (V,E) be any connected, undirected graph with degree bound d 6 C. We will associate
to every edge a positive weight given by the function w : E → R+. We consider a random walk
that picks an incident edge with probability proportional to its weight. Recall that the stationary

distribution of this walk is given by π(x) =
∑
y∼x w(y,x)

2W , where W :=
∑
{r,s}∈E(G)w(r, s) is the

total sum of weights assigned.
Fix a vertex u ∈ V and let −1 < a <∞. We consider the weight function given by

w(r, s) = (1 + a)max{d(u,r),d(u,s)} . (6)

Note that this particular weight function satisfies the following property:

∀u, v, w : {u, v}, {u,w} ∈ E(G) :
w(u, v)

w(u,w)
∈ {1 + a, (1 + a)−1, 1}. (7)

Proposition 4.4. Let −1 < a <∞, and let G be an edge-weighted graph whose weights satisfy
(7). Then, provided ε > −a if a 6 0 and ε > a/(1 + a) if a > 0, the ε-BRW can emulate the
walk given by those weights.

Proof. It suffices to prove that we may emulate a step of the walk from any given vertex x. If
all edges meeting x have the same weight, we simply “bias” towards the uniform distribution
on neighbours of x. Otherwise a 6= 0, d = d(x) > 2 and there are exactly two weights, w1

and w2, incident to x, which satisfy w1 = (1 + a)w2. Suppose there are k incident edges of
weight w1 and d − k of weight w2; clearly 1 6 k 6 d − 1. Now we need to construct a bias
matrix B which will satisfy the walk probabilities given by (6). Note that if w(xy) = w1 then
px,y = w1/(kw1 + (d− k)w2) = (1 + a)/(ak + d) and otherwise px,y = 1/(ak + d).

We first consider the case a > 0, i.e. w1 > w2. It is sufficient to assume ε = a
1+a , since if it is

larger we may use the ε-BRW to emulate the a
1+a -BRW. In this case set

Bx,z =

{
da+2d−k
dak+d2

if w(xz) = w1

d−k
dak+d2

if w(x, z) = w2.

This gives
∑

z∼xBx,z = 1, all entries are positive and

px,z =
a

1 + a
·Bx,z +

1

1 + a
· 1

d
=

{
a+1
ka+d if w(xz) = w1

1
ka+d if w(x, z) = w2.

The case c < 0 may be reduced to the previous case by replacing c with c′ = −c
1+c , noting that

ε > −c is equivalent to ε > c′

1+c′ .

Theorem 4.5. Let G be any graph such that dmax > 3 and let ε > 0. Then

(i) a controller for the ε-BRW can increase the stationary probability of any vertex from p to
p1−ε̃, where

ε̃ =
− ln(1− ε)
ln(dmax − 1)

(
1− ln(n · p)

lnn

)
> 0.

(ii) If dmax 6 n1/4 then a controller for the ε-BRW can decrease the stationary probability of

10



any vertex from p to p1+ε̃, where

ε̃ = − ln(1− ε)
(

1

ln dmax
− 3

lnn

)
− 1

lnn
> 0.

Proof. For (i), consider the weighting scheme w(r, s) = (1− ε)max{d(u,r),d(u,s)}. Observe that
there are at most dmax(dmax − 1)i−1 vertices at distance exactly i from u (and also edges from
vertices at distance i − 1 to those at i). Thus if we consider the total weight W of the graph
then for any r,

W 6
r∑
i=1

dmax(dmax − 1)i−1 · (1− ε)i−1 + n · davg · (1− ε)r

6 (2(dmax − 1)r + n · davg) · (1− ε)r.

Thus if we let r = bln(n)/ ln(dmax−1)c thenW 6 davg·n1+κ, where κ = ln(1−ε)/ ln(dmax−1) < 0.
For any u ∈ V it follows that π′(u) > d(u)/davg · n1+κ = n · π(u)/n1+κ and so for δ > 0,

π′(u)

π(u)1+κ+δ
>
n · π(u)

n1+κ
· n1+κ+δ

(n · π(u))1+κ+δ
= (n · π(u))−κ−δ · nδ > 1,

where the final inequality holds by taking δ = |κ ln(nπ(u))|/ lnn.
For (ii), use the weighting scheme

w(r, s) =

(
1 +

ε

1− ε

)max{d(u,r),d(u,s)}
= (1− ε)−max{d(u,r),d(u,s)} .

Note that the total number of edges of weight at most (1− ε)−r+1 in any graph of max degree
dmax is at most

∑r
i=1 dmax(dmax − 1)i−1 6 3(dmax − 1)r. Thus, setting r = blogdmax−1(n/300)c,

there are at most n/100 such edges. It follows that W > (davg − 1/100)n · (1− ε)−r > (davg −
1/100) ·n1+κ, where κ = − ln(1−ε)

lnn

⌊
ln(n/300)
ln(dmax−1)

⌋
. Thus for any u ∈ V we have π′(u) 6 d(u)/(davg−

1/100) · n1+κ) and so for δ > 0

π(u)1+κ−δ

π′(u)
>
davg(1− 1

100davg
) · n1+κ

d(u)
· (n · π(u))1+κ−δ

n1+κ−δ >
99

100
· d(u)κ−δ

dκ−δavg

· nδ. (8)

If d(u) > davg we can take δ = O(1/ log n) and (8) is greater than one, otherwise let δ =

(−2 · κ ln (n · π(u)) + 1) / ln(n). Now κ = − ln(1−ε)
lnn

⌊
ln(n/300)
ln(dmax−1)

⌋
> − ln(1 − ε)

(
1

ln dmax
− 1

lnn

)
thus −κ ln(nπ(u)) 6 κ ln dmax. It follows that p can be decreased to p1+ε̃ where

ε̃ = κ− δ > − ln(1− ε)
(

1

ln dmax
− 3

lnn

)
− 1

lnn
.

Corollary 4.6. Let G be any graph satisfying dmax 6 n1/4 and ε > 0. Then a controller for
the ε-BRW can increase the stationary probability of any vertex from p to p1−3ε/(4 ln dmax) and
decrease it from p to p1+ε/(4 ln dmax)−1/ lnn .

Proof. The statement holds for paths & cycles and for graphs such that dmax > 3 this follows
from Theorem 4.5 since − ln(1− x) > x for any x 6 1.
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4.3 Bounds on Stationary Probabilities

In this section we shall focus on a class of (non-nessesarily reversible) Markov chains which
resemble a simple walk on an almost regular graph.

Let Q be a transition matrix supported on G. For c, C such that 0 < c 6 1 6 C <∞ we say
that Q is a (c, C)-simple walk on G if for every edge uv ∈ E(G),

c

d(u)
6 qu,v 6

C

d(u)
.

We begin with a simple result for reversible (c, C)-simple walks to motivate what we wish to
obtain in the non-reversible case.

Proposition 4.7. Let G = (V,E) be a connected, d-regular edge-weighted graph with diameter
D. Then the following holds for any (c, C)-Simple walk:

πmax 6 C
D · πmin and πmin > c

Dπmax.

Proof. By reversibility π(x)px,y = π(y)py,x for all x, y ∈ V . Thus let v0, vd ∈ V satisfy π(v0) =
πmax and π(vd) = πmin. There exists a path v0, v1, . . . , vd, where d 6 D, thus

π(v0) =
pv1,v0
pv0,v1

π(v1) =
pv1,v0
pv0,v1

· · ·
pvd,vd−1

pvd−1,vd

π(vd) 6 C
Dπ(vd),

it follows that πmax 6 CD · πmin. Similarly on can show that πmin > cDπmax .

Proposition 4.7 shows that the stationary distributions of reversible (c, C)-simple walks on
almost regular graphs with constant diameter behave well. We shall prove an analogous result
for stationary distributions of (c, C)-simple walks which are not reversible, where diameter is
replaced by mixing time. Let tmix be the mixing time given by

tmix = inf

{
t : max

x∈V
‖p(t)
x − π‖TV 6

1

e

}
where ‖µ− ν‖TV =

1

2

∑
y∈V
|µ(y)− ν(y)|.

Note that tmix = O
(

logn
1−λ2

)
by [15, Thm. 12.3]. We shall also need the separation time, defined

tsep = inf

{
t : max

x,y∈V

∣∣∣∣∣ p(t)
x,y

πP (y)
− 1

∣∣∣∣∣ 6 1

e

}
.

Proposition 4.8. Let G be an almost-regular graph, where γ is such that davg/γ 6 d(u) 6 γdavg
for all u ∈ V . Let Q be a (c, C)-simple walk on G with stationary distribution πQ. Finally, let
τ = 4tmix, where tmix is the mixing time of the lazy random walk on G. Then for any u ∈ V

cτ

2γn
6 πQ(u) 6

2γCτ

n
.

Proof. Given a Markov chain H we call (I+H)/2 the lazy version of H, where I is the identity
matrix. Let P be the transition matrix of a lazy random walk on G with stationary distribution
πP . Since making a Markov Chain lazy does not alter the stationary distribution, we may take
the lazy version of Q. Now we have made Q lazy switching from P τ to Qτ can increase (resp.
decrease) the probabilities of any fixed trajectory by a factor of at most Cτ (resp. cτ ).

12



By monotonicity of the separation distance, e−1
e πP (v) 6 p

(τ)
u,v 6 e+1

e πP (v) for any u, v ∈ V
and τ > tsep. Recall also that for any Markov Chain P the stationary distribution satisfies

πP · P τ =
∑

v∈V πP (v) · p(τ)
v,u = πP . Thus for τ = tsep we have

πQ(u) =
∑
v∈V

πQ(v) · q(τ)
v,u

6 Cτ ·
∑
v∈V

πQ(v) · p(τ)
v,u

6 Cτ · e+ 1

e
· dmax

ndavg
·
∑
v∈V

πQ(v)

6 2Cτγ/n.

The lower bound is shown analogously but with constant cτ (e−1)/(eγ) > cτ/(2γ). Noting that
tsep 6 4tmix by [1, Thm. 4.6], the result follows.

Although the main focus of this section is on increasing stationary probabilities we shall also
consider by how much a controller can reduce stationary probabilities.

Corollary 4.9. For G and any ε < 1/(5tmix) a controller cannot decrease the stationary prob-
ability of any almost regular graph by more than a constant factor.

Proof. Observe that the ε-TBRW is (c, C)-simple with c = 1−ε. It follows from Proposition 4.8
that for any πQ(v)/πP (v) > (1− ε)τ/(2γ2) for τ = 4tmix, where γ <∞ constant since the graph
is almost regular. By the Bernoulli inequality (1− ε)τ > 1− ετ , and the result follows.

Proposition 4.10. Let Q be a (c, C)-simple walk on G with stationary distribution πQ. Then
maxu∈V πQ(u) 6 C/dmin.

Proof. For any u ∈ V we have

π(u) =
∑
v∈V

π(v)pv,u 6
C

dmin

∑
v∈V

π(v) 6
C

dmin
.

4.3.1 Everywhere Dense Graphs

We say that a graph is everywhere dense if has minimum degree Ω(n).

Lemma 4.11. Any n vertex graph with minimum degree dmin has diameter at most 3n/dmin.

Proof. Let ρ be a shortest path between two vertices at distance diam(G). Then
∑

x∈V (P ) d(x) =∑
y∈V (G)|Γ(y) ∩ V (ρ)|. Since ρ is a shortest path, each vertex y is adjacent to at most three

vertices of ρ. It follows that dmin diam(G) 6 3n, which gives the required bound.

Lemma 4.11 in combination with Proposition 4.7 shows that the ratio dmin : dmax of the
extremal stationary distribution of reversible (c, C)-Simple walks on everywhere dense graphs
is bounded. We wish to prove the same statement for non-reversible (c, C)-simple walks; notice
that this result will cover a class of graphs where the mixing time can be as large as Θ(n2).
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Theorem 4.12. For any graph G with minimum degree dmin > α · n for some constant α > 0
then any (c, C)-simple walk satisfies κ

n 6 π(u) 6 C
αn for any u ∈ V , where κ(c, C, α) > 0.

The proof of this will make use of the following two results from a recent unpublished work
by Patel, Sauerwald and Sudholt [17]:

Theorem 4.13. Let G = (V,E) be a graph on n vertices with minimum degree δ > αn for

some constant 0 < α 6 1 and let r0 := 2r0+1 where r0 :=
⌈
log(1+(α/8))

(
1
α

)⌉
. Then there exist

constants cs, cd, β > 0, all depending only on α, and a partition of V into k 6 r0 disjoint sets
U1, U2, . . . , Uk with the following properties:

(i) for every 1 6 i 6 k, |Ui| > csn;

(ii) for every 1 6 i 6 k, δUi > cdn; and

(iii) for every 1 6 i 6 k, the induced subgraph G[Ui] of Ui is a β-expander.

The above theorem says there is a decomposition of any uniformly dense graph into a finite
collection of uniformly dense expanders. The following theorem says that any one of these
expanders will have small mixing time.

Theorem 4.14. For every graph G = (V,E) with minimum degree α · n for some constant
α > 0, the mixing time tmix(G) of the lazy random walk on G satisfies

tmix(G) = O

(
1

Φ(G)

)
.

We shall also need the following basic lemma.

Lemma 4.15. Let A = {v ∈ V : π(v) > κ/n} and πmax 6 C
n for some C, κ. Then |A| > 1−κ

C−κn.

Proof. Observe that

1 =
∑
x∈A

π(x) +
∑
y∈Ac

π(y) 6
C

n
|A|+ κ

n
(n− |A|) ,

rearranging this gives n(1− κ) 6 |A|(C − κ), the result follows.

In order to prove Theorem 4.12 we need a few more definitions. For two sets A,B ⊂ V the
ergodic flow Q(A,B) is given by

Q(A,B) =
∑

a∈A,b∈B
π(a)pa,b. (9)

For any set A and any Markov chain P , we have Q(A,Ac) = Q(Ac, A). Let

ρU1(u) =

∑
v∈U1

π(v)qv,u

π(U c1)
for u ∈ U c1 , (10)

be the ergodic exit distribution from U1 [1, (3.65)].

Proof of Theorem 4.12. Recall that G = (V,E) is an everywhere-dense graph, where the mini-
mum degree satisfies δ > α · n for some constant α > 0 and Q is a (c, C)-simple random walk
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for some 0 < c 6 1 and 1 6 C < ∞. The upper bound follows from Proposition 4.10, since if
dmin > αn then this shows that maxu∈V πQ(u) 6 C/αn. The proof of the lower bound is more
technical, let κ, c1, c2, · · · > 0 and C1, C2 · · · <∞ be constants defined and used later.

We shall now begin the proof for the lower bound. By Theorem 4.13 G has a decomposition
into uniformly dense induced expanders G[U1], . . . , G[Uk], where k(α) < ∞. We shall show by
induction on the number of expanders that each has minimum stationary probability κ/n.

Claim. If there are c1 · n vertices with π(u) > c2/n in a graph with a decomposition into
uniformly dense induced expanders then at least one has minimum stationary probability at
least c3/n.

Proof of claim. By the pigeonhole principal, there must be at least one expander G[Ui] con-
taining a subset U ⊆ Ui of vertices with stationary distribution at least c2/n where |U | > c4n.
Now since G[Ui] is an expander by Theorem 4.14 the mixing time tmix of G[Ui] is bounded
and so is the separation time, say tsep 6 C1. Thus for any u, v ∈ Ui the LRW satisfies

p
(C1)
u,v > (1−1/e)π(v) > α/(2n), recall also that sinceQ is (c, C)-simple we have q

(C1)
u,v > cC1 ·p(C1)

u,v .
Thus for any u ∈ Ui,

π(u) =
∑
v∈V

π(v) · P (C1)
v,u >

∑
x∈U

c2

n
· c

C1α

2n
> c4n ·

c2

n
· c

C1α

2n
>
c3

n
,

for some c3 > 0 as claimed. ♦

Now, for the base case we know that πmax 6 C/(αn) and so by Lemma 4.15 there are at
least c5n vertices v ∈ V such that π(v) > c6/n. By the claim there is at least one induced
expander with minimum stationary probability at least c7/n. If there was only one expander in
the decomposition of G we are done, so assume there was more than. Let A ⊂ V be a set with
minx∈A π(x) > c7 · n and Ac = U1 ∪ · · · ∪ U` be the remainder of G where G[U1], . . . , G[U`] are
uniformly dense expanders.

Thus if we start the random walk Q at any vertex u ∈ Ac then, since every vertex in G[Ac]
has degree at least c8 ·n, with probability at least c8 the walk will not go back to A immediately.
Furthermore, since qx,y 6 C/αn for all x, y ∈ V , for any t > 1 the random walk’s distribution

q
(t)
u,· is always bounded by C2/n pointwise. Hence at any time t > 1, the probability for the walk

to return to A is upper bounded by∑
x∈Ac

q(t)
u,x · qx,A 6

∑
x∈Ac

C2

n
· C degA(x)

deg(x)
6
C2

c8
· C|E(A,Ac)|

n2
= C3 · Φ(A).

It follows that Eu[τA] > c8/(C3Φ(A)) = c9/Φ(A) for any u ∈ Ac, and thus for any probability
distribution µ on Ac we have Eµ[τA] > c9/Φ(A). In particular let ρA be the ergodic exit
distribution from A (10) then EρA [τA] > c9/Φ(A), however EρA [τA] = π(Ac)/Q(Ac, A) by [1,
(3.69)], where Q(A,Ac) is the ergodic flow (9). Thus

π(Ac)/Q(Ac, A) > c9/Φ(A). (11)

Observe that by the definition of ergodic flow

Q(A,Ac) =
∑
u∈A

∑
v∈Ac

π(u) · qu,v >
∑
u∈A

∑
v∈Ac

c7

n
· c · 1(uv ∈ E)

n
> c10Φ(A). (12)
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By combining (11) and (12) we have π(Ac) > c9 · c10. Thus since πmax 6 C/(αn) there at least
c11n vertices with stationary distribution at least c12/n in Ac and thus by the claim at least
one of the induced expanders G[U1], . . . , G[U`] has minimum stationary probability c13/n. Now
we can just redefine the set A as the union of the (former) set A and the new expander(s) and
continue this argument inductively until we have considered all expanders.

The Markov chain exhibited in the proof of Theorem 4.12 satisfies an “approximate” notion
of reversibility, i.e., for any u, v ∈ V we have both πu ≈ πv as well as Pu,v ≈ Pv,u. Note
that if we drop the assumption that Pu,v ≈ Pv,u and only assume that every pair u, v satisfies
Pu,v = O(1/n), then it is possible to construct chains with πmin = O(1/n2). For example, take
two cliques of size n/2, and add n/2 directed edges from one clique to the other, but only add
one directed edge in the opposite direction.

4.4 Biasing in d-Regular Graphs with ε = Θ(1/d)

Referring to the ε-BRW on d-regular graphs, Azar et al. [4] state,

The interesting situation is when ε is not substantially larger than 1/d; otherwise,
the process is dominated by the controller’s strategy.

Recall the AKBLP Conjecture states that a controller can boost the stationary probability of
any vertex from p to p1−ε and notice that for d-regular graphs with d = ω(log n) this boost
from p to p1−ε does not change the stationary probabilities by more than a constant factor. For
this reason we shall focus on the following question for d-regular graphs with ε = Θ(1/d) of

When can we change the stationary distribution by more than a constant factor? (13)

As noted when d = ω(log n) this question is stronger than the AKBLP conjecture and we think
it is quite natural. We begin with a corollary of Proposition 4.12 which shows the answer to
(13) is negative for uniformly dense graphs.

Corollary 4.16 (Corollary of Theorem 4.12). For any graph G with minimum degree dmin > α·n
for some constant α > 0 then controller of an ε-biased walk with ε = O(1/n) cannot change the
stationary distribution by more than a constant factor.

Proof. The ε-BRW is a (c, C)-simple walk in this regime, for some 0 < c,C <∞.

We now consider graphs of lower degree. Our first example shows that for d = poly(n) being
arbitrarily close to linear, there are graphs for which we can answer (13) in the affirmative.
These graphs do not only have the largest possible diameter ≈ n/d, they also feature several
bottlenecks.

Proposition 4.17. Fix any 0 < α < 1 and let d = nα, ε = Θ(1/d). Then there exists a
d-regular graph for which the stationary distribution p of any given vertex can be boosted by the
ε-TB random walk to Ω(pα).

Proof. Let d = nα and ` = n1−α and consider the (`,Kd,d)-ring pictured in Figure 2. The
(`,Kd,d)-ring has N = 2`(d + 1) many vertices and is d + 1-regular graph, thus in our case
N ∼ 2n.

Let x, u be the end points of one of the edges which connects two Kd,d’s, and u1, . . . , ud be
the vertices in the Kd,d attached to u (see picture). Assuming that x is closer to the target
vertex we wish to boost the ε-TB strategy is clear: we should prefer the walk at u to visit x
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and thus set Bu,x = 1 and Bu,ui = 0, for all 1 6 i 6 d where B is the bias matrix. Now we see
that

w(u, x)

w(u, ui)
=
ε+ (1− ε)/(d+ 1)

(1− ε)/(d+ 1)
= 1 +

ε(d+ 1)

(1− ε)
= 1 + Ω(1).

We seek to bound the total weight W . If we sum from the target v, where we set the adjacent
weights to one, then we see that the weights in ith Kd,d away from v must have weights that
are at most (1 + Ω(1))−i, thus

W 6 2
∑̀
i=0

(1 + Ω(1))−i(d2 + 2d+ 1) = O(d2).

Now we see a boosting since the original SRW stationary distribution of v was p = 1/N ∼ 1/2n
however under this ε-TB boosting strategy this is now p′ where

p′ > d/O(d2) = Ω(1/d) = Ω(n−α).

x u

u1

u2

u3

Figure 2: The (`,Kd,d)-ring consists of ` complete bipartite graphs on d vertices arranged in a
cycle. The (`,K3,3)-ring, for some ` > 2, is shown above.

Our next example show that for the Erdős-Rényi random graph the answer to (13) is negative.

Proposition 4.18. Let β > 0 and G d∼ G(n, p) where np ∼ na for some a > 0. Then w.h.p.

(i) tmix(G) 6 d1/ae.

(ii) The (β/np)-BRW can only increase the stationary probability of any vertex from p to at
most p1−δ where δ 6 (4d1/ae+ o(1)) ln(1 + β)/ ln(n).

(iii) The (β/np)-BRW can only decrease the stationary probability of any vertex from p to at
least p1+δ where δ 6 (8d1/ae+ o(1)) ln(n)/(np).

Proof. Hildebrand [13] showed that for np = (log n)α, where α > 2 and any η > 0 the mixing

time of G(n, p) is bounded from above by
⌈

logn
log(np)(1 + η)

⌉
w.h.p.. Hildebrand’s proof can be

adapted so that it holds for any np = na, a > 0. Similarly this gives tmix 6 d(1 + η)/ae w.h.p.,
since all degrees are in the range np ± 3

√
np log n w.p. 1 − ne−3 logn by Chernoff bounds. If

follows that for any fixed a > 0 such that a 6= d1/ae there is an η > 0 such that if we take n
large enough d(1 + η)/ae = d1/ae. This result is tight as it agrees with the diameter [7].

Let ε = β/np and observe that under any strategy Px,y 6
β
np+ 1−β/np

d(x) = 1+β+o(1)
d(x) and similarly

Px,y >
1−β/np
d(x) = 1

d(x)

(
1− β+o(1)

np

)
. Thus we can apply Proposition 4.8 with γ = 1 + o(1),
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c = 1 + β + o(1) and τ = 4d1/ae. Thus for any u and any (β/np)-Bias strategy Q,

(1− o(1))
(1− (β + o(1))/np)4d1/αe

2n
6 πQ(u) 6

2(1 + β + o(1))4d1/αe

n
.

Assume that there is a δ so that the stationary probability of any vertex can be raised from p
to p1−δ, thus there is a strategy giving a transition matrix Q such that πQ(u) · n1−δ > 1− o(1).
Our bound on πQ(u) implies that δ lnn 6 (4d1/ae+ o(1)) ln(1 + β + o(1)).

Similarly if the controller seeks to decrease the stationary probability to p1+δ then we have
δ lnn 6 − (4d1/ae+ o(1)) ln(1 − (β + o(1))/np). Recall that ln(1 − x) 6 −x/

√
1− x for x ∈

(−1, 0] and thus δ 6 (4βd1/ae+ o(1)) lnn
np .

5 Computing Optimal Choice Strategies

In this section we focus on the following problem: given a graph G and an objective, how can
we compute a strategy for the ε-TBRW which achieves the given objective in optimal expected
time? A strategy consists of a family of controller bias matrices {B(Ht)}, where t > 0 is the
time and Ht is the history of the walk up to time t. Azar et al. [4] considered the following
computational problems

Stat (G,w): Find an ε-bias strategy min/maximising
∑

v∈V wv · πv for vertex weights wv > 0.

Hit (G, v, S): Find an ε-bias strategy minimising
∑

v∈V `v · HεB
v (S) for a given S ⊆ V (G),

v ∈ V (G) and vertex weights `v > 0.

Notice that for Stat to make sense we must fix an unchanging strategy and there exists an
unchanging optimal strategy for Hit, see Section 1. Azar et al. showed Stat, Hit ∈ P.

Theorem 5.1 (Theorems 6 & 12 in [4]). Let G be any connected directed graph, v ∈ V (G) and
S ⊆ V (G). Then Stat (G,w) and Hit (G, v, S) can be solved in polynomial time.

We introduce the following computational problem not considered by Azar et al.

Cov (G, v): Find an ε-TB strategy minimising CεTBv (G) for a given v ∈ V (G).

Unlike for Stat and Hit, an optimal strategy for Cov on essentially any graph cannot to be
unchanging as it will need to adapt to the knowledge of which vertices remain uncovered. Propo-
sition 2.1 shows that there is an optimal strategy for Cov which is conditionally independent of
time, in that no more information from Ht than the set of uncovered vertices is used. This fact
means that an optimal strategy for Cov can be described using only finitely many bias matrices.

We show that the ε-TBRW exhibits the same dichotomy as the CRW studied in [10], in that
while optimising Hit admits a polynomial-time algorithm, even computing an individual bias
matrix B(Ht) from an optimal strategy for Cov is NP-hard. We may view this as an on-line
approach to solving Cov, where we compute only the specific bias matrices needed as the random
walk progresses; clearly this is an easier problem than precomputing an entire optimal strategy.
Note that at most n bias matrices will need to be computed in the course of any given walk,
since an optimal bias matrix only depends on the uncovered set, which changes at most n times;
however, a full optimal strategy may require exponentially many such matrices.

Our proof will be similar to that of [10] for the CRW, but the dependence of the construction
for the ε-TBRW on ε creates some additional difficulties.
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5.1 A Hardness Result for Cov (G, v)

We show that in general even computing a single optimal bias matrix for Cov (G, v) is NP-hard.
To that end we introduce the following problem, which in fact represents computing a single
row of a matrix. The input is a graph G, a current vertex u, and a visited set X which must
be connected and contain u.

NextStep (G, u,X): Output a probability distribution over the neighbours of u so the next step
minimises the expected time for the ε-TBRW to visit every vertex not in
X, assuming an optimal strategy is followed thereafter.

Any such problem may arise during the ε-TBRW on G starting from any vertex in X, no matter
what strategy was followed up to that point, since with positive probability the bias coin did
not allow the controlled to influence any previous walk steps.

Before giving the proof of hardness, we need some lemmas on the performance of the ε-BRW
on paths.

Lemma 5.2. For any ε > 0, the ε-BRW started from the end point 0 of path hits a vertex at
distance k in expected time

k

ε
− 1 + ε

2ε2
+O

(
1

ε2

(
1− ε
1 + ε

)k+1
)
,

with min{1/ε, k} many expected returns to the origin 0 before first hitting k.

Proof. This is a birth-death chain on {0, . . . , k}, we shall follow the notation from [15, Sec. 2.5].
This chain has probability pk = (1+ε)/2 of going from k−1 to k and probability pk = (1−ε)/2

of going from k to k − 1 and thus has weights wk =
(

1+ε
1−ε

)k
. Thus the expected hitting time

of k from 0 is given by

k∑
i=1

Ei−1 [ τi ] =

k∑
i=1

2

1− ε

(
1− ε
1 + ε

)i i−1∑
j=0

(
1 + ε

1− ε

)j

=

k∑
i=1

1

ε

(
1− ε
1 + ε

)i((1 + ε

1− ε

)i
− 1

)

=
k

ε
− 1 + ε

2ε2
+O

(
1

ε2

(
1− ε
1 + ε

)k+1
)
,

as claimed. For returns, since there are no cycles in a path the ε-BRW is reversible. Thus if
we fix the edge connecting the endpoint to the first vertex of the path to have resistance 1 then

the effective resistance between 0 and the target is
∑k−1

i=0

(
1−ε
1+ε

)
6 1+ε

2ε 6 1/ε. Since there is

only one edge from the end point of the path this also bounds the expected number of returns
before hitting k by [15, Prop. 9.5]. This bound is not good when ε is small, in any case however
the bias only decreases resistance the expected number of returns is at most k.

We define the k-subdivision of a graph G to be the graph G′ where every edge is replaced by
a path of length k. We call V (G) the branch vertices of G′.
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Lemma 5.3. Let G′ be the k-subdivision of any n-vertex graph and let k > 3 ln(n/ε)/ ln
(

1+ε
1−ε

)
.

Then there exists an ε-bias strategy for any u ∈ V (G′) such that the expected return time
to u is bounded by 2 min{1/ε, k}. For the ε bias strategy going from one branch vertex x to
another y where xy ∈ E(G) the probability the walk hits some z ∈ V (G) before y is at most

d(x)1+ε
1−ε

(
1−ε
1+ε

)k
.

Proof. For a given vertex u we take the following reversible unchanging strategy: for all vertices
on interior of the d(u) paths of length k adjacent to u we bias towards u. On the rest of the
graph we do not bias, simulating a simple random walk. This strategy is reversible since the
paths are all of the same length k and weights are uniform over the rest of the graph. If we
set the weight of edges adjacent to u to be 1 then the weight of edges at the ends of the paths

adjacent to u is w =
(

1−ε
1+ε

)k
, all edges not on a path with end point u also have this weight.

Since the return time is the reciprocal of the stationary distribution and this is given by W/d(u)
where W is the total weight of the edges. Note the contribution from paths adjacent to u is

W1 = d(u)
k−1∑
i=0

(
1− ε
1 + ε

)i
=
d(u) (1 + ε)

2ε

(
1−

(
1− ε
1 + ε

)k)
> 1, (14)

and the contribution W2 from the rest of the graph is at most n2k ·
(

1−ε
1+ε

)k
. It follows by

(14) that if we take k > 2 ln(nk)/ ln
(

1+ε
1−ε

)
then W1 > W2 and the return time is at most

2W1/d(u). One can check that any k > 3 ln(n/ε)/ ln
(

1+ε
1−ε

)
satisfies this. For such a k we have

W1 6 d(u) min{1/ε, k} by (14), thus the return time is at most 2 min{1/ε, k} .
For the second result it suffices to consider the neighbourhood of x in G in the statement

using the same weights as above and interpreting them as electrical resistances the path to y

from x has resistance R(x, y) =
∑k−1

i=0

(
1−ε
1+ε

)i
= 1+ε

2ε

(
1−

(
1−ε
1+ε

)k)
and each of the d(x) − 1

as having resistance R(x, z) =
∑k−1

i=0

(
1+ε
1−ε

)i
= 1−ε

2ε

((
1+ε
1−ε

)k
− 1

)
. Thus if we identify all

z ∈ V (G)\{y} such that xz ∈ E(G) as a single vertex z̄ then the effective resistance R(x, z̄) =
R(x, z)/(d(x)− 1). Then if we consider the path z̄, x, y and impose a voltage of 1 at z̄ and 0 at

y then the voltage at x is R(x,y)
R(x,z̄)+R(x,y) , this is the probability the walk from x hits z̄ before y.

After some cancellations we we have

R(x, y)

R(x, z̄) +R(x, y)
=

1+ε
2ε

1−ε
2ε(d(x)−1)

(
1+ε
1−ε

)k
+ 1+ε

2ε

6 d(x)
1 + ε

1− ε

(
1− ε
1 + ε

)k
.

The result follows.

We are now ready to prove the main result of this section.

Theorem 5.4. Provided ε > 1/|V (G)|k, for some fixed k < ∞, NextStep is NP-hard, even if
G is constrained to have maximum degree 3.

Proof. We give a (Cook) reduction from the NP-hard problem of either finding a Hamilton path
in a given graph H or determining that none exists. This is known to be NP-hard even if H is
restricted to have maximum degree 3 [9].
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Given an n-vertex graph H, construct the graph G as follows. First take the k-subdivision

of H, for some k > C
(

ln(n/ε)

ln( 1+ε
1−ε)

+ 1
)

where C > 3 determined later. Next add a new pendant

path of length k2 starting at the midpoint of each path corresponding to an edge of H. Finally,
add edges to form a cycle consisting of the end vertices of these pendant paths (in any order).
Note that if H has maximum degree 3, so does G. This construction is adapted from that of
[10], but moving to the ε-TBRW necessitates the dependence on ε.

Fix a starting vertex u and a non-empty unvisited set Y ⊆ V (H)\{u}, and set X = V (G)\Y .
(The purpose of the second and third stages of the construction is to make X connected without
affecting the optimal strategy.) Suppose that H contains at least one path of length |Y | starting
at u which visits every vertex of Y ; in particular if Y = V (H) \ {u} this is a Hamilton path of

H. Recalling k > C
(

ln(n/ε)

ln( 1+ε
1−ε)

+ 1
)

, for some C > 3, we make the following claim.

Claim. Any optimal next step is to move towards the next vertex on some such path.

Proof of claim. To prove the claim, first we argue by induction that there is a strategy to visit
every vertex in |Y | in expected time at most

(
k/ε+ 5/ε2

)
|Y |. This is clearly true for |Y | = 0.

Let y be the next vertex on a suitable path in H, and let z be the middle vertex of the path
corresponding to the edge uy. Attempting to reach z by the strategy of biasing towards it gives
an expected time at most k/(2ε) to reach z by Lemma 5.2 plus an additional expected time
at most 2/ε for each visit to u by Lemma 5.3, of which we expect 1/ε by Lemma 5.2, giving
a total expected time of k/(2ε) + 2/ε2. Note that if the walker is forced to a different branch
vertex first, the expected time to return from this point is O(k/ε) by Lemmas 5.2 & 5.3, but
this event occurs with probability at most d(u)1+ε

1−ε
(

1−ε
1+ε

bigr)k by Lemma 5.3 so the contribution to the expectation from this is occurrence is O(ε/n),
negligible. Similarly, the time taken to reach y from z is k/(2ε)+2/ε2. Once y is reached, there
is (by choice of y) a path of length |Y | − 1 in H starting from y and visiting all of Y \ {y}.
Thus, by induction, the required bound holds.

Secondly, suppose that an optimal first step in a strategy from u moves towards a vertex y′

of H which is not the first step in a suitable path. Since the expected remaining time decreases
whenever an optimal step is taken, two successive optimal steps cannot be in opposite directions
unless the walker visits a vertex of Y in between. Thus the optimal strategy is to continue in
the direction of y′ if possible, and such a strategy aims to reach y′ before another element of H.
The expected time taken to vertex of H from a another vertex in H is at least k

ε (1− 4/C) by
Lemma 5.2. To see this notice that for our choice of k, kε > C/4 since ln(1+ε

1−ε) >
ε

1−ε if ε 6 1/2.
To conclude since this strategy did not follow a Hamiltonian path it must make at least |Y |+ 1
such crossings. The result follows by taking C > 3 sufficiently large. ♦

To conclude, by the Claim, an algorithm to find a Hamilton path starting at x, if one exists,
is to set u = x and Y = V (H) \ {x}, then find the vertex y such that moving towards y is
optimal, set u = y and remove y from Y , then continue. If this fails to find a Hamilton path,
repeat for other possible choices of x. Finally we observe that by the restrictions placed on ε,
there is some satisfying k such that the graph G has at most poly(n) many vertices.

Remark. The restriction ε > 1/|V |k is not really significant as if ε is less than this for some
large k then w.h.p. 1−O

(
n−k

)
no bias step will even be taken. It can then be shown that such a

small ε would only affect the expected cover time by at most an additive O
(
n−k+3

)
term which

is negligible.
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5.2 Computing Cov (G, v) via Markov Decision Processes

To compute a solution for Cov (G, v) we can encode the cover time problem as a hitting time
problem on a (significantly) larger graph.

Lemma 5.5. [Lemma 7.7 of [10]] For any graph G = (V,E) let the (directed) auxiliary graph
G̃ = (Ṽ , Ẽ) be given by Ṽ = V ×P(V ) and Ẽ = {((i, S), (j, S ∪ j)) | ij ∈ E}. Then solutions to
Cov (G, v) correspond to solutions to Hit

(
G̃, ṽ,W

)
and vice versa, where W = {(u, V ) | u ∈ V }.

We can now prove Proposition 2.1 which states there is an optimal strategy to cover G which
is fixed over any time interval between times when a new vertex is visited.

Proof of Proposition 2.1. We shall appeal to Lemma 5.5 and consider the problem of covering
G as hitting the set W in the auxiliary graph G̃. This is now an instance of the optimal
first-passage problem in the context of Markov Decision Processes [8], and the existence of a
time independence optimal strategy follows from [8, Thm. 3, Ch. 3]. Notice that although the
strategy for hitting the vertex W in G̃ is independent of time this is not strictly true of the
original problem. Recall G̃ is a directed graph which consists of a series of undirected graphs
linked by directed edges, the undirected graphs represent the subgraphs of G induced by possible
visited sets and the directed edges correspond to the walk in G visiting a new vertex. Since
the strategy for G̃ is independent of time during the times when a new vertex is added to the
covered set the strategy is fixed.

In light of Lemma 5.5 we can solve Cov(G, v).

Corollary 5.6. For any graph G and v ∈ V an optimal policy for the problem Cov (G, v) can
be computed, in particular Cov ∈ EXP.

Proof. We first encode the problem Cov (G, v) as the problem Hit
(
G̃, ṽ,W

)
as described in

Lemma 5.5. The problem Hit
(
G̃, ṽ,W

)
for any directed graph G̃ can be computed in time

which is polynomial in |V (G̃)| 6 2n by Theorem 5.1.

6 Concluding Remarks and Open Problems

In this paper we have extended the previous work on the ε-biased random walk to include
strategies which may depend on the history of the walk. Our motivation for this is the cover
time problem for which we obtain bounds using a new technique we refer to as the tree gadget.
This tree gadget also allowed us to make progress on a conjecture of Azar et al. [4]. We note that
this conjecture as originally stated is actually wrong, see Section 4.3. However, their conjecture
only appears to fail for graphs with large entries in the stationary vector and we believe that,
as noted in Section 4.3, the following slightly refined version of their conjecture should hold.

Conjecture 6.1. In any graph a controller can increase the stationary probability of any vertex
from p to p1−ε+δ, where δ = O(1/| log p|).

We also showed that computing an optimal next step for the ε-TBRW to take in the online
version of the covering problem is NP-Hard. We believe that there should be no short certificate
certifying that a given strategy for Cov is optimal and thus the problem should not belong to
the class NP.

Conjecture 6.2. There exists an ε > 0 such that Cov (G, v) is PSPACE-Hard.

In addition we showed that Cov (G, v) ∈ EXP, it would also be interesting to see if this can
be improved.
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