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* Three parts

1. The Internet at large

2. Measurement data is big data — what’s hard?
3. Measuring things is not neutral — why?



Part 1 — The Internet is Big

* Not just size but complexity

— Graph data — has billions nodes & edges
* Hypergraph — edges have multiple meanings
e Sparse, and dynamic
* Topology, topography, policy at IP level
e Authorship, ownership, ACLs at Web level

— So simple questions (clusters, cliques, hubs, etc)

* Are computationally very expensive (O(m”3/2))
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Part 2- Big Data

. The “Big” in Big Data is relative
Big Social Data

Big Science Big Data

Big Private Data

Big Bad Data

Alan Turing Institute for Data Science
http://www.turing.ac.uk/



“Big” Data is Relative

* Social Sciences
e Natural Sciences
 Computational Sciences



Social Sciences

Big > 12, or “Complete”

E.g. all of a family, town, country, world
10 Billion is not really big

— if you’re just counting

Problem is Ground Truth

— E.g. where did you get your data from?



Social Big Data problems

* Bias
— Sample Bias
— Recruitment Bias
— Survivor Bias

e E.g. Data from smart phones

— Who has smart phones?
* What type? (MAC addr no longer tells © )

— WEIRD

 white educated industrialized rich democratic



Social Graph Data

 Even when you have “large” data
— Beware, McSherry et al, results

http://www.frankmcsherry.org/graph/scalability/cost/2015/01/15/COST.html
— See annex 1 slides...

— But also ground truth etc etc

* And aforesaid sample/ground truth questions



Natural Science Data

e Particle Physics: LHC/CERN
— 600M events/sec
— 10Gbps
— Mostly noise©
e Square Kilometer Array
— 10715 bps (petabit per sec)
— Trickier = 100* the whole internet ®

* Lesson - they will build big enough processing



Computational Science

 Complexity....Big Bad Data

* Genetics/Epigenetics/Phenomics
— Interdependence within data —
— poster child e.g. is protein folding
— Complexity in model is exponential
— What hope?

* Lesson:- people will do approximation algo



Physics/Chem/Bio

* Use HPC clusters/rack scale systems
— Tighter memory interconnect (e.g. Cray)
— Very very large, fast RAM
— multiple terabytes today
— Vector processor support

e Lesson: Not much use for us...or is it?



Private Data

Much social data is PlII

— Even meta data is PlII

— Protect “big” data by AAA

— Anonymize? Very hard, especially graphs
— Inference on nodes easy
Re-identification is almost trivial

— E.g. fb, yellowcab, medicare

— Via public diary, postcode, other sources
DiffPriv — works, but care still needed
Homomorphic Cryptography — thd!!!
Lesson:- Not a solved problem, access control vital



Public Health

Aside from loT, PH is biggest valid use of PlII
— On negative side, privacy crucal&legal

— On positive side, few genuine researchers, so
— AAA&DIff Priv work pretty well

Quantified Self + Wellbeing/fitness already...
Fitbit, food diaries etc
Lesson — good motives but mission creep



Big Data processing tools

* Aside from Hadoop,
— Apache’s Spark Streaming and Graphx
—R
— Naiad (unsupported for now)
— Write your own ©

* Also care about data center network
— Latency bounds improve performance

— See annex 2 slides



Big Analytics companies

* Google, facebook

— See OpenStack and Datacenter Networking
(Yongguang Zhang) later....

* Run on specialized data centers

— Non standard interconnects
* (clos nets)

— Non standard protocols

* IP routing doesn’t scale (I2 bridge+vpn++)
* TCP hacks...
 Rdma (microsoft)



google

The Google Stack

Source: Malte Schwarzkopf. “Operating system support for warehouse-scale computing”. PhD
thesis. University of Cambridge Computer Laboratory (to appear), 2015, Chapter 2.
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Figure 1: The Google infrastructure stack. I omit the F1 database [SOE*12] (the back-end
of which was superseeded by Spanner), and unknown front-end serving systems. Arrows
indicate data exchange and dependencies between systems; simple layering does not imply
a dependency or relation.

In addition, there are also papers that do not directly cover systems in the Google stack:

* An early-days (2003) high-level overview of the Google architecture [BDHO03].

* An extensive description of Google’s General Configuration Language (GCL), sadly with
some parts blackened [Bok08].

* A study focusing on tail latency effects in Google WSCs [DB13].

 Several papers characterising Google workloads from public traces [MHC*10; SCH*11;
ZHB11; DKC12; LC12; RTG*12; DKC13; AA14].

* Papers analysing the impact of workload co-location [MTH*11; MT13], hyperthread-
ing [ZZE*14], and job packing strategies on workloads [VKW14].



facebook

The Facebook Stack

Source: Malte Schwarzkopf. “Operating system support for warehouse-scale computing”. PhD
thesis. University of Cambridge Computer Laboratory (to appear), 2015, Chapter 2.
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Figure 1: The Facebook infrastructure stack. I omit front-end serving systems about which
details are unknown. Arrows indicate data exchange and dependencies between systems;
simple layering does not imply a dependency or relation.

In addition, there are several papers that do not directly cover systems in the Facebook stack,
but describe workloads, techniques or data centre hardware:

« Descriptions of the physical design of Facebook’s server machines as of 2011 [FHL*11]
and data centre network architecture as of 2013 [FA13].

Another paper on the HBase back-end for Facebook messages [ABC*12] and a measure-
ment paper looking at the HDFS-level usage patterns of this HBase deployment [HBD* 14].

« Papers on the use of erasure codes in HDFS at Facebook [RSG*13; SAP*13; RSG*14].

« Several papers analysing the Facebook memcached workload [AXF*12] and evaluating
new sampling strategies to improve hit rates in memcached [LLD*13].

A study of Facebook’s wide-area photo caching infrastructure [HBR*13].

* A description of how Facebook uses shared memory to persist in-memory state across
restarts of Scuba server processes [GCG*14].

« The HipHop Virtual Machine (HHVM) is a JIT compiler and runtime for PHP code heav-
ily used in front-end page generation [AEM*14]. Previously, Facebooke used a source-
to-source compiler (also called “HipHop™, HPHPc) to transform PHP into semantically
equivalent C++ code that can be compiled into native code [ZPY*12].



More subtle stuff

* Deep learning
ML using neural nets, etc

— May be amenable to other non standard h/w
* Not transparent or even explanatory?

— Some say quantum computing
e Others put that in doubt...

e Lesson:- Al is ML that doesn’t work, yet



Part 3 - Three Use Cases

In order of increasing badness:
* Maps

* FluPhone

* Censorship



Use Case #1: Crowd Sourced Net Atlas

* Carna Botnet
— Used to measure net from 420,000 vantage points
— Used default password exploit

— lllegal in most countries

* See “Internet census 2012: port scanning/0 using
insecure embedded devices”

— Pass “Does no harm” test?

* Technically yes & no (bandwidth costs)
* Reputationally no



Use Case #1 continued

* Was it useful?
— A bit
— But alternatives exist
— CAIDA & Internet Atlas Projects

* |sit dangerous?
Gives an open example of an exploit
Possibly — shows where to attack net hubs



Use Case #2: FluPhone

* Goal to collect encounter data
— during H1/N1 influenza epidemic
— Get SIR parameters early
— Find other features of epidemic

— Vector, age/gender effects, herd immunity

— http://www.cl.cam.ac.uk/research/srg/netos/projects/archive/
fluphone/

e At start of epidemic, mortality was high
— Privacy not an issue (notifiable disease)?
— But medical ethics committee:
— Weren’t allowed to collect on children!
— Bad, as they are a key mix part of flu spreading!



Use Case #2 continued
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Use Case #3: Censorship

 “Encore: Lightweight Measurement of Web

Censorship with Cross-Origin Requests”
http://conferences.sigcomm.org/sigcomm/2015/pdf/reviews/226pr.pdf

e |lessonin Do’s &Don’ts
— of ethical measurement

— Methodologically
* |dea: cause browser visiting innocent site A
* To be redirected to “is it censored, site B”



Use case #3 continued

What could possibly go wrong, part 1?

1. If you are in a dangerous country and your
browser visits a censored site, the excuse

2. “l didn’t click on that” doesn’t help you from
being arrested and tortured

3. We know dangerous countries have logging
firewalls to implement censorship

4. E.g. Bluecoat technology illegally shipped to
Syria, Iran, Russia etc etc



Use case

3 continued

What could possibly go wrong, part 27

 The ACLs will rapidly be updated
— To block the site A (redirector script site)
— Or the script pattern itself
— Rendering the experiment useless.

* Meanwhile, other people have already done
successful experiments in any case, e.g.

— Censorship in the Wild: Analyzing Internet Filtering in
Syria, doi>10.1145/2663716.2663720

— And did no harm



And another thing

* |Interference is a bad thing
— In today’s internet (of things), s/w is fragile
— You don’t know what a device is (for)
— E.g. ipad for reading email
— Might also be car dashboard (Tesla)
— You change library (e.g. random # gen)
— Might crash car...or open it up to hackers
— Who crash car. loss of privacy -> loss of life



Future is interesting

Lots to do, lots not to do.
Interesting/diverse and useful
— But also care needed
— Making more haystacks to find less needles...
— Medical ethics overly strict
— Advertising ethics underly strict
Cybersecurity? You work it out...
— Better not have sample bias or inexplicable ML
— Please map the examples | gave onto cybersec questions
— And see what would be useful,
— and what would be counter-productive
Excellent careers right now for CS+X
— For X=science, commerce, math/stats



Questions?

* I’'m happy to repond to followups.
jon.crowcroft@cl.cam.ac.uk



Annex 2 slides on Graph
Processing

By
J Crowcroft from work by Malte
Schqgarzkopf & Frank McSherry

Computer Laboratory & Unafilliated
University of Cambridge




tl:dr #1

* Network speed may not matter with a Spark
pased stack, but it does matter to higher

oerformance analytics stacks, and for graph
orocessing especially.

* By moving from a 1G to a 10G network, we

see a 2x-3x improvement in performance for
timely dataflow.




tl:dr #2

* A well balanced distributed system offers
performance improvements even for graph

processing problems that fit into a single
machine;

* running things locally isn't always the best
strategy



tl:dr #3

 PageRank performance on GraphXis primarily
system bound. We see a 4x-16x performance
increase when using timely dataflow on the
same hardware, which suggests that GraphX
(and other graph processing systems) leave an
alarming amount of performance on the table



PageRank in Rust

fn pagerank(graph: &G: Graph, vertices: usize, alpha: £32)
{

// mutable per-vertex state

let mut src = vec![0£32; vertices];

let mut dst = vec![0£32; vertices];

let mut deg = vec! [0£32; vertices];

// determine vertex degrees
for (x, ) in graph.edges() { deg[x] += 1£32; }

// perform 20 iterations
for iteration in (0 .. 20) {

// prepare src ranks

for vertex in (0 .. vertices) {
src[vertex] = alpha * dst[vertex] / degl[vertex];
dst([vertex] = 1£32 - alpha;

// do the expensive part
for (x,y) in graph.edges() { dstl[y] += src[x]; }



1: Send everything

[ 223 +8
| 12 - 23, +9 |
| 13 > 23, +5 |
[ 31 — 27, +5 |

5]
—a
|

5]
=
n




[
r

l

2: Worker-level aggregation

11-20 T2 =23, 49
[ 13 — 23,45




Impl #3: Process-level aggregation

&
L

|

11-20 92 =23, +9
[13 — 23, +5




Some Baseline figures
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System

System source

Spark GraphX paper 16x8
(https://www.usenix.org/system/files/conference/osdil4/osdil4-
paper-gonzalez.pdf)

GraphX GraphX paper 16x8
(https://www.usenix.org/system/files/conference/osdil4/osdil4-
paper-gonzalez.pdf)

GraphX measured on our cluster 16x8
Single COST paper 1

thread (https://www.usenix.org/conference/hotos15/workshop-

(simpler) program/presentation/mcsherry)

Single COST paper 1
thread  (https://www.usenix.org/conference/hotos15/workshop-

(smarter) program/presentation/mcsherry)
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End-to-end runtime [sec]

Timely dataflow impl
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Twenty pagerank iterations on one machine, multiple threads.

System cores twitter_rv uk_2007_05
Timely dataflow 1 350.7s (11.33s) 442.2s (8.90s)
Timely dataflow 2 196.5s (6.39s) 297.3s (5.67s)
Timely dataflow 4 182.4s (6.12s) 192.0s (3.78s)
Timely dataflow 8 107.6s (3.70s) 137.1s (3.29s)
Timely dataflow 12 95.0s (3.32s) 114.5s (2.65s)




End-to-end runtime [sec]
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Conclusions 1

* As we have seen, the three implementations
(GraphX and the two timely dataflow ones)
have different bottleneck resources.

* GraphX does more compute and is CPU-bound
even on the 1G network, whereas the leaner
timely dataflow implementations become
CPU-bound only on the 10G network.

* Drawing conclusions about the scalability or
limitations of either system based on the
performance of the other is likely misguided.



Conclusions 2

* Fast 10G networks do help reduce reduce the
runtime of parallel computations by
significantly more than 2-10%: we've seen
speedups up to 3x going from 1G to 10G.

* However, the structure of the computation
and the implementation of the data
processing system must be suited to fast
networks, and different strategies are
appropriate for 1G and 10G networks.

* For the latter, being less clever and



Conclusions 3

* Distributed data processing makes sense even
for graph computations where the graph fits
into one machine.

* When computation and communication are
overlapped sufficiently, using multiple
machines yields speedups up to 5x (e.g., on
twitter_rv, 1x8 vs. 16x8). Running everything
locally isn't necessarily faster.



Conclusions 4

 Can make PageRank run 16x faster per
iteration using distributed timely dataflow
than using GraphX (from 12.2s to 0.75s per
iteration).

* This tells us something about how much scope
for improvement there is even over numbers
currently considered state-of-the-art in
research!



Annex 2 - Systems (th)at Scale —
reducing latency in data center
network

http://www.cl.cam.ac.uk/~jac22




Cloud, Data Center, Networks

1. New Cloud OS to meet new workloads

— Includes programming language
— Collabs incl REMS (w/ P.Gardner/Imperial)

2. New Data Center structure
— Includes heterogeneous h/w

— Collabs incl NaaS(Peter Pietzuch Imperial)
— Trilogy (Mark Handley et al UCL)

3. New Networks (for data centers&)
— To deal with above®©



What not talking about

Security

— (we do that — had another workshop)
Data

— Hope Ed folks will!

Scaling Apps

— Oxford

Languages for Apps
— Ed++



* Unikernels (Mirage, SEL4, ClickOS)
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Figure 2: Contrasting approaches to application containment.




Unikernels in OCaml

 But also Go, Scala, Rust etc
* Type safety->security, reliability
* Apps can be legacy or in same languages
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Figure 1: Jitsu architecture: external network connec-
tivity is handled solely by memory-safe unikernels con-
nected to general purpose VMs via shared memory.



Data Centers don’t just go fast

* They need to serve applications
1. Latency, not just throughput

2. Face users
1. Web, video, ultrafast trade/gamers
2. Face Analytics...

3. Availability & Failure Detectors
4. Application code within network
5. NIC on host or switch — viz



Industry (see pm®© )

Azure

http://conferences.sigcomm.org/sigcomm/
2015/pdf/papers/keynote.pdf

Facebook:

http://conferences.sigcomm.org/sigcomm/
2015/pdf/papers/pl123.pdf

Google:

http://conferences.sigcomm.org/sigcomm/
2015/pdf/papers/p183.pdf



2. Deterministic latency bounding

* Learned what | was teaching wrong!

* | used to say:

— Integrated Service too complex
* Admission&scheduling hard

— Priority Queue can’t do it
* PGPS computation for latency?
* | present Qjump scheme, which
— Uses intserv (PGPS) style admission ctl
— Uses priority queues for service levels
— http://www.cl.cam.ac.uk/research/srg/netos/



Data Center Latency Problem

e Tail of the distribution,
— due to long/bursty flows interfering

* Need to separate classes of flow
— Low latency are usually short flows (or RPCs)

— Bulk transfers aren’t so latency/jitter sensitiv



Data Center Qjump Solution

— In Data Center, not general Internet!
* can exploit topology &
* traffic matrix &
e source behaviour knowledge

— Regular, and simpler topology key
— But also largely “cooperative” world...



Hadoop perturbs time synch




Hadoop perturbs memcached

1.0
0.8

0.6

04
02

Q.0




Hadoop perturbs Naiad

10

0.98
0.95

0.94

0.92
09

0 S00 1000 1500 2000
Latorcy nus



Qjump — two pieces

1. At network config time
— Compute a set of (8*) rates based on
— Traffic matric & hops => fan in (f)

2. At run time

— Flow assigns itself a priority/rate class
— subject it to (per hypervisor) rate limit

* 8 arbitrary — but often h/w supported©



Memcached latency redux w/ QJ
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QJ naiad barrier synch latency
redux
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Big Picture Comparison — Related
work...
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Failure Detectors

e 2PC & CAP theorem

* Recall CAP (Brewer’s Hypothesis)
— Consistency, Availability, Partitions
— Strong& weak versions!

— If have net&node deterministic failure detector,
isn’t necessarily so!

 What can we use CAP-able system for?
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Consistent, partition tolerant app?

* Software Defined Net update!
— Distributed controllers have distributed rules
— Rules change from time to time
— Need to update, consistently

— Need update to work in presence of partitions
* By definition!
— So Qjump may let us do this too!



3. Application code -> Network

* Last piece of data center working for
application

e Switch and Host NICs have a lot of smarts
— Network processors,
— like GPUs or (net)FPGAs
— Can they help applications?

— In particular, avoid pathological traffic patterns
(e.g. TCP incast)



Application code

e E.g. shuffle phase in map/reduce
— Does a bunch of aggregation
— (min, max, ave) on a row of results
— And is cause of traffic “implosion”

— So do work in stages in the switches in the net
(like merge sort!)

* Code very simple
* Cross-compile into switch NIC cpus



Other application examples

* Are many ...

* Arose in Active Network research
— Transcoding
— Encryption
— Compression
— Index/Search

e Etc etc



Need language to express these

Finite iteration
(not Turing-complete language)
So design python— with strong types!

Work in progress in NaaS project at Imperial
and Cambridge...
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Networks, Interfaces and Transports
for Rack-Scale Operating Systems

Software

HDim:ueM Locking _ Distributed Services Layer
Cambridge I/O Framework (CamlO) Protocol Layer
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Hardware
Reliable Real Time Data Distributer (R2D2) Network Layer
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Conclusions/Discussion

* Data Center is a special case!
* |ts important enough to tackle

— We can hard bound latency easily

— We can detect failures and therefore solve some
nice distributed consensus problems

— We can optimise applications pathological traffic
patterns

— Integrate programming of net&hosts
— Weird new h/w...

* Plenty more to do...



